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Abstract: The current paper is devoted to the stochastic N-species cooperative system with a moder-
ately strong noise. By the theory of monotone random systems and the technique of suitable marker of
wavefront, the existence of the travelling wave solution is established. By applying the Feynman-Kac
formula and sup-sub solution technique, the upper and lower bounded of the asymptotic wave speed
are also obtained. Finally, we give an example for stochastic 3-species cooperative systems.
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1. Introduction

There are many papers investigating the stochastic travelling waves of population dynamical system
with multiplicative noise, most of them focus on the scaler Fisher-KPP equation. For instance, Tribe [1]
studied the KPP equation with nonlinear multiplicative noise

√
udWt, and Müeller et al. [2–4] studied

the KPP equation with
√

u(1 − u)dWt. Both of their work take the Heaviside function as the initial
data, and they also gave the estimates of the wave speed with an upper bound and a lower bound.
Zhao et al. [5–7] showed that only if the strength of noise is moderately, for example the multiplicative
noise k(t)dWt, the effects of noise would present or the solution would tend to be zero or converge to
the deterministic travelling wave solution. Shen [8] developed a theoretical random variational frame-
work to show the existence of random travelling waves, and then Shen and his collaborators [9, 10]
also studied the random travelling waves in reaction-diffusion equations with Fisher-KPP nonlinearity,
Nagumo nonlinearity and ignition nonlinearity, in random media. Furthermore, Huang et al. [11–14]
investigated the bifurcations of asymptotic behaviors of solution induced by strength of the dual noises
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for stochastic Fisher-KPP equation. Recently, Wang and Zhou [15] discovered that the same results
still hold even if the decrease restrictions on the growth function are removed. Moreover, they showed
that with increasing the noise intensity, the original equation with Fisher-KPP nonlinearity evolves into
first the one with degenerated Fisher-KPP nonlinearity and then the one with Nagumo nonlinearity, and
we refer it to [15] for details.

It is worthy to point out that the above mentioned papers mainly focus on the scalar stochastic
reaction-diffusion equation. Recently, Wen et al. [16] applied the theory of random monotone dynam-
ical systems developed by Cheushov [17] and Kolmogorov tightness criterion to obtain the existence
of stochastic travelling wave solution for stochastic two-species cooperative system

du = [uxx + u(1 − a1u + b1v)]dt + ϵudWt,

dv = [vxx + v(1 − a2v + b2u)]dt + ϵvdWt,

u(0) = u0, v(0) = v0,

(1.1)

where W(t) is a white noise as in [11], u0, v0 are both Heaviside functions, and ai, bi are positive
constants satisfying min{ai} > max{bi}. The element “1” of 1 − a1u + b1v and 1 − a2v + b2u in Eq (1.1)
is the formal environment carrying capacity, and then by constructing upper and lower solution and
applying Feynman-Kac formula they obtained the estimation of upper bound and lower bound for
wave speed, respectively. Moreover, Wen et al. [18] established the existence of stochastic travelling
wave solution for stochastic two-species competitive system, and they obtained the upper bound and
lower bound of the asymptotic wave. To the best of our knowledge, there are few papers concerning the
stochastic travelling waves for cooperative N-species systems (N ≥ 3), which leads to the motivation
of the current work.

There are some papers that study the stability and stochastic persistence for the stochastic N-species
system without space diffusion. For example, Cui and Chen [19] proved that there exists a unique
globally asymptotically stable positive ω-periodic solution for the N-species time dependent Lotka-
Volterra periodic mutualistic system

ẋi = xi(ri(t) +
n∑

j=1

ai j(t)x j), i = 1, 2, · · · , n, (1.2)

provided with (−1)kdet( max
0≤t<+∞

ai j(t))1≤i, j≤k > 0. Subsequently, Ji et al. [20] studied the N-species Lotka-

Volterra mutualism system with stochastic perturbation

dxi(t) = xi(t)
[(

bi −

n∑
j=1

ai jx j(t)
)
dt + σidBi(t)

]
, i = 1, 2, · · · , n,

and proved the sufficient criteria for persistence in mean and stationary distribution of the system.
Moreover, they also showed the large white noise make the system nonpersistent, we refer the readers
to [20, 21] for details.

In this paper, we consider the travelling wave solution of the following stochastic N-species coop-
erative systems,

du(i) = [u(i)
xx + u(i)(ai − biiu(i) +

n∑
j=1
j,i

bi ju( j))]dt + ϵu(i)dWt, i = 1, 2, · · · , n,

u(i)(0, x) = u(i)
0 = piχ(−∞,0], i = 1, 2, · · · , n,

(1.3)
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where W(t) is a Brownian motion, u(i)
0 (i = 1, 2, · · · , n) are Heaviside functions, ai represents the

environment carrying capacity, and bi j are positive constants satisfying min{bii} > 2n max
j,k
{b jk},

rank{(bi j)n×n} = n.
To study the existence of stochastic travelling wave solution for stochastic N-species cooperative

systems (1.3), it needs to introduce a suitable wavefront marker for system (1.3). The comparison
method is applied to prove the boundedness of the solutions based on the random monotonicity and the
Feynman-Kac formula. The existence of the travelling wave solution is focused on verifying the tra-
jectory property, connecting the two states poses the support compactness propagation (SCP) property,
defined by Shiga in [22].

Denote
Y = (u(1), u(2), · · · , u(n))T ,

Y0 = (u(1)
0 , u(2)

0 , · · · , u(n)
0 )T ,

and

Fi(Y) = u(i)(ai − biiu(i) +

n∑
j=1
j,i

bi ju( j)), F(Y) = (F1(Y), · · · , Fn(Y))T ,

then the stochastic cooperative system (1.3) can be rewritten as the following vector equationdY = [Yxx + F(Y)]dt + ϵYdWt,

Y(0, x) = Y0.
(1.4)

For any matrix M = (mi j)n×m, define the norm | · | as |M| =
n∑

i=1

n∑
j=1
|mi j|, and the vector norm is defined as

||A||∞ = max
i

(Ai) for vector A = (ai)n×1. Let Ω be the space of temper distributions, F be the σ-algebra

on Ω, and (Ω,F ,P) be the white noise probability space.
In order to apply the Feynman-Kac formula in [7], we can define

βt(k) := e
∫ t

0 k(s)dWs−
1
2

∫ t
0 k2(s)ds, 0 ≤ t < ∞.

Denote by

ϕλ(x) = e−λ|x|, || f ||λ = sup
x∈R

(| f (x)ϕλ(x)|),

C+ = { f | f : R→ [0,∞) and f is continuous},
C+λ = { f ∈ C+| f is continuous, and | f (x)ϕλ(x)| → 0 as x→ ±∞},
C+tem = ∩

λ>0
C+λ .

C+C[0,1] = { f | f : R → [0, 1]} is space of nonnegative functions with compact support, Φ = { f : || f ||λ <
∞ f or some λ < 0} is the space of functions with exponential decay, and C+tem is the space of vector
valued functions whose each component belongs to C+tem.

The rest of the paper is organized as follows. In Section 2, the existence of stochastic travelling
wave solution is established. In Section 3, the upper and lower bound of asymptotic wave speed are
obtained. An example of 3-species stochastic cooperative system is also presented in Section 4.
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2. Existence of the stochastic travelling wave solutions

In this section, we establish the existence of stochastic travelling wave solution. We first provide
with the definition of stochastic travelling wave solution, which is from [1]. To the end, it needs to
define some state space follows as

D[0,∞) = {ϕ : R→ [0,∞), ϕ is right continuous and decreasing,
ϕ−∞ = lim

x→−∞
ϕ exists}.

D[0,1] = {ϕ : R→ [0, 1], ϕ is right continuous and decreasing}.
D = {ϕ ∈ D[0,1] : ϕ(−∞) = 1, ϕ(∞) = 0}.

We endowD[0,∞) with the topology induced from L1
loc(R) metric. ThenD[0,1] andD are the measurable

subset ofD[0,∞). It follows from [13] thatD[0,∞),D[0,1] andD are Polish spaces and compact.
Consider the following stochastic reaction diffusion equation with Heaviside datadu = [Duxx + f (u)]dt + σ(u)dWt,

u(0) = χx≤0.
(2.1)

Definition 2.1 (Stochastic travelling wave solution). A stochastic travelling wave is a solution u =
(u(t) : t ≥ 0) to (2.1) with values inD and for which the centered process (ũ(t) = u(t, · + R0(t)) : t ≥ 0)
is a stationary process with respect to time, where R0(t) is a wave front marker. The law of a stochastic
travelling wave is the law of ũ(0) onD.

Then, we prove the following Lemmas 2.2 and 2.3 by the idea of Tribe [1].

Lemma 2.2. For any Heaviside functions Y0, and a.e. ω ∈ Ω, there exists a unique solution to (1.4) in
law with the form

Y(t, x) =
∫

R
G(t, x, y)Y0dy

+

∫ t

0

∫
R

G(t − s, x, y)F(Y)dsdy + ϵ
∫ t

0

∫
R

G(t − s, x, y)YdWsdy,
(2.2)

where G(t, x, y) is Green function, and Y(t, x) ∈ C+tem.

Lemma 2.3. All solutions to (1.4) started at Y0 have the same law which we denote by QY0,ai,bi j , and
the map (Y0, ai, bi j) → QY0,ai,bi j is continuous. The law QY0,ai,bi j for Y0 as a Heaviside function forms a
strong Markov family.

Next, we estimate the term Y(t, x), which is key tools to prove the existence of stochastic travelling
wave solutions.

Theorem 2.4. For any Heaviside functions u(i)
0 , and t > 0 fixed, a.e. ω ∈ Ω, it permits that

E[
n∑

i=1

u(i)(t, x)] ≤ C(ϵ, t)(
n∑

i=1

u(i)
0 +

α

k
−
ϵ2

2k
), ∀x ∈ R, (2.3)

where C(ϵ, t) is a constant, k =
min

i
{bii}−(n−1) max

i, j
{bi j}

n , α = max
i
{ai}.
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Proof. Denote by ϕ(t, x) =
n∑

i=1
u(i)(t, x), we have


dϕ = [ϕxx +

n∑
i=1

u(i)(t, x)(ai − biiu(i) +
n∑

j=1
j,i

bi ju( j))]dt + ϵϕdWt,

ϕ(0, x) = ϕ0 =
n∑

i=1
u(i)

0 ,

(2.4)

Since min{bii} > 2n max
j,k
{b jk}, then

n∑
i=1

u(i)(ai − biiu(i) +

n∑
j=1
j,i

bi ju( j))

≤ α

n∑
i=1

u(i) −min
i
{bii}

n∑
i=1

(u(i))2 + 2 max
i, j
{bi j}

n∑
i, j=1
i< j

u(i)u( j)

≤ α

n∑
i=1

u(i) − k
n∑

i=1

(u(i))2 ≤

n∑
i=1

u(i)(α − k
n∑

i=1

u(i)).

Let ψ be the solution of the following equationdψ = [ψxx + ψ(α − kψ)]dt + ϵψdWt,

ψ0 =
n∑

i=1
u(i)

0 ,
(2.5)

then, u(i)(t, x) ≤ ψ(t, x) a.s., i = 1, 2, · · · , n.
Let ζ be a solution to the following equationζt = ζxx + ζ(α − kζ) − ϵ2

2 ζ,

ζ0 = ψ0.
(2.6)

We claim that for every (t, x) ∈ [0,∞) × R, it follows

e
inf

0≤r≤t

∫ t
r ϵdWs

ζ(t, x) ≤ ψ(t, x) ≤ e
sup

0≤r≤t

∫ t
r ϵdWs

ζ(t, x) a.s. (2.7)

In fact, we prove this claim by contradiction. We suppose that there is (t0, x0) ∈ [0,∞)×R such that

ψ(t0, x0) > e
sup

0≤r≤t0

∫ t0
r ϵdWs

ζ(t0, x0), (2.8)

which implies that
ψ(t0, x0) > ζ(t0, x0).

To construct a new probability space (Ω̂, F̂ , P̂), and denote Ŵ = (Ŵ(t) : t ≥ 0) be a Brownian motion
over the new probability space. Let Xt0,x0

s = (t0 − s, x0 +
√

2Ŵ(s)), s > 0, and define a stopping time

τ = inf{s > 0 : ζ(Xt0,x0
s ) = ψ(Xt0,x0

s )},
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for each ω ∈ Ω̂. Using the stochastic Feynman-Kac formula and by the strong Markov property, we
have almost surely

ψ(t0, x0) =Ê[ψ(Xt0,x0
τ ) exp(

∫ τ

0
(α − kψ(Xt0,x0

τ ))] × exp(
∫ t0

t0−τ
ϵdWs −

1
2

∫ t0

t0−τ
ϵ2ds)

≤Ê[ζ(Xt0,x0
τ )e

∫ τ
0 (α−kζ(Xt0 ,x0

τ )) ds] × e
∫ t0

t0−τ
ϵdWs−

1
2

∫ t0
t0−τ

ϵ2ds

=e
sup

0≤r≤t0

∫ t0
t0−r ϵdWs

ζ(t0, x0),

which contradicts (2.8) and the upper bound is proved.
Similarly, we have almost surely

ψ(t0, x0) ≥ exp( inf
0≤r≤t0

∫ t0

r
ϵdWs)ζ(t0, x0) a.s.

For arbitrary t > 0 fixed, for any σ > 0, multiplying G(t − s +σ, x − y) in (2.6) and integrating over
R, we obtain

∂

∂s

∫
R
ζ(s, y)G(t − s + σ, x − y)dy

≤ (α −
ϵ2

2
)
∫

R
ζ(s, y)G(t − s + σ, x − y)dy − k(

∫
R
ζ(s, y)G(t − s + σ, x − y)dy)2.

Let φ(s) =
∫

R
ζ(s, y)G(t − s + σ, x − y)dy, thus we getdφ(s)

ds ≤ (α − ϵ2

2 )φ(s) − kφ2(s),
φ0 =

∫
R
ζ0G(t + σ, x − y)dy.

(2.9)

In general, we have

φ(s) ≤ φ0 +
α

k
−
ϵ2

2k
, (2.10)

which implies ∫
R
ζ(t, y)G(σ, x − y)dy ≤

∫
R
ζ0G(t + σ, x − y)dy +

α

k
−
ϵ2

2k
. (2.11)

Let σ→ 0, then

ζ(t, x) ≤
∫

R
ζ0G(t, x − y)dy +

α

k
−
ϵ2

2k
a.s. (2.12)

Combining the above estimate with (2.7), we obtain

n∑
i=1

u(i)(t, x) ≤ e
sup

0≤r≤t

∫ t
r ϵdWs

× (
∫

R
ψ0G(t, x − y)dy +

α

k
−
ϵ2

2k
) a.s. (2.13)
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Fixing the initial data u(i)
0 = piχ(−∞,0], and taking the expectation, we get

E[
n∑

i=1

u(i)(t, x)] ≤ C(ϵ, t)(
n∑

i=1

u(i)
0 +

α

k
−
ϵ2

2k
), (2.14)

where C(ϵ, t) = E[e
sup

0≤r≤t

∫ t
r ϵdWs

]. □

Lemma 2.5. For any Heaviside functions u(i)
0 , a.e. ω ∈ Ω and t > 0, one has

E[
n∑

i=1

|u(i)(t)|2] ≤ E[
n∑

i=1

|u(i)
0 |

2]e−t + K(1 − e−t), (2.15)

where K = (ϵ6+2α+1)3n
54k2 .

Proof. Let V(t) :=
n∑

i=1
|u(i)(t)|2, by Itô formula we have

dV(t) =2
n∑

i=1

⟨u(i),△u(i)⟩dt + 2
n∑

i=1

⟨u(i), aiu(i) − bii(u(i))2 +

n∑
j=1

bi ju(i)u( j)⟩dt

+ ϵ2
n∑

i=1

(u(i))2dt + 2ϵ
n∑

i=1

(u(i))2dWt.

Integrate both sides on [0, t] and take expectation, we have

E[V(t)] =E
n∑

i=1

(u(i)
0 )2 + 2E

n∑
i=1

∫ t

0
⟨u(i),△u(i)⟩ds + 2E

n∑
i=1

∫ t

0
⟨u(i), aiu(i) − bii(u(i))2

+

n∑
j=1

bi ju(i)u( j)⟩ds + ϵ2
n∑

i=1

E

∫ t

0
(u(i))2ds

≤E
n∑

i=1

(u(i)
0 )2 − 2E

n∑
i=1

∫ t

0
|∇u(i)|2ds + 2αE

n∑
i=1

∫ t

0
(u(i))2ds

− 2kE
n∑

i=1

∫ t

0
(u(i))3ds + ϵ2E

n∑
i=1

∫ t

0
(u(i))2ds

≤E
n∑

i=1

(u(i)
0 )2 − 2kE

n∑
i=1

∫ t

0
(u(i))3ds + 2αE

n∑
i=1

∫ t

0
(u(i))2ds

+ ϵ2E
n∑

i=1

∫ t

0
(u(i))2ds + E

n∑
i=1

∫ t

0
(u(i))2ds − E

n∑
i=1

∫ t

0
(u(i))2ds.

By Young inequality we have

(2α + 1)E
∫ t

0

n∑
i=1

(u(i))2ds ≤ k
∫ t

0
E

n∑
i=1

(u(i))3ds +
(2α + 1)3n

54k3 t, (2.16)
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and

ϵ2E

∫ t

0

n∑
i=1

(u(i))2ds ≤ k
∫ t

0
E

n∑
i=1

(u(i))3ds +
ϵ6n

54k2 t. (2.17)

Combining (2.16) with (2.17) offers that

E[
n∑

i=1

|u(i)(t)|2] ≤ E[
n∑

i=1

|u(i)
0 |

2] +
(ϵ6 + 2α + 1)3)n

54k2 t − E
n∑

i=1

∫ t

0
(u(i))2ds.

Thus by Gronwall inequality we have

E sup
0≤t≤T

[
n∑

i=1

|u(i)(t)|2] ≤ E[
n∑

i=1

|u(i)
0 |

2]e−t +
(ϵ6 + 2α + 1)3)n

54k2 (1 − e−t).

□

Modifying the argument in Lemma 2.1 from [1], we can estimate how fast the compact support of
Y(t) can spread.

Lemma 2.6. Let Y(t, x) be a solution to (1.4) started at Y0, suppose for some R > 0 that Y0 is supported
outside (−R − 2,R + 2), then for any t ≥ 1,

P(
∫ t

0

∫ R

−R
||Y(s, x)||∞dsdx > 0) ≤ Cet

∫ √
t

|x| − (R + 1)
exp(−

(|x| − (R + 1))2

2t
)||Y0||∞dx.

Proof. From Theorem 2.4, we know the solution Y(t, x) is uniformly bounded, thus the sup-solution
solves dv(i) = [v(i)

xx + v(i)(k − bv(i))]dt + ϵv(i)dWt,

v(i)(0) = u(i)
0 , i = 1, 2, · · · , n,

(2.18)

where k > 0 is a constant satisfying Fi(Y) ≤ u(k−bu). Refer to [1,23], the proof can be completed. □

Remark 1. When R0(t) is defined as a wavefront marker as in [1], the SCP property of Y(t, x) can not
hold. Additionally, we can not ensure the translational invariance of the solution Y(t, x) with respect to
R0(t). However thanks to Lemma 2.6, we can choose a suitable wavefront marker to ensure the SCP
property of Y(t) holds.

It is easy to verify that Y(t, x) satisfy Kolmogorov tightness criterion, and Y(t, x) ∈ K(C, δ, µ, γ),
which helps constructing a probability measure sequence, which is convergent.

Lemma 2.7. For any Heaviside functions u(i)
0 , t > 0, fixed p ≥ 2 and a.e. ω ∈ Ω, if |x − x′| ≤ 1, there

exists positive constant C(t), such that

QY0(|Y(t, x) − Y(t, x′)|p) ≤ C(t)|x − x′|p/2−1.

Proof. Referring to [1], it is not difficult to complete the proof. □
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Define QY0 as the law of the unique solution to Eq (1.4) with initial data Y(0) = Y0. For a probability
measure ν on C+tem, we define

Qν(A) =
∫

C+tem

QY0(A)ν(dY0).

In order to construct the travelling wave solution to Eq (1.3), we must ensure that the translation of
solution with respect to a wavefront marker is stationary and the solution poses the SCP property.
However, R0(Y(t)) does not satisfy this condition. So we have to choose a new suitable wavefront
marker. As the solution to (1.4) with Heaviside initial condition is exponentially small almost surely
as x → ∞, with the stochastic Feynman-Kac formula we may turn to R1(t) : C+tem → [−∞,∞] defined
as

R1( f ) = ln
∫

R
ex f dx, R1(u(i)(t)) = ln

∫
R

exu(i)(t)dx,

and
R1(t) := R1(Y(t)) = max

i
{R1(u(i)(t))}.

The marker R1(t) is an approximation to R0(Y(t)) = max
i
{R0(u(i)(t))}.

Let
Z(t) = Y(t, · + R1(t)) = (Z1(t),Z2(t), · · · ,Zn(t))T ,

Z0(t) = Y(t, · + R0(Y(t))),

and define

Z(t) =


(0, 0, · · · , 0)T , R1(t) = −∞,
(u(1)(t, · + R1(t)), u(2)(t, · + R1(t)) · · · , u(n)(t, · + R1(t)))T ,

−∞ < R1(t) < ∞
(p1, p2, · · · , pn)T , R1(t) = ∞.

Hence Z(t) is the wave shifted so that the wavefront marker R1(t) lies at the origin. Note that whenever
R0(Y0) < ∞, the compact support property implies that R0(t) < ∞, ∀t > 0, QY0-a.s.

Remark 2. Here we define R1(t) in the maximum form, not only since it simplifies the discussion
about boundedness, but also the asymptotic wave speed is the minimum wave speed which keeps the
travelling wave solution monotonic. As mentioned before, we approximate the asymptotic wave speed
via c = lim

t→∞

R1(t)
t . Therefore, the wavefront marker R1(t) defined in such form can ensure the travelling

wave solutions of the two subsystems monotonic.

Define

νT = the law o f
1
T

∫ T

0
Z(s)ds under QY0 .

Now we summarise the method for constructing the travelling wave solution. With the initial data
(u(1)

0 = p1χ(−∞,0], u
(2)
0 = p2χ(−∞,0], · · · , u

(n)
0 = pnχ(−∞,0]) ∈ C+tem as Heaviside function, we shall show that

the sequence {νT }T∈N is tight (see Lemma 2.9) and any limit point is nontrivial (see Theorem 2.10).
Hence for any limit point ν (the limit is not unique), Qν is the law of a travelling wave solution. Two
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parts constituting the proof of tightness are Kolmogorov tightness criterion for the unshifted waves
(see Lemma 2.7) and the control on the movement of the wavefront marker R1(t) to ensure the shifting
will not destroy the tightness (see Lemma 2.8).

Lemma 2.8. For any Heaviside functions u(i)
0 , t ≥ 0, d > 0, T ≥ 1, and a.e. ω ∈ Ω there exists a

positive constant C(t) < ∞, such that

QνT (|R1(t)| > d) ≤
C(t)

d
. (2.19)

Proof. By the comparison principle proposed in [24, 25], we can construct a sup-solution satisfying,
for i = 1, 2, · · · , n, dũ(i) = [ũ(i)

xx + k0ũ(i)]dt + ϵũdWt,

ũ(i)
0 = u(i)

0 ,
(2.20)

where the constant k0 > 0 can be obtained by Theorem 2.4 such that Fi(Y) < k0u(i). Therefore, we
know that u(i)(t) ≤ ũ(i)(t) hold on [0,T ] uniformly, and for a.e. ω ∈ Ω the solution Ỹ(t, x) to Eq (2.20)
is

Ỹ(t, x) =
∫

R
ek0tG(t, x − y)Y0(y)dy + ϵ

∫
R

∫ t

0
G(t − s, x − y)ỸdWsdy. (2.21)

Applying the comparison method yields, for any i = 1, 2, · · · , n we have

Qu(i)
0 (
∫

R
u(i)(t, x)exdx) ≤ E[

∫
R

ũ(i)(t, x)exdx] = ek0t+t
∫

R
u(i)

0 (x)exdx.

Without loss of generality, we assume that R1(t) = R1(u(1)(t)), then∫
R

u(1)(t, x + R1(t))exdx = e−R1(t)
∫

R
u(1)(t, x)exdx = 1.

Combing with the above arguments, we deduce that

QνT (R1(t) ≥ d) =
1
T

∫ T

0
Qu(1)

0 (Qu(1)(s)(e−d
∫

R
u(1)(t, x)exdx ≥ 1))ds ≤ e−dek0t+t.

Then the Jensen’s inequality gives

Qu(1)
0 (R1(t)) ≤ ln(ek0t+t

∫
R

u(1)
0 (x)exdx) ≤ k0t + t + R1(u(1)

0 ).

Direct calculation implies

1
T

Qu(1)
0 (
∫ T+t

t
R1(s)ds −

∫ T

0
R1(s)ds)

≤
1
T

∫ T

0

∫ ∞

0
Qu(1)

0 (R1(t + s) − R1(s) ≥ y)dyds
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−
d
T

∫ T

0
Qu(1)

0 (R1(t + s) − R1(s) ≤ −d)ds

=

∫ ∞

0
QνT (R1(t) ≥ y)dy − dQνT (R1(t) ≤ −d).

Thus, by rearranging the above inequalities

QνT (R1(t) ≤ −d) ≤
1
d

∫ ∞

0
QνT (R1(t) ≥ y)dy +

1
dT

∫ T

0
QνT (R1(s))ds ≤

C(t)
d
,

which completes the proof of Lemma 2.8. □

We will prove the marker R1(t) is bounded, which helps to prove the sequence {νT : T ∈ N} is tight
and the wavefront marker R0(t) is bounded. Next, we will show the tightness of {νT : T ∈ N} with
Y(t, x) ∈ K(C, δ, µ, γ).

Lemma 2.9. For any Heaviside functions u(i)
0 , and a.e. ω ∈ Ω, the sequence {νT : T ∈ N} is tight.

Proof. Following the idea to prove Lemma 2.8, we focus on the term u(i)(t, x). Since Y(t, x) ∈
K(C, δ, µ, γ) gives u(i)(t, x) ∈ K(C, δ, µ, γ), then it is easy to prove that

νT (K(C, δ, γ, µ)) =
1
T

∫ T

0
Qu(i)

0 (u(i)(t, · + R1(t)) ∈ K(C, δ, γ, µ))ds

≥
1
T

∫ T

0
Qu(i)

0 ((u(i)(t, · + R1(t − 1)) ∈ K(Ce−µd, δ, γ, µ))

× |R1(t) − R1(t − 1)| ≤ d)ds

≥
1
T

∫ T

1
Qu(i)

0 (QZ1(t−1)(u(i)(1) ∈ K(Ce−µd, δ, γ, µ)))dt

−
1
T

∫ T

1
Qu(i)

0 (|R1(t) − R1(t − 1)| ≥ d)dt

=:I − II.

With Lemma 2.8, II → 0 as d → ∞. Via the Kolmogorov tightness and Lemma 2.7, for given d, µ > 0,
one can choose C, δ, γ to make I as close to T−1

T as desired. In addition, we have

νT {u
(i)
0 :
∫

R
u(i)

0 (x)e−|x|dx ≤
∫

R
u(i)

0 (x)exdx = 1} = 1.

The definition of tightness implies that for given µ > 0, one can choose C, δ, γ such that
νT (K(C, δ, µ, γ) ∩ {u(i)

0 :
∫

R
u(i)

0 (x)e−|x|dx}) as close to 1 as desired for T and d sufficient large, which
implies that the sequence {νT : T ∈ N} is tight. □

Theorem 2.10. For any Heaviside functions u(i)
0 , and for a.e. ω ∈ Ω, there is a travelling wave solution

to Eq (1.3), and Qν is the law of travelling wave solution.
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Proof. By the comparison method, we have

Zi(t, x) ≤ et− ϵ
2
2 t+
∫ t

0 ϵdWs ×
1
√

2πt

∫ − x√
2

−∞

e−
|y|2
2t dy a.s.,

under the law Qu(i)
0 for t > 0. Taking u(1)(t, x) together with Doob’s inequality and (2.3), we have

u(1)(1, x) ≤et− ϵ
2
2 +
∫ 1

0 ϵdWs × e−
ϵ2
2 (t−1)+

∫ t−1
0 ϵdWs

×
1

2π
√

t − 1

∫ +∞

−∞

∫ − x√
2
−z

−∞

e−
|y|2

2(t−1) dye−
|y|2
2 dz

≤et− ϵ
2
2 +
∫ 1

0 ϵdWs × e−
ϵ2
2 (t−1)+

∫ t−1
0 ϵdWs−

x2
4t a.s., (2.22)

for all t > 1. Integrate (2.22) in [d,∞) and take the expectation, we have

lim
d→∞

Qu0(QZ1(t−1)(
∫ ∞

d
u(1)(1, x)dx)) ≤ lim

d→∞

√
tet− d2

4t = 0. (2.23)

Furthermore, it follows that

lim
d→∞

Qu(1)
0 (QZ1(t−1)(

∫ ∞

d
u(1)(1, x)dx)) = 1, (2.24)

and

νT (u(1)
0 : lim

d→∞

∫ ∞

2d
u(1)

0 (x)dx = 0) (2.25)

=
1
T

∫ T

0
Qu(1)

0 (∀δ > 0,∃d0,

∫ ∞

2d
Z1(t, x)dx) < δ ∀ d > d0)dt,

|R1(t) − R1(t − 1)| ≤ d,∀d > d0)dt

≥
1
T

∫ T

1
Qu(1)

0 (QZ1(t−1)( lim
d→∞

∫ ∞

d
u(1)(1, x)dx = 0))dt − lim

d→∞
QνT (|R1(1)| ≥ d).

Thus by Lemma 2.8, combining (2.24) with (2.25) gives

lim
T→∞

lim
d→∞

νT (u(1)
0 :
∫ ∞

d
u(1)

0 (x)dx = 0) = 1. (2.26)

To prove the boundness of R0(t), it follows from νTn(u
(1)
0 :
∫

R
u(1)

0 (x)exdx = p1) = 1 that ν(u(1)
0 :∫

R
u(1)

0 (x)exdx ≤ p1) = 1. Taking ed
1(x) = ed−|x−d|, we have

ν(u(1)
0 : (u(1)

0 , ex) ≥ p1) ≥ ν(u(1)
0 :
∫

R
u(1)

0 (x)ed
1(x)dx ≥ p1)

≥lim sup
n→∞

νTn(u
(1)
0 :
∫

R
u(1)

0 (x)ed
1(x)dx = p1)

=lim sup
n→∞

νTn(u
(1)
0 :
∫

R
u(1)

0 (x)I(d,∞)dx) = 0)→ 1, as d → ∞.
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As ν(u(1)
0 :
∫

R
u(1)

0 (x)exdx = p1) = 1, we obtain ν(u(1)
0 : R0(u(1)

0 ) > −∞) = 1. Now, we complete the
half of the proof of the boundness of the wavefront marker R0(t). Take ψd ∈ Φ with (ψd > 0) = (d,∞),
then

ν(u(1)
0 : R0(u(1)

0 ) ≤ d) =ν(u(1)
0 :
∫

R
u(1)

0 (x)ψd(x)dx = 0)

≥lim sup
n→∞

νTn(u
(1)
0 :
∫

R
u(1)

0 (x)ψd(x)dx = 0)

=lim sup
n→∞

νTn(u
(1)
0 :
∫

R
u(1)

0 (x)I(d,∞)dx = 0)→ 1, as d → ∞,

so we have ν(Y0 : −∞ < R0(Y0) < ∞) = 1 and complete the proof of the boundedness of the wavefront
marker R0(t). To verify that the solution Y(t) is nontrivial, let Rd

1(t) = ln
∫
||Y(t)||∞ed

1(x)dx, we have

Qν(∃s ≤ t, |Y(s)| = 0) ≤Qν(Rd
1(t) < −d)

≤lim sup
n→∞

QνTn (Rd
1(t) < −d)

≤lim sup
n→∞

(QνTn (R1(t) < −d) + QνTn (
∫

R
u(i)(t, x)I(d,∞)dx > 0))

≤
C(t)

d
→ 0, as d → ∞.

We now show that Z(t) is a stationary process and Qν is the law of a travelling wave solution to (1.3).
Let F : C+tem → R be bounded and continuous, and take u(i)(t, x) for example, for any fixed t > 0

|QνTn (F(Zi(t))) − Qν(F(Zi(t)))|
≤|QνTn (F(u(i)(t, · + Rd

1(t)))) − Qν(F(u(i)(t, · + Rd
1(t))))|

+ ||F(u(i)
0 )||∞(QνTn (R1(t) , Rd

1(t)) + Qν(R1(t) , Rd
1(t))),

since νTn(u
(i)
0 :
∫

R
u(i)

0 exdx = pi) = 1, we have

QνTn (R1(t) , Rd
1(t)) ≤ QνTn (

∫
R

u(i)(t, x)I(d,∞)dx > 0) ≤ C(k0, t)/d, (2.27)

and with ν(u(i)
0 :
∫

R
u(i)

0 exdx = pi) = 1, we have

Qν(R1(t) , Rd
1(t)) ≤ Qν(

∫
R

u(t, x)I(d,∞)dx > 0) ≤ C(k0, t)/d. (2.28)

By the continuity of u(i)
0 → Qu(i)

0 , one have QνTn → Qν. Since F is bounded and continuous, we
obtain that

|QνTn (F(u(i)(t, · + Rd
1(t)))) − Qν(F(u(i)(t, · + Rd

1(t))))| → 0, as n→ ∞.

Therefore, we have

Qν(F(Zi(t))) = lim
n→∞

QνTn (F(Zi(t))) = lim
n→∞

1
Tn

∫ Tn

0
Qu0(F(Zi(s)))ds = ν(F).

It is straightforward to check that {Z(t) : t ≥ 0} is Markov, hence {Z(t) : t ≥ 0} is stationary. Since the
map Y0 → Y0(· − R0(Y0)) is measurable on C+tem, the process {Z0(t) : t ≥ 0} is also stationary, which
implies that Qν is the law of the travelling wave solution to Eq (1.3). □
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3. Approximation of the asymptotic wave speed

In this section, we investigate the asymptotic property of the travelling wave solutions. By con-
structing the sup-solution and the sub-solution, we obtain the asymptotic wave speed for the two trav-
elling wave solutions respectively. Then we have the estimation of the wave speed of travelling wave
solutions to (1.3). Since the asymptotic wave speed c of the travelling wave solution defined as

c = lim
t→∞

R0(t)
t

a.s.,

we denote by R0(u(i)(t)) = sup{x ∈ R : u(i)(t, x) > 0} for the sub-systems of the cooperative sys-
tem. Since the wavefront marker R0(t) of the cooperative system is R0(t) = max

i
{R0(u(i)(t))}, and the

asymptotic wave speed is the maximum value among lim
t→∞

R0(u(i)(t))
t , we can define the wave speed c⋆ as

c⋆ = lim
t→∞

R0(Y(t))
t

a.s.

We now construct a sup-solution. Let Ȳ(t, x) = (ū(1)(t, x), · · · , ū(n)(t, x))T satisfyingdū(i) = [ū(i)
xx + ū(p − biiū)]dt + ϵūdWt,

ū(i)
0 = u(i)

0 , i = 1, 2, · · · , n,
(3.1)

where Fi(Y) ≤ u(i)(p − biiu(i)), p = max
i, j
{bi j} × max

i
{

√∑n
i=1 |u

(i)
0 |

2 + K,C(ϵ, t)(
n∑

i=1
u(i)

0 +
α
k −

ϵ2

2k ), pi} + 1.

Then we construct a sub-solution, denote by a = min{ai} and let Y(t, x) = (u(1)(t, x), · · · , u(n)(t, x))T

satisfy du(i) = [u(i)
xx + u(i)(a − biiu)]dt + ϵudWt,

u(i)
0 = u(i)

0 , i = 1, 2, · · · , n.
(3.2)

Obviously, Fi(Y) ≥ u(i)(a − biiu(i)) . With Eq (3.1) and (3.2), we have such following conclusion:

Theorem 3.1. For any Heaviside functions u(i)
0 , let c⋆ be the asymptotic wave speed of Eq (1.3), then

√
4a − 2ϵ2 ≤ c⋆ ≤

√
4p − 2ϵ2 a.s. (3.3)

In order to prove Theorem 3.1, we need the following lemmas. We first introduce the comparison
method for the asymptotic wave speed.

Lemma 3.2. Let Y(t, x) and Ȳ(t, x) be the solutions to (3.2) and (3.1) respectively, if c is the asymptotic
wave speed of Y(t, · + R0(Y(t))) and c̄ is the asymptotic wave speed of Ȳ(t, · + R0(Ȳ(t))), then

c ≤ c⋆ ≤ c̄ a.s.

Proof. The comparison method for the stochastic diffusion equation gives that Y(t, x) ≤ Y(t, x) ≤
Ȳ(t, x), which implies u(i)(t, x) ≤ u(i)(t, x) ≤ ū(i)(t, x) a.s. and v(i)(t, x) ≤ v(i)(t, x) ≤ v̄(i)(t, x) a.s.. Denote
the wavefront markers by R1(Y(t)), R1(Y(t)) and R1(Ȳ(t)), with the definition of asymptotic wave speed

c = lim
t→∞

R1(t)
t

a.s.,
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and the definition of the wavefront marker

R1(Y(t)) = max
i
{ln
∫

R
u(i)(t, x)exdx},

it gives

lim
t→∞

R1(Y(t))
t

≤ lim
t→∞

R1(Y(t))
t

≤ lim
t→∞

R1(Ȳ(t))
t

a.s., (3.4)

which implies c ≤ c⋆ ≤ c̄ a.s.. Thus, the proof of Lemma 3.1 is complete. □

3.1. Asymptotic wave speed of sub-solution

Now we show the asymptotic property of the wavefront marker of the sub-solution. Consider
Eq (3.2), for i = 1, 2, · · · , n, du(i) = [u(i)

xx + u(i)(a − biiu(i))]dt + ϵu(i)dWt,

u(i)
0 = u0.

Obviously u(i) are independent from each other, thus we can divide (3.2) into n equations to study.
For each equation one can have the asymptotic wave speed c(u(i)) respectively, so the asymptotic wave
speed of (3.2) is c(Y) = max

i
{c(u(i))}.

Theorem 3.3. For any Heaviside functions u(i)
0 , Y(t, x) is solution to (3.2), then the asymptotic wave

speed c(Y) satisfies

c(Y) =
√

4a − 2ϵ2 a.s., (3.5)

where a = min
i
{ai}.

Proof. For any h > 0, take κ ∈ (0, h2

4 +

√
1 − ϵ2

2 h) and define

ηt(ω) = e
∫ t

0 ϵdWs−
1
2

∫ t
0 ϵ

2ds, 0 ≤ t ≤ ∞,

construct new probability space (Ω̃, F̃ , P̃), W̃ = (W̃(t) : t ≥ 0) is a Brownian motion. Then there exists
T1 > 0, such that for t ≥ T1 and a.e. ω ∈ Ω

e−
ϵ2
2 t−κt ≤ ηt(ω) ≤ e−

ϵ2
2 t+κt.

Thus the stochastic Feynman-Kac formula gives

u(i)(t, x) ≤eat− 1
2 ϵ

2t+κtP̃(W̃(t) ≤ −
x
√

2
)

≤eat− 1
2 ϵ

2t+κt− x2
4t a.s.,
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for t ≥ T1. For a constant k, set x ≥ (k + h)t. Multiple ex with both sides and integrate in [(k + h)t,∞),
we have ∫ ∞

(k+h)t
u(i)(t, x)exdx ≤

∫ ∞

(k+h)t
exp(at −

1
2
ϵ2t + κt −

x2

4t
+ x)dx

≤2
√

teat− 1
2 ϵ

2t+κt+t
∫ ∞

(k+h)t−2t
√

4t

e−x2
dx

≤
√

tea+κ− k2
4 −

kh
2 −

h2
4 −k−h− ϵ

2
2 t a.s.,

for t ≥ T1. Let k =
√

4a − 2ϵ2 + 4 − 2, then we obtain

lim
t→∞

∫ ∞

(k+h)t
u(i)(t, x)exdx = 0 a.s. (3.6)

Integrating u(i)(t, x)ex in [(
√

4a − 2ϵ2 + h)t, (k − h)t) yields∫ (k−h)t

(
√

4a−2ϵ2+h)t
u(i)(t, x)exdx

≤

∫ (k−h)t

(
√

4a−2ϵ2+h)t
exp(at −

1
2
ϵ2t + κt −

x2

4t
+ x)dx

≤ 2
√

teat− 1
2 ϵ

2t+κt+t
∫ (k−h)t−2t

2
√

2

(
√

4a−2ϵ2+h)t−2t
2
√

t

e−x2
dx

≤
√

t exp(at −
ϵ2

2
t + κt −

4a − 2ϵ2

4
t −

(
√

4a − 2ϵ2)h
2

t −
h2

4
t +
√

4a − 2ϵ2t + ht)

−
√

t exp(at −
ϵ2

2
t + κt −

k2

4
t +

kh
2

t −
h2

4
t + kt − ht)

≤
√

teκt+
√

4a−2ϵ2t− (
√

4a−2ϵ2)h
2 t− h2

4 t+ht −
√

teκt−
k2
4 t+ kh

2 t− h2
4 t−ht a.s.,

for t ≥ T1. Thus, we have∫ (
√

4a−2ϵ2+h)t

(
√

4a−2ϵ2−h)t
u(i)(t, x)exdx

≤
√

teκt+
√

4a−2ϵ2t+
√

4a−2ϵ2h
2 t− h2

4 t−ht −
√

teκt+
√

4a−2ϵ2t−
√

4a−2ϵ2h
2 t− h2

4 t+ht a.s.,

and ∫ (k+h)t

(k−h)t
u(i)(t, x)exdx ≤

√
teκt+

kh
2 t− h2

4 t−ht −
√

teκt−
kh
2 t− h2

4 t+ht a.s.,

for t ≥ T1. Referring to [7], there exists T2 > 0, such that for all t ≥ T2 and x < (
√

4a − 2ϵ2 − h)t, there
exist ρ1, ρ2 > 0 satisfying

e−ρ1
√

2t ln ln t ≤ u(i)(t, x) ≤ eρ2
√

2t ln ln t a.s., (3.7)
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which goes into ∫ (
√

4a−2ϵ2−h)t

−∞

u(i)(t, x)exdx ≤ eρ2
√

2t ln ln t+(
√

4a−2ϵ2−h)t a.s. (3.8)

Since
∫ ∞

(k+h)t
u(i)(t, x)exdx ≤ 1, then we have∫

R
u(i)(t, x)exdx ≤ eρ2

√
2t ln ln t+(

√
4a−2ϵ2−h)t(2 + H(t) +G(t)) a.s., (3.9)

where
H(t) =

√
te

1
2 ϵ

2− ϵ
2
2 t+κt+ kh

2 t− h2
4 t−ρ2

√
2t ln ln t−

√
4a−2ϵ2t ≤ 1,

and
G(t) =

√
te

1
2 ϵ

2− ϵ
2
2 t+κt−

√
4a−2ϵ2h

2 t−ρ2
√

2t ln ln t− h2
4 t+2ht.

Since h and κ are arbitrary, we derive that H(t) ≤ 1 a.s. for large t. Direct calculation implies that
almost surely

1
t

ln G(t) =
1
2t

ln 4t −
1
t
(ln 2 −

ϵ2

2
+
ϵ2

2
t) + κ −

4a − 2ϵ2

4
h −

h2

4
+ 2h −

1
t
ρ2

√
2t ln ln t,

and

lim
t→∞

1
t

ln G(t) = 0. (3.10)

Hence, we obtain the upper bound of the asymptotic wave speed of the travelling wave solution to (3.2)

R1(t)
t
≤

1
t
ρ2

√
2t ln ln t +

√
4a − 2ϵ2 − h +

1
t

ln 2 +
1
t

ln G(t) a.s. (3.11)

Moreover, it follows that

lim sup
t→∞

R1(t)
t
≤
√

4a − 2ϵ2 a.s. (3.12)

and

R1(t)
t
≥ −

1
t
ρ1

√
2 ln ln t +

√
4a − 2ϵ2 − h a.s. (3.13)

Thus, we deduce that the lower bound followed as

lim inf
t→∞

R1(t)
t
≥
√

4a − 2ϵ2 a.s. (3.14)

Combining (3.12) and (3.14), we can get

lim
t→∞

R1(t)
t
=
√

4a − 2ϵ2 a.s. (3.15)

The proof of Theorem 3.3 is complete. □
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3.2. Asymptotic wave speed of sup-solution

By the method used in Theorem 3.3, we consider the sup-solution Ȳ(t, x) satisfying the following
equation, for i = 1, 2, · · · , n dū(i) = [ū(i)

xx + ū(i)(p − a1ū(i))]dt + ϵūdWt,

ū(i)
0 = u(i)

0 .

Similar to the proof of Theorem 3.3, we obtain the following result:

Theorem 3.4. For any Heaviside functions u(i)
0 , Ȳ(t, x) is a solution to (3.1), then the asymptotic wave

speed c(Ȳ) satisfies

c(Ȳ) =
√

4p − 2ϵ2 a.s. (3.16)

Based on discussion above, and combaining Theorem 3.3 and Theorem 3.4, with Lemma 3.2 we
can achieve the conclusion:

√
4a − 2ϵ2 ≤ c⋆ ≤

√
4p − 2ϵ2 a.s. (3.17)

which ends of the proof of Theorem 3.1.

4. Example: 3-species stochastic cooperative system

Recently, Zhao and Shao [26] studied the asymptotic stability and stability of stochastic 3-species
cooperative system without diffusion. Shao et al. [27] studied the stochastic permanence, stability and
optimal harvesting policy of a 3-three species cooperative system with delays and Lévy jumps. In this
section, we apply the above conclusions to the following 3-species stochastic cooperative system and
give some results about stochastic travelling waves

du = [uxx + u(a1 − b1u + c1v)]dt + ϵudWt,

dv = [vxx + v(a2 − b2v + c2u + d1w)]dt + ϵvdWt,

dw = [wxx + w(a3 − b3w + c3v)]dt + ϵwdWt,

u(0, x) = u0, v(0, x) = v0,w(0, x) = w0.

(4.1)

If min{bi} > max{ci, d1} and b2 ≥ b1 + b3, it is easy to know that (0, 0, 0) is unstable, and (a1
b1
+ c1

b1
×

a2b1b3+a1b3c2+a3b1d1
b1b2b3−b1c3d1−b3c1c2

, a2b1b3+a1b3c2+a3b1d1
b1b2b3−b1c3d1−b3c1c2

, a3
b3
+ c3

b3
×

a2b1b3+a1b3c2+a3b1d1
b1b2b3−b1c3d1−b3c1c2

) := (p1, p2, p3) is the only stable point,
which implies that 3-species coexist. Repeating the above argument on the stochastic cooperative
systems (4.1), we have the following results:

Theorem 4.1. For any Heaviside functions u0, v0,w0, and ai, bi, ci, d1 are positive constants satisfying
min{bi} > max{ci, d1}, b2 ≥ b1 + b3, then for a.e. ω ∈ Ω, there exists a travelling wave solution to
Eq (4.1). Moreover, the asymptotic wave speed can be obtained

√
4a − 2ϵ2 ≤ c ≤

√
4p − 2ϵ2 a.s., (4.2)
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where

p =2 max{ci, d1} ×max{E[e
sup

0≤r≤t

∫ t
r ϵdWs

](u0 + v0 + w0 +
α

k
−
ϵ2

2k
),√

|u0|
2 + |v0|

2 + |w0|
2 +

ϵ6 + (2α + 1)3

18k2 , p1, p2, p3} + α,

and α = max{ai}, a = min{ai}, k = min{bi}−max{ci,d1}

3 .

5. Conclusions

This paper introduces the travelling wave solution of stochastic N-species cooperative systems with
noise, and we obtain the existence of travelling wave solution in law and estimate its corresponding
wave speed. The upper bound of asymptotic wave speed depends on all the coefficients and the strength
and noise, while the lower bound only relies on the environment capacity and strength of the noise. In
fact, the minimal propagation speed of travelling wave depends on the supporting capacity of the nat-
ural environment, and the maximum propagation speed relies on the interspecific interaction intensity
and intrinsic growth rate.
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3. C. Müeller, L. Mytnik, J. Quastel, Effect of noise on front propagation in reaction-diffusion equa-
tions of KPP type, Invent. Math., 184 (2011), 405–453. https://doi.org/10.1007/s00222-010-0292-
5

Electronic Research Archive Volume 31, Issue 8, 4406–4426.

http://dx.doi.org/https://doi.org/10.1080/17442509608834047
http://dx.doi.org/https://doi.org/10.1006/jfan.1995.1038
http://dx.doi.org/https://doi.org/10.1007/s00222-010-0292-5
http://dx.doi.org/https://doi.org/10.1007/s00222-010-0292-5


4425
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