
A reaction-diffusion SEIR model, including the self-protection for susceptible individuals, treatments for infectious individuals and constant recruitment, is introduced. The existence of traveling wave solution, which is determined by the basic reproduction number R0 and wave speed c, is firstly proved as R0>1 and c≥c∗ via the Schauder fixed point theorem, where c∗ is minimal wave speed. Asymptotic behavior of traveling wave solution at infinity is also proved by applying the Lyapunov functional. Furthermore, when R0≤1 or R0>1 with c∈(0, c∗), we derive the non-existence of traveling wave solution with utilizing two-sides Laplace transform. We take advantage of numerical simulations to indicate the existence of traveling wave, and show that self-protection and treatment can reduce the spread speed at last.
Citation: Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment[J]. Electronic Research Archive, 2021, 29(3): 2325-2358. doi: 10.3934/era.2020118
[1] | Hai-Feng Huo, Shi-Ke Hu, Hong Xiang . Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, 2021, 29(3): 2325-2358. doi: 10.3934/era.2020118 |
[2] | Meng Wang, Naiwei Liu . Qualitative analysis and traveling wave solutions of a predator-prey model with time delay and stage structure. Electronic Research Archive, 2024, 32(4): 2665-2698. doi: 10.3934/era.2024121 |
[3] | Chenghua Gao, Enming Yang, Huijuan Li . Solutions to a discrete resonance problem with eigenparameter-dependent boundary conditions. Electronic Research Archive, 2024, 32(3): 1692-1707. doi: 10.3934/era.2024077 |
[4] | Shao-Xia Qiao, Li-Jun Du . Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, 2021, 29(3): 2269-2291. doi: 10.3934/era.2020116 |
[5] | Abdelmajid El Hakoume, Lekbir Afraites, Amine Laghrib . An improved coupled PDE system applied to the inverse image denoising problem. Electronic Research Archive, 2022, 30(7): 2618-2642. doi: 10.3934/era.2022134 |
[6] | Minzhi Wei . Existence of traveling waves in a delayed convecting shallow water fluid model. Electronic Research Archive, 2023, 31(11): 6803-6819. doi: 10.3934/era.2023343 |
[7] | Mingliang Song, Dan Liu . Common fixed and coincidence point theorems for nonlinear self-mappings in cone $ b $-metric spaces using $ \varphi $-mapping. Electronic Research Archive, 2023, 31(8): 4788-4806. doi: 10.3934/era.2023245 |
[8] | Xianyi Li, Xingming Shao . Flip bifurcation and Neimark-Sacker bifurcation in a discrete predator-prey model with Michaelis-Menten functional response. Electronic Research Archive, 2023, 31(1): 37-57. doi: 10.3934/era.2023003 |
[9] | Cui-Ping Cheng, Ruo-Fan An . Global stability of traveling wave fronts in a two-dimensional lattice dynamical system with global interaction. Electronic Research Archive, 2021, 29(5): 3535-3550. doi: 10.3934/era.2021051 |
[10] | Min Li, Ke Chen, Yunqing Bai, Jihong Pei . Skeleton action recognition via graph convolutional network with self-attention module. Electronic Research Archive, 2024, 32(4): 2848-2864. doi: 10.3934/era.2024129 |
A reaction-diffusion SEIR model, including the self-protection for susceptible individuals, treatments for infectious individuals and constant recruitment, is introduced. The existence of traveling wave solution, which is determined by the basic reproduction number R0 and wave speed c, is firstly proved as R0>1 and c≥c∗ via the Schauder fixed point theorem, where c∗ is minimal wave speed. Asymptotic behavior of traveling wave solution at infinity is also proved by applying the Lyapunov functional. Furthermore, when R0≤1 or R0>1 with c∈(0, c∗), we derive the non-existence of traveling wave solution with utilizing two-sides Laplace transform. We take advantage of numerical simulations to indicate the existence of traveling wave, and show that self-protection and treatment can reduce the spread speed at last.
Epidemics are widespread around the world, and always jeopardize public lives and health, such as COVID-19, malaria, severe acute respiratory syndrome (SARS), influenza and so on. The public has taken all kinds of measures to struggle against the different infectious epidemics. Various of mathematical models are established to research dynamics and influences of prevention and control for different epidemics [12,23,22,10,9,15]. Recently, both the popularization of knowledge about infectious diseases and the improvement of treatment have built a solid foundation for epidemics' prevention. This popularization can also lead to the strengthening in public self-protection. For instance, since Chinese had owned strongly self-protection and governments of China had taken efficient treatments, COVID-19 was first under effective control in China [11,17,13]. As a result, it is necessary to integrate self-protection and treatment into epidemic models. Because epidemics are always discovered at one location and then spread to other areas [21], reaction-diffusion models become essential to describe this spatial spread. Simultaneously, epidemic models with spatial spread usually can result in a development from a diseases-free state to an infective state, which can be predicted a wave for this evolution of epidemics. Consequently, traveling wave solution becomes critical to study the spatial spread of epidemics [7,8,18,20].
Many people have analyzed traveling wave solution and the asymptotic speed of propagation of classic compartmental epidemic models [16,26,1,4,30,28,32,25]. Ducrot and Magal [3] studied the existence and the non-existence of traveling wave solution satisfying a diffusive epidemic model with age-structure and constant recruitment, and constructed a suitable Lyapunov functional to discuss their asymptotic behavior at infinity. Li et al. [14] found that the existence and the non-existence of traveling wave solution for the system which is a nonlocal dispersal delayed SIR model with constant recruitment and Holling-slowromancapii@ incidence rate are determined via both the minimal wave speed and the basic reproduction number
In this paper, we firstly integrate self-protection into the classical reaction-diffusion SEIR model with constant recruitment, so susceptible individuals are divided into two groups: susceptible individuals
{∂S1(x,t)∂t=d1ΔS1(x, t)+Λ−βS1(x, t)[θI1(x, t)+I2(x, t)]−(ρ+μ)S1(x, t),∂S2(x, t)∂t=d2ΔS2(x, t)+ρS1(x, t)−βσS2(x, t)[θI1(x, t)+I2(x, t)]−μS2(x, t),∂E(x, t)∂t=D0ΔE(x, t)+β[S1(x, t)+σS2(x, t)][θI1(x, t)+I2(x, t)]−(μ+γ)E(x, t),∂I1(x, t)∂t=D1ΔI1(x, t)+q1γE(x, t)−(μ+α1)I1(x, t),∂I2(x, t)∂t=D2ΔI2(x, t)+q2γE(x, t)−(μ+α2)I2(x, t),∂R(x, t)∂t=DΔR(x, t)+α1I1(x, t)+α2I2(x, t)−μR(x, t). | (1) |
Throughout this aritcle, we make the following assumption:
In fact, for making a living, the susceptible has to move, and their diffusion is almost same without special cases. Especially, the susceptible with self-protection may take some methods, such as wearing masks, avoiding crowed public places and so on, to decrease the likelihood of connects with the infectious. The infectious could reduce going out owing to discomfort by disease. Thus, the assumption can better close to reality. In mathematical analysis of this model, the assumption (A) also can help us get an upper bound for the different susceptible and infected components to research the asymptotic behavior as
Since the equations
{∂S1(x, t)∂t=dΔS1(x, t)+Λ−βS1(x, t)[θI1(x, t)+I2(x, t)]−(ρ+μ)S1(x, t),∂S2(x, t)∂t=dΔS2(x, t)+ρS1(x, t)−βσS2(x, t)[θI1(x, t)+I2(x, t)]−μS2(x, t),∂E(x, t)∂t=D0ΔE(x, t)+β[S1(x, t)+σS2(x, t)][θI1(x, t)+I2(x, t)]−(μ+γ)E(x, t),∂I1(x, t)∂t=D1ΔI1(x, t)+q1γE(x, t)−(μ+α1)I1(x, t),∂I2(x, t)∂t=D2ΔI2(x, t)+q2γE(x, t)−(μ+α2)I2(x, t), | (2) |
where
The structure of this article is as follows. In Section 2, we firstly obtain the basic reproduction number
In order to research traveling wave solution of system (2), the first step is to find what kind of constant equilibriums of system (2) exist. It is well known that there always exists an equilibrium
{dS1(t)dt=Λ−βS1(t)[θI1(t)+I2(t)]−(ρ+μ)S1(t),dS2(t)dt=ρS1(t)−βσS2(t)[θI1(t)+I2(t)]−μS2(t),dE(t)dt=β[S1(t)+σS2(t)][θI1(t)+I2(t)]−(μ+γ)E(t),dI1(t)dt=q1γE(t)−(μ+α1)I1(t),dI2(t)dt=q2γE(t)−(μ+α2)I2(t). | (3) |
The point
R0=[q1γθβ(μ+γ)(μ+α1)+q2γβ(μ+γ)(μ+α2)](S01+σS02). |
Furthermore, taking advantage of the direct Lyapunov functional method, which is similar in [15], can claim the below theorem.
Theorem 2.1. If
In the rest of Section 2, we always assume
(S1(ξ), S2(ξ), E(ξ), I1(ξ), I2(ξ)),ξ=x+ct∈R. | (4) |
Substitute formula (4) into systmen (2), and we can obtain the wave form equations as follows:
{dS″1(ξ)−cS′1(ξ)+Λ−βS1(ξ)[θI1(ξ)+I2(ξ)]−(ρ+μ)S1(ξ)=0,dS″2(ξ)−cS′2(ξ)+ρS1(ξ)−βσS2(ξ)[θI1(ξ)+I2(ξ)]−μS2(ξ)=0,D0E″(ξ)−cE′(ξ)+β[θI1(ξ)+I2(ξ)][S1(ξ)+σS2(ξ)]−(μ+γ)E(ξ)=0,D1I″1(ξ)−cI′1(ξ)+q1γE(ξ)−(μ+α1)I1(ξ)=0,D2I″2(ξ)−cI′2(ξ)+q2γE(ξ)−(μ+α2)I2(ξ)=0, | (5) |
for
Si(−∞)=S0i, E(−∞)=0, Ii(−∞)=0,Si(+∞)=S∗i, E(+∞)=E∗, Ii(+∞)=I∗i,i=1, 2. | (6) |
Linearizing the
{D0E″(ξ)−cE′(ξ)+β[θI1(ξ)+I2(ξ)](S01+σS02)−(μ+γ)E(ξ)=0,D1I″1(ξ)−cI′1(ξ)+q1γE(ξ)−(μ+α1)I1(ξ)=0,D2I″2(ξ)−cI′2(ξ)+q2γE(ξ)−(μ+α2)I2(ξ)=0. |
Set
{D0η0λ2−cη0λ+β(θη1+η2)(S01+σS02)−(μ+γ)η0=0,D1η1λ2−cη1λ+q1γη0−(μ+α1)η1=0,D2η2λ2−cη2λ+q2γη0−(μ+α2)η2=0. | (7) |
Let
˜A=(D0000D1000D2),˜B=(c000c000c), |
˜V=(μ+γ000μ+α1000μ+α2), |
˜F=(0βθ(S01+σS02)β(S01+σS02)q1γ00q2γ00). |
Denote
Θ(λ, c)(η0, η1, η2)T=0. |
And define
(−Aλ2+Bλ+I)−1Fη=η, | (8) |
and
(−Aλ2+Bλ+I)−1F=(0βθ(S01+σS02)m0(λ, c)β(S01+σS02)m0(λ, c)q1γm1(λ, c)00q2γm2(λ, c)00), |
where
M(λ, c)η=η. |
Let
λc=min{c+√c2−4D0(μ+γ)2D0, c+√c2−4D1(μ+α1)2D1,c+√c2−4D2(μ+α2)2D2}. |
For
ρ(λ, c)=[(βθq1γm0(λ, c)m1(λ, c)+βq2γm0(λ, c)m2(λ, c))(S01+σS02)]12. | (9) |
Moreover, some properties of
Lemma 2.2. Below statements hold:
(ⅰ)
(ⅱ)
(ⅲ) for
Proof. It is well known that (ⅰ) is established, so we only prove (ⅱ) and (ⅲ). It follows from the definitions of both
ddλρ(λ, 0)=ρ−12(λ, 0)(βθq1γ(S01+σS02)(D0λm1(λ, 0)+D1λm0(λ, 0))m20(λ, 0)m21(λ, 0)+βq2γ(S01+σS02)(D0λm2(λ, 0)+D2λm0(λ, 0))m20(λ, 0)m22(λ, 0))>0 |
for
∂∂cρ(λ, c)=−12λρ−12(λ, c)(βθq1γ(S01+σS02)m20(λ, c)m21(λ, c)+βq2γ(S01+σS02)m20(λ, c)m22(λ, c))<0, |
for
According to Lemma 2.2, we define
ˆλ(c)=minλ∈[0, λc)ρ(λ, c),∀c≥0. |
Then we conclude
λ∗=inf{λ∈[0, λc∗): ρ(λ, c∗)=1}, |
it indicates that
λ1(c)=sup{λ∈(0, λ∗): ρ(λ, c)=1, ρ(λ′, c)≥1, ∀λ′∈(0, λ)}. |
Because of
Lemma 2.3. Assume that
(ⅰ)
(ⅱ)
(ⅲ) as
Since the
Lemma 2.4. Assume that
M(λ1(c), c)η(c)=η(c), |
M(λ1(c)+εn(c), c)ζn(c)=ρ(λ1(c)+εn(c), c)ζn(c). |
Fix
{−m0(λ1, c)η0+(S01+σS02)(θη1+η2)=0,−m1(λ1, c)η1+q1γη0=0,−m2(λ1, c)η2+q2γη0=0, | (10) |
and
{−m0(λ1+εn, c)ζn0+(S01+σS02)(θζn1+ζn2)<0,−m1(λ1+εn, c)ζn1+q1γζn0<0,−m2(λ1+εn, c)ζn2+q2γζn0<0. | (11) |
According to the above argument, we can construct suitable sub- and super-solutions which are defined in below lemmas. And then the local existence of solution for system (5) is proved via the Schauder fixed point theorem.
Lemma 2.5. Let the vector function
{D0p″0(ξ)−cp′0(ξ)+β(S01+σS02)(θp1(ξ)+p2(ξ))−(μ+γ)p0(ξ)=0,D1p″1(ξ)−cp′1(ξ)+q1γp0(ξ)−(μ+α1)p1(ξ)=0,D2p″2(ξ)−cp′2(ξ)+q2γp0(ξ)−(μ+α2)p2(ξ)=0. |
Lemma 2.6. For each
cS−′1(ξ)≤dS−″1(ξ)+Λ−(μ+ρ)S−1(ξ)−βS−1(ξ)(θp1(ξ)+p2(ξ)), | (12) |
cS−′2(ξ)≤dS−″2(ξ)+ρS−1(ξ)−μS−2(ξ)−βσS−2(ξ)(θp1(ξ)+p2(ξ)), | (13) |
for
Proof. When
(−dω+c)S01ωMeωξ+Λ−(μ+ρ)S01(1−Meωξ)−β(θη1+η2)S01(1−Meωξ)eλ1ξ=(−dω+c)S01ωMeωξ+(μ+ρ)S01Meωξ−β(θη1+η2)S01(1−Meωξ)eλ1ξ≥[(−dω+c)S01ωM+(μ+ρ)S01M−β(θη1+η2)S01e−λ1−ωωlnM]eωξ≥0, |
so the inequality (12) is established. Furthermore,
(−dω+c)S02ωMeωξ+ρS01(1−Meωξ)−βσ(θη1+η2)S02(1−Meωξ)eλ1ξ−μS02(1−Meωξ)=(−dω+c)S02ωMeωξ−βσ(θη1+η2)S02(1−Meωξ)eλ1ξ≥[(−dω+c)S01ωM−βσ(θη1+η2)S01e−λ1−ωωlnM]eωξ≥0, |
and the inequality (13) is set up. The lemma is completely proved.
Lemma 2.7. Let
min{1ϵlnKζ0η0, 1ϵlnKζ1η1, 1ϵlnKζ2η2}>1ωlnM, |
then the vector map
ch′0(ξ)≤D0h″0(ξ)−(μ+γ)h0(ξ)+β(S−1(ξ)+σS−2(ξ))(θh1(ξ)+h2(ξ)),ξ<1ϵlnη0Kζ0, | (14) |
ch′1(ξ)≤D1h″1(ξ)+q1γh0(ξ)−(μ+α1)h1(ξ), ξ<1ϵlnη1Kζ1, | (15) |
ch′2(ξ)≤D2h″2(ξ)+q2γh0(ξ)−(μ+α2)h2(ξ), ξ<1ϵlnη2Kζ2. | (16) |
Proof. Firstly, we prove the inequality (14). For
K[−D0ζ0(λ1+ϵ)2+cζ0(λ1+ϵ)+(μ+γ)ζ0]e(λ1+ϵ)ξ+β(S−1+σS−2)[θh1(ξ)+h2(ξ)]+D0η0λ21eλ1ξ−cη0λ1eλ1ξ−(μ+γ)η0eλ1ξ≥0, | (17) |
which is
−Kζ0m0(λ1+ϵ, c)e(λ1+ϵ)ξ+η0m0(λ1, c)eλ1ξ−β(S−1+σS−2)[θh1(ξ)+h2(ξ)]≤0. |
According to equations (10), the proof of the inequality (17) can be replaced by proving
−Kζ0m0(λ1+ϵ, c)e(λ1+ϵ)ξ+β(S01+σS02)(θη1+η2)eλ1ξ−β(S−1+σS−2)[θh1(ξ)+h2(ξ)]≤0. | (18) |
Because
β(S01+σS02)(θη1+η2)eλ1ξ−β(S−1+σS−2)[θh1(ξ)+h2(ξ)]=β(S01+σS02)(θη1+η2)eλ1ξ−β(S01+σS02)[θh1(ξ)+h2(ξ)]+β(S01+σS02)[θh1(ξ)+h2(ξ)]−β(S−1+σS−2)[θh1(ξ)+h2(ξ)]=β(S01+σS02)[θ(η1eλ1ξ−h1(ξ))+(η2eλ1ξ)−h2(ξ)]+β[θh1(ξ)+h2(ξ)][(S01−S−1)+σ(S02−S−2)]≤β(S01+σS02)(θKζ1e(λ1+ω)ξ+Kζ2e(λ1+ω)ξ)+β[θh1(ξ)+h2(ξ)](S01Meωξ+σS02Meωξ). |
Thus, for the proof of the inequality (18), we only need to prove
Ke(λ1+ϵ)ξ[−m0(λ1+ϵ)ζ0+β(S01+σS02)(θζ1+ζ2)]+Mβ(S01+σS02)[θh1(ξ)+h2(ξ)]eωξ≤0, |
which is
K[−m0(λ1+ϵ)ζ0+β(S01+σS02)(θζ1+ζ2)]+Mβ(S01+σS02)[θη1(ξ)+η2(ξ)]e(ω−ϵ)ξ≤0. | (19) |
For
Now, we set
ΓX={χ1(⋅), χ2(⋅), φ0(⋅), φ1(⋅), φ2(⋅)∈C([−X, X], R5)|χi(±X)=S−i(±X),φj(±X)=hj(±X),S−i(ξ)≤χi(ξ)≤S0i,h−j(ξ)≤φj(ξ)≤pj(ξ),} |
where
For any
(χ1(⋅), χ2(⋅), φ0(⋅), φ1(⋅), φ2(⋅))∈ΓX, |
we consider the following boundary-value problem for
{−dS″1,X(ξ)+cS′1,X(ξ)−Λ+(μ+ρ)S1,X(ξ)+βS1,X(ξ)[θφ1(ξ)+φ2(ξ)]=0,−dS″2,X(ξ)+cS′2,X(ξ)−ρχ1(ξ)+μS2,X(ξ)+βσS2,X(ξ)[θφ1(ξ)+φ2(ξ)]=0,−D0E″X(ξ)+cE′X(ξ)−β[χ1(ξ)+σχ2(ξ)][θφ1(ξ)+φ2(ξ)]+(μ+γ)EX(ξ)=0,−D1I″1,X(ξ)+cI′1,X(ξ)−q1γφ0(ξ)+(μ+α1)I1,X(ξ)=0,−D2I″2,X(ξ)+cI′2,X(ξ)−q2γφ0(ξ)+(μ+α2)I2,X(ξ)=0, | (20) |
satisfying the below boundary condition:
S1,X(±X)=S−1(±X), S2,X(±X)=S−2(±X),EX(±X)=h0(±X), I1,X(±X)=h1(±X), I2,X(±X)=h2(±X). | (21) |
Applying the Gilbarg and Trudinger's Corollary 9.18 in [6], we can claim that there exists a unique solution
(S1,X, S2,X, EX, I1,X, I2,X), |
satisfying the problems (20)-(21), where
(S1,X, S2,X, EX, I1,X, I2,X)∈W2,p((−X, X), R5)∩C([−X, X], R5), |
for
S1,X=T1(χ1, χ2, φ0, φ1, φ2),S2,X=T2(χ1, χ2, φ0, φ1, φ2),EX=T3(χ1, χ2, φ0, φ1, φ2),I1,X=T4(χ1, χ2, φ0, φ1, φ2),I1,X=T5(χ1, χ2, φ0, φ1, φ2), |
for any
Lemma 2.8. The operator
Proof. Firstly, we consider
0≥−dS−″1(ξ)+cS−′1(ξ)−Λ+(μ+ρ)S−1(ξ)+βS−1(ξ)(θp1(ξ)+p2(ξ))≥−dS−″1(ξ)+cS−′1(ξ)−Λ+(μ+ρ)S−1(ξ)+βS−1(ξ)(θφ1(ξ)+φ2(ξ)), |
and
0≥−dS−″2(ξ)+cS−′2(ξ)−ρS−1(ξ)+μS−2(ξ)+βσS−2(ξ)(θp1(ξ)+p2(ξ))≥−dS−″2(ξ)+cS−′2(ξ)−ρχ1(ξ)+μS−2(ξ)+βσS−2(ξ)(θφ1(ξ)+φ2(ξ)). |
for any
Secondly, we consider about
0=−D0p″0(ξ)+cp′0(ξ)−β(S01+σS02)(θp1(ξ)+p2(ξ))+(μ+γ)p0(ξ)≤−D0p″0(ξ)+cp′0(ξ)−β(S01+σS02)(θφ1(ξ)+φ2(ξ))+(μ+γ)p0(ξ),0=−D1p″1(ξ)+cp′1(ξ)−q1γp0(ξ)+(μ+α1)p1(ξ)≤−D1p″1(ξ)+cp′1(ξ)−q1γφ0(ξ)+(μ+α1)p1(ξ), |
and
0=−D2p″2(ξ)+cp′2(ξ)−q2γp0(ξ)+(μ+α2)p2(ξ)≤−D2p″2(ξ)+cp′2(ξ)−q2γφ0(ξ)+(μ+α2)p2(ξ), |
for any
0≥−D0h″0(ξ)+ch′0(ξ)+(μ+γ)h0(ξ)−β(S−1(ξ)+σS−2)(ξ)(θh1(ξ)+h2(ξ))≥−D0h″0(ξ)+ch′0(ξ)+(μ+γ)h0(ξ)−β(χ−1(ξ)+σχ−2)(ξ)(θφ1(ξ)+φ2(ξ)), |
for
0≥−D1h″1(ξ)+ch′1(ξ)−q1γh0(ξ)+(μ+α1)h1(ξ)≥−D1h″1(ξ)+ch′1(ξ)−q1γφ0(ξ)+(μ+α1)h1(ξ), |
for
0≥−D2h″2(ξ)+ch′2(ξ)−q2γh0(ξ)+(μ+α2)h2(ξ)≥−D2h″2(ξ)+ch′2(ξ)−q2γφ0(ξ)+(μ+α2)h2(ξ), |
for
By taking advantage of the classic embedding theorem,
(S1,X, S2,X, EX, I1,X, I2,X)=T(S1,X, S2,X, EX, I1,X, I2,X), |
for
{−dS″1,X(ξ)+cS′1,X(ξ)−Λ+(μ+ρ)S1,X(ξ)+βS1,X(ξ)[θI1,X(ξ)+I2,X(ξ)]=0,−dS″2,X(ξ)+cS′2,X(ξ)−ρS1,X(ξ)+μS2,X(ξ)+βσS2,X(ξ)[θI1,X(ξ)+I2,X(ξ)]=0,−D0E″X(ξ)+cE′X(ξ)−β[S1,X(ξ)+σS2,X(ξ)][θI1,X(ξ)+I2,X(ξ)]+(μ+γ)EX(ξ)=0,−D1I″1,X(ξ)+cI′1,X(ξ)−q1γEX(ξ)+(μ+α1)I1,X(ξ)=0,−D2I″2,X(ξ)+cI′2,X(ξ)−q2γEX(ξ)+(μ+α2)I2,X(ξ)=0,Si,X(±X)=S−i(±X), EX(±X)=h0(±X), Ii,X(±X)=hi(±X). | (22) |
We have proved the local existence of solution for system (5). In order to obtain the global existence, we need the following estimate.
Lemma 2.9. For a given
∥Si,X∥C3[−Y, Y]≤NSi(Y), ∥EX∥C3[−Y, Y]≤NE(Y), ∥Ii,X∥C3[−Y, Y]≤NIi(Y), | (23) |
with
X>max{Y, 1ωln1M, 1ϵlnη0Kζ0, 1ϵlnη1Kζ1, 1ϵlnη2Kζ2 }. |
Proof. We always set
∥S1,X∥W2,p(−Y,Y)≤Ω1(Λ+βS01[θ^NI1(Y)+^NI2(Y)]+∥ϕ1∥W2,p(−Y,Y)), |
and
∥S2,X∥W2,p(−Y,Y)≤Ω2(ρS01+βσS02[θ^NI1(Y)+^NI2(Y)]+∥ϕ2∥W2,p(−Y,Y)), |
where
Set a sequence of positive numbers
S−1(ξ)≤S1(ξ)≤S01, S−2(ξ)≤S2(ξ)≤S02,h0(ξ)≤E(ξ)≤p0(ξ), h1(ξ)≤I1(ξ)≤p1(ξ), h2(ξ)≤I2(ξ)≤p2(ξ) | (24) |
with
limξ→−∞S1(ξ)=S01, limξ→−∞S2(ξ)=S02, limξ→−∞E(ξ)=0, |
limξ→−∞I1(ξ)=0, limξ→−∞I2(ξ)=0. |
Now, we need to show some estimates about solution
Lemma 2.10. Let
0≤E(ξ)+I1(ξ)+I2(ξ)≤√dDminΛr | (25) |
and
Λμ+ρ+β√dDminΛr≤S1(ξ)≤S01,ρΛ(μ+ρ+β√dDminΛr)(μ+βσ√dDminΛr)≤S2(ξ)≤S02, | (26) |
where
Proof. In this proof, we still set
m1(ξ)=ρS1(ξ)+βS1(ξ)[θI1(ξ)+I2(ξ)], m2(ξ)=ρS1(ξ)−βσS2(ξ)[θI1(ξ)+I2(ξ)], |
and
n1(ξ)=q1γE(ξ), n2(ξ)=q1γE(ξ). |
Due to the define of
{−dS″1(ξ)+cS′1(ξ)+rS1(ξ)≤Λ−m1(ξ),−dS″2(ξ)+cS′2(ξ)+rS2(ξ)≤m2(xi),−D0E″(ξ)+cE′(ξ)+rE(ξ)≤m1(ξ)−m2(ξ)−n1(ξ)−n2(ξ),−D1I″1(ξ)+cI′1(ξ)+rI1(ξ)≤n1(ξ),−D2I″2(ξ)+cI′2(ξ)+rI2(ξ)≤n2(ξ). ∀ξ∈R, | (27) |
So we need to consider the following Cauchy problems
{∂∂tu1(t, ξ)−d∂∂ξ2u1(t, ξ)+c∂∂ξu1(t, ξ)+ru1(t, ξ)=Λ−m1(ξ),u1(0, ξ)=S1(ξ),{∂∂tu2(t, ξ)−d∂∂ξ2u2(t, ξ)+c∂∂ξu2(t, ξ)+ru2(t, ξ)=m2(ξ),u2(0, ξ)=S2(ξ),{∂∂tv0(t, ξ)−d∂∂ξ2v0(t, ξ)+c∂∂ξv0(t, ξ)+rv0(t, ξ)=m1(ξ)−m2(ξ)−n1(ξ)−n2(ξ),v0(0, ξ)=E(ξ),{∂∂tvi(t, ξ)−d∂∂ξ2vi(t, ξ)+c∂∂ξvi(t, ξ)+rvi(t, ξ)=ni(ξ),vi(0, ξ)=Ii(ξ), |
for
u1(t, ξ)=e−rt∫R1√4πdte−(ξ−ct−y)24dtS1(y)dy+∫t0∫Re−rs√4πdse−(ξ−ct−y)24ds(Λ−m1(y))dyds,u2(t, ξ)=e−rt∫R1√4πdte−(ξ−ct−y)24dtS2(y)dy+∫t0∫Re−rs√4πdse−(ξ−ct−y)24dsm2(y)dyds,v0(t, ξ)=e−rt∫R1√4πD0te−(ξ−ct−y)24D0tE(y)dy+∫t0∫Re−rs√4πD0se−(ξ−ct−y)24D0s(m1(y)−m2(y)−n(y)−n(y))dyds,vi(t, ξ)=e−rt∫R1√4πDite−(ξ−ct−y)24DitIi(y)dy+∫t0∫Re−rs√4πDise−(ξ−ct−y)24Disni(y)dyds, |
for
Si(ξ)≤ui(t, ξ), E(ξ)≤v0(t, ξ), Ii(ξ)≤vi(t, ξ), ∀t>0, ∀ξ∈R. |
Let
S1(ξ)≤Λr−f1(ξ), S2(ξ)≤f2(ξ), E(ξ)≤f0(ξ)−g0(ξ), Ii(ξ)≤gi(ξ), |
for
fi(ξ)=∫+∞0e−−rt√4πdt∫+∞−∞mi(ξ−y−ct)e−y24dtdydt,f0(ξ)=∫+∞0e−−rt√4πD0t∫+∞−∞[m1(ξ−y−ct)−m2(ξ−y−ct)]e−y24D0tdydt,g0(ξ)=∫+∞0e−−rt√4πD0t∫+∞−∞[n1(ξ−y−ct)+n2(ξ−y−ct)]e−y24D0tdydt,gi(ξ)=∫+∞0e−−rt√4πDit∫+∞−∞ni(ξ−y−ct)e−y24Ditdydt. |
Owing to
√D0g0(ξ)≥√D1g1(ξ)+√D2g2(ξ) |
and
√d[f1(ξ)−f2(ξ)]≥√D0f0(ξ) |
for any
E(ξ)+√D1D0I1(ξ)+√D2D0I2(ξ)≤f0(ξ)≤√dD0f1(ξ)−√dD0f2(ξ)≤√dD0[λr−S1(ξ)]−√dD0S2(ξ)≤√dD0Λr, |
which implies
E(ξ)+I1(ξ)+I2(ξ)≤√D0DminE(ξ)+√D1DminI1(ξ)+√D2DminI2(ξ)≤√dDminΛr, |
for
On the other hand, one has
dS″1(ξ)−cS′1(ξ)+Λ−βS1(ξ)√dDminΛr−(μ+ρ)S1(ξ). |
for any
Λμ+ρ+β√dDminΛr≤S1(ξ), ∀ξ∈R. |
Via the similar argument on
ρΛ(μ+ρ+β√dDminΛr)(μ+βσ√dDminΛr)≤S2(ξ), ∀ξ∈R. |
This lemma is completely proved.
Since the system consisted by
max{max[ξ−1,ξ+1]E, max[ξ−1,ξ+1]I1, max[ξ−1,ξ+1]I2}≤M1min{min[ξ−1,ξ+1]E, min[ξ−1,ξ+1]I1, min[ξ−1,ξ+1]I2}. | (28) |
Furthermore, there exists a constant
|E′(ξ)E(ξ)|+|I′1(ξ)I1(ξ)|+|I′2(ξ)I2(ξ)|≤ˆM, | (29) |
for
max{∥E∥W2,p(ξ−12,ξ+12), ∥I1∥W2,p(ξ−12,ξ+12), ∥I2∥W2,p(ξ−12,ξ+12)}≤M2{∥E∥Lp(ξ−1,ξ+1)+∥I1∥Lp(ξ−1,ξ+1)+∥I2∥Lp(ξ−1,ξ+1)}≤6M2max{max[ξ−1,ξ+1]E, max[ξ−1,ξ+1]I1, max[ξ−1,ξ+1]I2}, |
for any
max{∥E′∥C[x−12,x+12], ∥I′1∥C[x−12,x+12], ∥I′2∥C[x−12,x+12]}≤M3max{max[x−1,x+1]E, max[x−1,x+1]I1, max[x−1,x+1]I2}.∀ξ∈R. | (30) |
Set
In order to take advantage of a suitable Lyapunov functional to research the asymptotic behavior of
ˆE={S1(⋅), S2(⋅), E(⋅), I1(⋅), I2(⋅)∈C1(R, (0, +∞))×⋯×C1(R, (0, +∞)),S1(⋅)>0, S2(⋅)>0, E(⋅)>0, I1(⋅)>0, I2(⋅)>0,∃ˆM>0, |E′(ξ)E(ξ)|+|I′1(ξ)I1(ξ)|+|I′2(ξ)I2(ξ)|≤ˆM.}, |
Let
V(S1, S2, E, I1, I2)(ξ)=S∗1[dS′1(1S1(ξ)−1S∗1)+cg(S1(ξ)S∗1)]+S∗2[dS′2(1S2(ξ)−1S∗2)+cg(S2(ξ)S∗2)]+E∗[D0E′(1E(ξ)−1E∗)+cg(E(ξ)E∗)]+C1I∗1[D1I′1(1I1(ξ)−1I∗1)+cg(I1(ξ)I∗1)]+C2I∗2[D2I′2(1I2(ξ)−1I∗2)+cg(I2(ξ)I∗2)], | (31) |
where
C1=βθI∗1(S∗1+σS∗2)q1γE∗,C2=βI∗2(S∗1+σS∗2)q2γE∗, |
for each
Lemma 2.11. Let (A) be satisfied and
1N≤Si(ξ)≤S∗i, | (32) |
E(ξ)≤NE∗, | (33) |
Ii(ξ)≤NI∗i, | (34) |
and
|E′(ξ)E(ξ)|+|I′1(ξ)I1(ξ)|+|I′2(ξ)I2(ξ)|≤N | (35) |
for any
−m≤V(ξ)<+∞,∀ξ∈R, | (36) |
where the map
Proof. The previous description has shown
|d2∑i=1S∗iS′i(ξ)(1Si(ξ)−1S∗i)+D0E∗E′(ξ)(1E(ξ)−1E∗)+2∑i=1CiI∗iDiI′i(xi)(1Ii(ξ)−1I∗i)|≤d2∑i=1S∗i∥Si∥∞(N+1S∗i)+ˆDˆCN+ˆDˆC(|E′(ξ)E∗|+|I′1(ξ)I∗1|+|I′2(ξ)I∗2|)≤d2∑i=1S∗i∥Si∥∞(N+1S∗i)+ˆDˆCN+ˆDˆCN2, | (37) |
where
Φ(ξ)=cg(S1(ξ)S∗1)+cg(S2(ξ)S∗2)+cg(E(ξ)E∗)+cC1g(I1(ξ)I∗1)+cC2g(I2(ξ)I∗2). | (38) |
According to both the definition of
Since a direct calculation with letting
dV(ξ)dξ=(Λ−βθS∗1I∗1−βS∗1I∗2−ρS∗1)(2−x1−1x1)+(ρS∗1−βσθS∗2I∗1−βσS∗2I∗2)(3−1x1−x2−x1x2)+βθS∗1I∗1(3−1x1−x1x4x3−x3x4)+βS∗1I∗2(3−1x1−x1x5x3−x3x5)+βσθS∗2I∗1(4−1x1−x1x2−x2x4x3−x3x4)+βσS∗2I∗2(4−1x1−x1x2−x2x5x3−x3x5). |
Therefore, via the mean inequality, we conclude that
dV(ξ)dξ≤0,∀ξ∈R, |
which implies that the map
dV(ξ)dξ=0,∀ξ∈R, |
the map
S1(ξ)≡S∗1, S2(ξ)≡S∗2, E(ξ)≡E∗, I1(ξ)≡I∗1, I2(ξ)≡I∗2,∀ξ∈R. |
This completes the proof.
Now, we gain the first theorem for existence of traveling wave solution for system (2) as below:
Theorem 2.12. If (A) and
Proof. We still set
(S1(ξ), S2(ξ), E(ξ), I1(ξ), I2(ξ)) |
satisfying system (5), and
limξ→−∞S1(ξ)=S01, limξ→−∞S2(ξ)=S02, limξ→−∞E(ξ)=0,limξ→−∞I1(ξ)=0, limξ→−∞I2(ξ)=0, |
for any
limξ→+∞S1(ξ)=S∗1, limξ→+∞S2(ξ)=S∗2, limξ→+∞E(ξ)=E∗,limξ→+∞I1(ξ)=I∗1, limξ→+∞I2(ξ)=I∗2, |
Take an arbitrary increasing sequence
Si,m(ξ)=Si(ξ+ξm), Em(ξ)=E(ξ+ξm), Ii,m(ξ)=Ii(ξ+ξm). |
Via the elliptic estimate, it may assume that the sequence
V(S1,m, S2,m, Em, I1,m, I2,m)(ξ)≤V(S1, S2, Em, I1, I2)(ξ) |
for any
limm→+∞V(S1,m, S2,m, Em, I1,m, I2,m)(ξ)=ˆG,∀ξ∈R, |
which implies that
V(S1,∞, S2,∞, E∞, I1,∞, I2,∞)(ξ)≡ˆG |
in
Si,∞=S∗i, E∞=E∗, Ii,∞=I∗i,S′i,∞=0, E′∞=0, I′i,∞=0. |
Via the arbitrariness of the sequence
limξ→+∞Si(ξ)=S∗i, limξ→+∞E(ξ)=E∗, limξ→+∞Ii(ξ)=I∗i. |
The proof is completed.
Furthermore, the second theorem of existence for traveling wave solution for system (2) is stated as below:
Theorem 2.13. Assume that (A) is satisfied and
Proof. Step 1. Take a decreasing sequence
S1,m(0)=S01+S∗12. |
The interior elliptic estimates, Arzela-Ascoli theorem and a diagonalization argument can indicate a subsequence of
(S1,m, S2,m, Em, I1,m. I2,m)→(S1, S2, E, I1. I2) |
as
S1(0)=S01+S∗12, | (39) |
which implies that
(S1, S2, E, I1. I2)≢(S01, S02, 0, 0, 0). |
Moreover, we yield
Si(+∞)=S∗i, E(+∞)=E∗, Ii(+∞)=I∗i, i=1, 2. |
Next, we need to prove what the solution converges to as
limξ→−∞V(ξ)=L<+∞, | (40) |
or
limξ→−∞V(ξ)=+∞. | (41) |
If the formula (40) holds, via the similar way in Lemma 2.11, it can claim that
Si(−∞)=S∗i,E(−∞)=E∗, Ii(−∞)=I∗, i=1, 2, |
and then
Si(ξ)≡S∗i, E(ξ)≡E∗, Ii(ξ)≡I∗i, ∀ξ∈R, i=1, 2, |
which contradicts the equation (39). Thus, the equation (41) must be only workable. Due to the inequality (37), it is shown that
limξ→−∞Φ(ξ)=+∞, | (42) |
where
limξ→−∞infE(ξ)=0. | (43) |
On the contrary, if
Ii(ξ)>ˆδ,∀ξ∈R, |
which indicates that
limξ→−∞Φ(ξ)<+∞, |
and contradicts the equation (42). Therefore, the equation (43) holds. Secondly, we prove that
limξ→−∞E(ξ)=0. |
If
limξ→−∞supE(ξ)=δ>0, |
there exists a sequence
limj→∞E(ξj)=δ, |
Via the estimate (28), we can have
Ii(ξj)≤12M1δ,i=1, 2. |
Then, it is implied that
limj→∞supV(ξj)<+∞, |
which contradicts the equation (41). Therefore,
limξ→−∞E(ξ)=0. |
In the similar way, we can also claim that
limξ→−∞Ii(ξ)=0. |
Finally, set
limξ→−∞Si(ξ)=S0i |
In order to hit the target, we firstly prove the existence of
limξ→−∞inf{S1(ξ)+S2(ξ)}<limξ→−∞sup{S1(ξ)+S2(ξ)}≤Λμ. |
Take a sequence
limn→+∞[S1(ξn)+S2(ξn)]=limξ→−∞inf{S1(ξ)+S2(ξ)}<Λμ,ddξn[S1(ξn)+S2(ξn)]=0, d2dξ2n[S1(ξn)+S2(ξn)]≤0. | (44) |
Since
limn→+∞[S1(ξn)+S2(ξn)]≥Λμ, |
which leads to a contradiction to inequalities (44). Thus,
Step 2. This step is to prove
−dS″1(ξ)+cS′1(ξ)+(μ+ρ)S1(ξ)=Λ−βS1(ξ)[θI1(ξ)+I2(ξ)],ξ∈R, |
we can obtain that
S1(ξ)=1z∫ξ−∞eA1(ξ−x)[λ−βS1(x)(θI1(x)+I2(x))]dx+1z∫+∞ξeA2(ξ−x)[λ−βS1(x)(θI1(x)+I2(x))]dx=1z∫0−∞eA1x[λ−βS1(ξ−x)(θI1(ξ−x)+I2(ξ−x))]dx+1z∫+∞0eA2x[λ−βS1(ξ−x)(θI1(ξ−x)+I2(ξ−x))]dx, |
where
z=d(A1−A2), A1=c−√c2+4d(μ+ρ)2, A2=c−√c2+4d(μ+ρ)2. |
As
k1=Λz(∫0−∞sA1xdx+∫+∞0sA2xdx), |
which leads to
k1=Λμ+ρ=S01. |
Via the similar argument on
k2=ρk1μ=S02. |
This completes the proof.
The previous section has stated the existence of traveling wave solution connecting disease-free equilibrium and endemic equilibrium when
Theorem 3.1. If
Proof. On the contrary, assume that there exists a solution
DiI″i(ξ)−cI′i(ξ)+qiγEsup−(μ+αi)Ii(ξ)≥0,∀ξ∈R. |
It follows from the comparison principle that
Ii(ξ)≤qiγEsupμ+αi,∀ξ∈R. |
Next we research the following equation
D0ˉE″(ξ)−cˉE′(ξ)+ˉΛβ(θq1γEsupμ+α1+q2γEsupμ+α2)−(μ+γ)ˉE(ξ)=0, |
where
E(ξ)≤ˉΛ(θq1γμ+α1+q2γμ+α2)Esup, |
which indicates
ˉΛ(θq1γμ+α1+q2γμ+α2)≥1. |
and contradicts the fact
Theorem 3.2. As
Proof. Set a new sequence
limm→+∞E(ξm)=ˆB=supξ∈RE(ξ). |
Now, we need to show
(S1,m(ξ), S2,m(ξ), Em(ξ), I1,m(ξ), I2,m(ξ))→(~S1(ξ), ~S2(ξ), ˜E(ξ), ~I1(ξ), ~I2(ξ)), |
as
{d~S1″(ξ)−c~S1′(ξ)+Λ−β~S1(ξ)(θ~I1(ξ)+~I2(ξ))−(ρ+μ)~S1(ξ)=0,d~S2″(ξ)−c~S2′(ξ)+ρ~S1(ξ)−βσ~S2(ξ)(θ~I1(ξ)+~I2(ξ))−μ~S2(ξ)=0,D0˜E″(ξ)−c˜E′(ξ)+β[θ~I1(ξ)+~I2(ξ)][~S1(ξ)+σ~S2(ξ)]−(μ+γ)˜E(ξ)=0,D1~I1″(ξ)−c~I1′(ξ)+q1γ˜E(ξ)−(μ+α1)~I1(ξ)=0,D2~I2″(ξ)−c~I2′(ξ)+q2γ˜E(ξ)−(μ+α2)~I2(ξ)=0,˜E(0)=ˆB, ˜E(ξ)≤ˆB,0≤~Si(ξ)≤S0i, i=1, 2, ∀ξ∈R. |
The maximum principle implies that
~Ii(ξ)≤qiγˆBμ+αi. |
Moreover, we can yields
0≤D0˜E″(0)+β[~S1(0)+σ~S1(0)](θq1γμ+α1+q2γμ+α2)˜B−(μ+γ)˜B. |
Owing to
In this case, we attempt to utilize the two-sides Laplace transform to gain the non-existence of traveling wave solution for system (2). Therefore, we firstly need to imply the exponential boundedness for traveling wave solution via next two lemmas.
Lemma 3.3. Assume that
∫ξ−∞E(x)dx<J, ∫ξ−∞I1(x)dx<J, ∫ξ−∞I2(x)dx<J, |
for
Proof. Set
Si(ξ)>S0i(1−ε),ξ∈(−∞, −2G). |
For any
β(S1(ξ)+σS2(ξ))(θI1(ξ)+I2(ξ))−(μ+γ)E(ξ)≥β(S01+σS02)(1−ε)[θI1(ξ)+I2(ξ)]−(μ+γ)E(ξ) | (45) |
For
¯J0(ξ, y)=∫ξyE(x)dx, ¯J1(ξ, y)=∫ξyI1(x)dx, ¯J2(ξ, y)=∫ξyI2(x)dx. |
Integrate both sides of inequalities (45) from
β(S01+σS02)(1−ε)(θ¯J1(ξ, y)+¯J2(ξ, y))−(μ+γ)¯J0(ξ, y)≤∫ξy[β(S1(x)+σS2(x))(θI1(x)+I2(x))−(μ+γ)E(x)]dx. | (46) |
It follows from Lemma 2.10 and inequality (29) that
∥E(⋅)∥C2(R)≤ˆP,∥Ii(⋅)∥C2(R)≤ˆP, | (47) |
and
limξ→−∞E′(ξ)=limξ→−∞I′i(ξ)=0, | (48) |
where
∫ξ−∞[β(S1(x)+σS2(x))(θI1(x)+I2(x))−(μ+γ)E(x)]dx | (49) |
=limy→−∞∫ξy[−D0E″(x)+cE′(x)]dx=−D0E′(ξ)+cE(ξ),∫ξ−∞[qiγE(x)−(μ+αi)Ii(x)]dx=limy→−∞∫ξy[−DiI″i(x)+cI′i(x)]dx=−DiI′i(ξ)+cIi(ξ). | (50) |
In the following, we aim to prove that there exists a constant
∫ξ−∞E(x)dx<J,∫ξ−∞Ii(x)dx<J,∀ξ<−2G. |
Let
A=(μ+γβθ(S01+σS02)(1−ε)β(S01+σS02)(1−ε)q1γμ+α10q2γμ+α20), |
and we conclude
ˉJ(ξ, y)=−(μ+α2)βθ(S01+σS02)(1−ε)(q1γ¯J0(ξ, y)−(μ+α1)¯J1(ξ, y))−(μ+α1)β(S01+σS02)(1−ε)(q2γ¯J0(ξ, y)−(μ+α2)¯J2(ξ, y)) |
to both sides of the inequality (46) multiplied by
−|A|¯J0(ξ, y)≤(μ+α1)(μ+α2)∫ξy[β(S1(x)+σS2(x))(θI1(x)+I2(x))−(μ+γ)E(x)]dx−ˉJ(ξ, y), | (51) |
for
∫ξ−∞E(x)dx<J,∀ξ<−2G. |
In the similar way, we also can claim that
∫ξ−∞Ii(x)dx<J,∀ξ<−2G. |
The proof is completed.
Lemma 3.4. Assume that
supξ∈RE(ξ)e−μ0ξ<∞, supξ∈R|E′(ξ)|e−μ0ξ<∞, supξ∈R|E″(ξ)|e−μ0ξ<∞,supξ∈RI1(ξ)e−μ0ξ<∞, supξ∈R|I′1(ξ)|e−μ0ξ<∞, supξ∈R|I″1(ξ)|e−μ0ξ<∞,supξ∈RI2(ξ)e−μ0ξ<∞, supξ∈R|I′2(ξ)|e−μ0ξ<∞, supξ∈R|I″2(ξ)|e−μ0ξ<∞. | (52) |
Proof. Fix
S1(ξ)>S01(1−ε),S2(ξ)>S02(1−ε),∀ξ<−2G. |
And
[q1γβθ(μ+α2)+q2γβ(μ+α1)](S01+σS20)(1−ε)(μ+γ)(μ+α1)(μ+α2)>1. | (53) |
Thus, for any
cE′(ξ)≥D0E″(ξ)+β(S01+S02)(1−ε)[θI1(ξ)+I2(ξ)]−(μ+γ)E(ξ), | (54) |
cI′1(ξ)=D1I″1(ξ)+q1γE(ξ)−(μ+α1)I1(ξ), | (55) |
cI′2(ξ)=D2I″2(ξ)+q2γE(ξ)−(μ+α2)I2(ξ). | (56) |
Set
¯J0(ξ)=∫ξ−∞E(x)dx<J, ¯Ji(ξ)=∫ξ−∞Ii(x)dx<J, |
for any
cE(ξ)≥D0E′(ξ)+β(S01+σS02)(1−ε)[θ¯J1(ξ)+¯J2(ξ)]−(μ+γ)¯J0(ξ). | (57) |
Integrating two sides of the inequality (57) from
β(S01+σS02)(1−ε)[θ∫ξ−∞¯J1(x)dx+∫ξ−∞¯J2(x)dx]−(μ+γ)∫ξ−∞¯J0(x)dx+D0E(ξ)≥c¯J0(ξ). | (58) |
Via the similar way in equations (55) and (56), we can yield
q1γ∫ξ−∞¯J0(x)dx−(μ+α1)∫ξ−∞¯J1(x)dx+D1I1(ξ)=c¯J1(ξ), | (59) |
and
q2γ∫ξ−∞¯J0(x)dx−(μ+α2)∫ξ−∞¯J2(x)dx+D2I2(ξ)=c¯J2(ξ), | (60) |
which reduces to
∫ξ−∞¯J1(x)dx=1μ+α1(q1γ∫ξ−∞¯J0(x)dx+D1I1(ξ)−c¯J1(ξ)), | (61) |
and
∫ξ−∞¯J2(x)dx=1μ+α2(q2γ∫ξ−∞¯J0(x)dx+D2I2(ξ)−c¯J2(ξ)). | (62) |
Next, we need to claim there exist two positive constants
a2∑j=0∫ξ−∞¯Jj(x)dx≤b2∑j=0¯Jj(x)dx. | (63) |
Substituting equations (61) and (62) into the equation (59) has
c¯J0(ξ)≥β(S01+σS02)(1−ε)[θμ+α1(q1γ∫ξ−∞¯J0(x)dx+D1I1(ξ)−c¯J1(ξ))+1μ+α2(q2γ∫ξ−∞¯J0(x)dx+D2I2(ξ)−c¯J2(ξ))]+D0E(ξ)−(μ+γ)∫ξ−∞¯J0(x)dx=[β(S01+σS02)(1−ε)(q1γθμ+α1+q2γμ+α2)−(μ+γ)]∫ξ−∞¯J0(x)dx+β(S01+σS02)(1−ε)(θD1μ+α1I1(ξ)+D2μ+α2I2(ξ))+D0E(ξ)−cβ(S01+σS02)(1−ε)(θμ+α1¯J1(ξ)+1μ+α2¯J2(ξ)), |
which implies
c[¯J0(ξ)+β(S01+σS02)(1−ε)(θμ+α1¯J1(ξ)+1μ+α2¯J2(ξ))]≥[β(S01+σS02)(1−ε)(q1γθμ+α1+q2γμ+α2)−(μ+γ)]∫ξ−∞¯J0(x)dx+β(S01+σS02)(1−ε)(θD1μ+α1I1(ξ)+D2μ+α2I2(ξ))+D0E(ξ). |
Because
[β(S01+σS02)(1−ε)(q1γθμ+α1+q2γμ+α2)−(μ+γ)]∫ξ−∞¯J0(x)dx≤c[¯J0(ξ)+β(S01+σS02)(1−ε)(θμ+α1¯J1(ξ)+1μ+α2¯J2(ξ))]. |
According to the inequality (53), we can claim that there exist two positive constants
¯a0∫ξ−∞¯J0(x)dx≤¯b0(¯J0(ξ)+¯J1(ξ)+¯J2(ξ)). | (64) |
Plug the inequality (64) into the inequality (58), and it is shown that there are two constants
ˉa(∫ξ−∞¯J1(x)dx+∫ξ−∞¯J2(x)dx)≤ˉb(¯J0(ξ)+¯J1(ξ)+¯J2(ξ)). | (65) |
Hence, for any
J(ξ)=¯J0(ξ)+¯J1(ξ)+¯J2(ξ), |
then we gain that
a∫ξ−∞J(x)dx≤bJ(ξ),∀ξ<−2G, |
that is
a∫0−∞J(x+ξ)dx≤bJ(ξ),∀ξ<−2G. |
Because
J(ξ−ξ0)≤ω0J(ξ)∀ξ<−2G. |
Let
Ψ(ξ−ξ0)=J(ξ−ξ0)e−μ0(ξ−ξ0)≤ω0J(ξ)e−μ0(ξ−ξ0)=Ψ(ξ), |
for any
E(ξ)≤p0eμ0ξ,Ii(ξ)≤p0eμ0ξ,∀ξ<−2G. |
Since
E(ξ)≤p0eμ0ξ,Ii(ξ)≤p0eμ0ξ,∀ξ∈R. |
According to estimates (29) and (57), it yields
supξ∈R|E′(ξ)|e−μ0ξ<∞. |
Via the
supξ∈R|E″(ξ)|e−μ0ξ<∞. |
Finally, applying the similar argument on
supξ∈RIi(ξ)e−μ0ξ<∞,supξ∈R|I′i(ξ)|e−μ0ξ<∞,supξ∈R|I″i(ξ)|e−μ0ξ<∞. |
This completes the proof.
According to above two theorems, we can obtain the following non-existence theorem.
Theorem 3.5. If
Proof. We intend to prove this theorem by contradiction. Fix
cK′1(ξ)−dK″1(ξ)+(μ+ρ)K′1(ξ)−βS1(ξ)[θI1(ξ)+I2(ξ)]=0, | (66) |
cK′2(ξ)−dK″2(ξ)−ρK″2(ξ)+μK′2(ξ)−βσS2(ξ)[θI1(ξ)+I2(ξ)]=0. | (67) |
According to the inequality
∥K′i∥C((∞,0],R)≤2∥K″i∥12C((∞,0],R)∥Ki∥12C((∞,0],R), |
and the fact that
limξ→−∞Ki(ξ)=0, | (68) |
we can claim
limξ→−∞K′i(ξ)=0, | (69) |
for
c[K1(ξ)+K2(ξ)]−d[K′1(ξ)+K′2(ξ)]+μ∫ξ−∞[K1(x)+K2(x)]dx−∫ξ−∞β[S1(x)+σS2(x)][θI1(x)+I2(x)]dx=0. |
Let
for
which implies
(70) |
On the basis of the above discussion, we define the one-sided Laplace transforms for
(71) |
Next, we only consider
and we also only research
for any
In the following, we indicate that there indeed exists a
it is implied that
(72) |
In the same way, we can obtain
(73) |
and
(74) |
Thus, it follows from equations (73) and (74) that
However, the left side tends to
(75) |
and
If the case (ⅱ) is established, similarly, let
Section 2 and Section 3 have proved the existence and non-existence of traveling wave solution for system (2) satisfying the boundary condition (6). In this section, we aim to visually display the existence of traveling wave solution for system (2) connecting disease-free equilibrium and endemic equilibrium. Now, we firstly take a set of parameters for system (2) as follows:
As a result, we can obtain the disease-free equilibrium
The figure 1, simulations with applying above conditions, indicate that there exists a traveling wave solution of system (2) connecting disease-free equilibrium and endemic equilibrium. Meanwhile, we cross section curves of traveling wave solution in figure 1 as
Since we pay more attention to influences of self-protection and treatment in the spatial spread for an epidemic, it is critical to research the change of the minimal spread speed
(76) |
respectively, where
In this paper, we mainly construct a non-monotonic reaction diffusion SEIR model with effects of self-protection and treatment in incident rate, and determine the existence and non-existence of traveling wave solution connecting disease-free equilibrium and endemic equilibrium. We prove the existence as
We would like to thank you for following the instructions above very closely in advance. It will definitely save us lot of time and expedite the process of your paper's publication.
[1] |
Traveling waves in spatial SIRS models. J. Dynam. Differential Equations (2014) 26: 143-164. ![]() |
[2] |
Harnack's inequality for cooperative weakly coupled elliptic systems: Harnack's inequality. Comm. Partial Differential Equations (1999) 24: 1555-1571. ![]() |
[3] |
Travelling wave solutions in multigroup age-structured epidemic models. Arch. Ration. Mech. Anal. (2010) 195: 311-331. ![]() |
[4] |
Traveling waves for monotone semiflows with weak compactness. SIAM J. Math. Anal. (2014) 46: 3678-3704. ![]() |
[5] | A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, 2008. |
[6] | D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2015. |
[7] |
Hyperbolic travelling fronts. Proc. Edinburgh Math. Soc. (1988) 31: 89-97. ![]() |
[8] | Travelling fronts for correlated random walks. Canad. Appl. Math. Quart. (1994) 2: 27-43. |
[9] |
Stability and bifurcation for an SEIS epidemic model with the impact of media. Phys. A (2018) 490: 702-720. ![]() |
[10] |
Dynamics for an SIRS epidemic model with infection age and relapse on a scale-free network. J. Franklin Inst. (2019) 356: 7411-7443. ![]() |
[11] | J. S. Jia, X. Lu, Y. Yuan, G. Xu, J. Jia and N. A. Christakis, Population flow drives spatio-temporal distribution of COVID-19 in China, Nature, 1–5. |
[12] |
S.-L. Jing, H.-F. Huo and H. Xiang, Modeling the effects of meteorological factors and unreported cases on seasonal influenza outbreaks in Gansu province, China, Bull. Math. Biol., 82 (2020), Paper No. 73, 36 pp. doi: 10.1007/s11538-020-00747-6
![]() |
[13] | Effect of non-pharmaceutical interventions to contain COVID-19 in China. Nature (2020) 585: 410-413. |
[14] |
Traveling waves for a nonlocal dispersal SIR model with delay and external supplies. Appl. Math. Comput. (2014) 247: 723-740. ![]() |
[15] |
Global stability of an epidemic model with latent stage and vaccination. Nonlinear Anal. Real World Appl. (2011) 12: 2163-2173. ![]() |
[16] |
Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Comm. Pure Appl. Math. (2007) 60: 1-40. ![]() |
[17] |
Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China. Science (2020) 368: 742-746. ![]() |
[18] |
J. D. Murray, Mathematical Biology, Springer, 1989. doi: 10.1007/978-3-662-08539-4
![]() |
[19] | M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer, 2012. |
[20] |
L. Rass and J. Radcliffe, Spatial Deterministic Epidemics, American Mathematical Society, 2003. doi: 10.1090/surv/102
![]() |
[21] |
Large-scale spatial-transmission models of infectious disease. Science (2007) 316: 1298-1301. ![]() |
[22] |
Global Hopf bifurcation of a delayed equation describing the lag effect of media impact on the spread of infectious disease. J. Math. Biol. (2018) 76: 1249-1267. ![]() |
[23] |
Analysis of an epidemic system with two response delays in media impact function. Bull. Math. Biol. (2019) 81: 1582-1612. ![]() |
[24] |
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. (2002) 180: 29-48. ![]() |
[25] |
J.-B. Wang and C. Wu, Forced waves and gap formations for a Lotka–Volterra competition model with nonlocal dispersal and shifting habitats, Nonlinear Analysis: Real World Applications, 58 (2021), 103208, 19 pp. doi: 10.1016/j.nonrwa.2020.103208
![]() |
[26] |
Traveling waves of the spread of avian influenza. Proc. Amer. Math. Soc. (2012) 140: 3931-3946. ![]() |
[27] |
Traveling waves in a nonlocal anisotropic dispersal Kermack-Mckendrick epidemic model. Discrete Contin. Dyn. Syst. Ser. B (2013) 18: 1969-1993. ![]() |
[28] |
Minimal wave speed for a class of non-cooperative reaction–diffusion systems of three equations. J. Differential Equations (2017) 262: 4724-4770. ![]() |
[29] |
Existence of traveling wave solutions for influenza model with treatment. J. Math. Anal. Appl. (2014) 419: 469-495. ![]() |
[30] |
Minimal wave speed for a class of non-cooperative diffusion–reaction system. J. Differential Equations (2016) 260: 2763-2791. ![]() |
[31] |
Traveling wave fronts in a diffusive epidemic model with multiple parallel infectious stages. IMA J. Appl. Math. (2016) 81: 795-823. ![]() |
[32] |
Traveling wave solutions in a two-group epidemic model with latent period. Nonlinearity (2017) 30: 1287-1325. ![]() |
[33] |
Traveling wave solutions in a two-group SIR epidemic model with constant recruitment. J. Math. Biol. (2018) 77: 1871-1915. ![]() |
1. | Xueying Sun, Renhao Cui, Existence and asymptotic profiles of the steady state for a diffusive epidemic model with saturated incidence and spontaneous infection mechanism, 2021, 14, 1937-1632, 4503, 10.3934/dcdss.2021120 | |
2. | Shi-Ke Hu, Rong Yuan, Asymptotic profiles of a nonlocal dispersal SIS epidemic model with Neumann boundary condition, 2024, 530, 0022247X, 127710, 10.1016/j.jmaa.2023.127710 | |
3. | 江波 郝, Dynamic Analysis of Epidemic Models with Self-Protection and Isolation Measures, 2023, 12, 2324-7991, 4998, 10.12677/AAM.2023.1212491 | |
4. | Jiangbo Hao, Lirong Huang, Maoxing Liu, Yangjun Ma, Analysis of the COVID-19 model with self-protection and isolation measures affected by the environment, 2024, 21, 1551-0018, 4835, 10.3934/mbe.2024213 |