Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js
Research article Special Issues

Optimal harvesting strategy of a stochastic n-species marine food chain model driven by Lévy noises


  • Received: 24 May 2023 Revised: 30 June 2023 Accepted: 09 July 2023 Published: 19 July 2023
  • A stochastic n-species marine food chain model with harvesting and Lévy noises is proposed. First, the criterion on the asymptotic stability in distribution is established. Second, the criterion on the existence of optimal harvesting strategy (OHS) and the maximum of expectation of sustainable yield (MESY) are derived. Furthermore, the numerical simulations are presented to verify the theoretical results. Our results show that (i) noises intensity can easily affect the dynamics of marine populations, leading to the imbalances of marine ecology, (ii) the establishment of an optimal harvesting strategy should fully consider the impact of noises intensity for better managing and protecting marine resources.

    Citation: Nafeisha Tuerxun, Zhidong Teng. Optimal harvesting strategy of a stochastic n-species marine food chain model driven by Lévy noises[J]. Electronic Research Archive, 2023, 31(9): 5207-5225. doi: 10.3934/era.2023265

    Related Papers:

    [1] Quanxiang Pan . Real hypersurfaces in complex space forms with special almost contact structures. AIMS Mathematics, 2023, 8(11): 27200-27209. doi: 10.3934/math.20231391
    [2] Rabia Cakan Akpınar, Esen Kemer Kansu . Metallic deformation on para-Sasaki-like para-Norden manifold. AIMS Mathematics, 2024, 9(7): 19125-19136. doi: 10.3934/math.2024932
    [3] Mohd Danish Siddiqi, Fatemah Mofarreh . Schur-type inequality for solitonic hypersurfaces in (k,μ)-contact metric manifolds. AIMS Mathematics, 2024, 9(12): 36069-36081. doi: 10.3934/math.20241711
    [4] Gonca Durmaz Güngör, Ishak Altun . Fixed point results for almost (ζθρ)-contractions on quasi metric spaces and an application. AIMS Mathematics, 2024, 9(1): 763-774. doi: 10.3934/math.2024039
    [5] Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended b-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977
    [6] Muhammad Suhail Aslam, Mohammad Showkat Rahim Chowdhury, Liliana Guran, Manar A. Alqudah, Thabet Abdeljawad . Fixed point theory in complex valued controlled metric spaces with an application. AIMS Mathematics, 2022, 7(7): 11879-11904. doi: 10.3934/math.2022663
    [7] Mohammad Nazrul Islam Khan, Uday Chand De . Liftings of metallic structures to tangent bundles of order r. AIMS Mathematics, 2022, 7(5): 7888-7897. doi: 10.3934/math.2022441
    [8] Siniša N. Ješić, Nataša A. Ćirović, Rale M. Nikolić, Branislav M. Ranƌelović . A fixed point theorem in strictly convex b-fuzzy metric spaces. AIMS Mathematics, 2023, 8(9): 20989-21000. doi: 10.3934/math.20231068
    [9] Noura Alhouiti . Theorems of existence and uniqueness for pointwise-slant immersions in Kenmotsu space forms. AIMS Mathematics, 2024, 9(7): 17489-17503. doi: 10.3934/math.2024850
    [10] Maryam Salem Alatawi, Ali Ahmad, Ali N. A. Koam, Sadia Husain, Muhammad Azeem . Computing vertex resolvability of benzenoid tripod structure. AIMS Mathematics, 2022, 7(4): 6971-6983. doi: 10.3934/math.2022387
  • A stochastic n-species marine food chain model with harvesting and Lévy noises is proposed. First, the criterion on the asymptotic stability in distribution is established. Second, the criterion on the existence of optimal harvesting strategy (OHS) and the maximum of expectation of sustainable yield (MESY) are derived. Furthermore, the numerical simulations are presented to verify the theoretical results. Our results show that (i) noises intensity can easily affect the dynamics of marine populations, leading to the imbalances of marine ecology, (ii) the establishment of an optimal harvesting strategy should fully consider the impact of noises intensity for better managing and protecting marine resources.



    In the last years, there has been a significant development in ordinary and partial differential equations involving fractional derivatives. These kind of equations have gained considerable importance due to their application in various sciences, such as physics, biology, economics, mechanics, chemistry, control theory, engineering, signal and image processing, etc [1,2,3,4,5,6,7].

    Nonlinear coupled systems of fractional order differential equations appear often in investigations connected with disease models [8], anomalous diffusion [9] and ecological models [10]. Unlike the classical derivative operator, one can find a variety of its fractional counterparts such as Riemann-Liouville, Caputo, Hadamard, Erdelyi-Kober, Hilfer, Caputo-Hadamard, etc. Recently, a new class of fractional proportional derivative operators was introduced and discussed in [11,12,13]. Then, the concept of Hilfer type generalized proportional fractional derivative operators was proposed in [14]. For the detailed advantages of the Hilfer derivative, see [15] and a recent application in calcium diffusion in [16].

    Many researchers studied initial and boundary value problems for differential equations and inclusions including different kinds of fractional derivative operators, for instance, see [17,18,19,20,21]. In [22], the authors studied a nonlocal-initial value problem of order in (0,1) involving a ¯ψ-Hilfer generalized proportional fractional derivative of a function with respect to another function. Recently, in [23], the authors investigated the existence and uniqueness of solutions for a nonlocal mixed boundary value problem for Hilfer fractional ¯ψ-proportional type differential equations and inclusions of order in (1,2] of the form

    {Dα,β,σ,ψw+1u(t)=Υ(t,u(t)),t[w1,w2],0w1<w2,u(w1)=0,u(w2)=mj=1ηju(ξj)+ni=1ζiIϕi,σ,ψc+u(θi)+rk=1λkDδk,β,σ,ψc+u(μk), (1.1)

    where Dχ,β,σ,ψc+, denotes the ψ-Hilfer generalized proportional fractional derivative operator of order χ{α,δk}, α,δk(1,2] and type β[0,1], respectively, σ(0,1], ηj,ζi,λkR are given constants, Υ: [w1,w2]×RR is a given continuous function, Iϕi;σ,ψw1+ is the generalized proportional fractional integral operator of order ϕi>0 and ξj,θi,μk(w1,w2), j=1,2,,m, i=1,2,,n, k=1,2,,r, are given points.

    In [24], the authors discussed the existence of solutions for a nonlinear coupled system of (k,ψ)-Hilfer fractional differential equations of different orders in (1,2], complemented with coupled (k,ψ)-Riemann-Liouville fractional integral boundary conditions. In [25] a coupled system of Hilfer type generalized proportional fractional differential equations with nonlocal multi-point boundary conditions of the form

    {(Dδ1,η,σw+1+kDδ11,η,σw+1)τ1(t)=Υ1(t,τ1(t),τ2(t)),t[w1,w2],(Dδ2,η,σw+1+k1Dδ21,η,σw+1)τ2(t)=Υ2(t,τ1(t),τ2(t)),t[w1,w2],τ1(w1)=0,τ1(w2)=mj=1θjτ2(ξj),τ2(w1)=0,τ2(w2)=ni=1εiτ1(λi), (1.2)

    is investigated, in which Dδ1,η,σw+1 and Dδ2,η,σw+1 are the fractional derivatives of Hilfer generalized proportional type of order 1<δ1,δ2<2, the Hilfer parameter 0η1, σ(0,1], k,k1R, Υ1,Υ2: [w1,w2]×RR are continuous functions, w10, θj,εiR, ξj,λi(w1,w2) for i=1,2,3,,n and j=1,2,,m. Existence and uniqueness results are proved by applying classical Banach and Krasnosel'skii fixed-point theorems, and the Leray-Schauder alternative.

    Very recently in [26] the authors established existence and uniqueness results for a class of coupled systems of nonlinear Hilfer-type fractional ¯ψ-proportional differential equations equipped with nonlocal multi-point and integro-multi-strip coupled boundary conditions of the form:

    {Dρ1,φ1,ϑ,¯ψw1+σ(z)=Ψ1(z,σ(z),τ(z)),z[w1,w2],Dρ2,φ2,ϑ,¯ψw1+τ(z) =Ψ2(z,σ(z),τ(z)),z[w1,w2],σ(w1)=0,w2w1¯ψ(s)σ(s)ds=ni=1κiηiξi¯ψ(s)τ(s)ds+mj=1θjτ(ζj),τ(w1) =0,w2w1¯ψ(s)τ(s)ds=ni=1ϕiϵiδi¯ψ(s)σ(s)ds+mj=1ϑjσ(zj), (1.3)

    where Dρκ,φa,ϑ,¯ψw1+ and κ=1,2 denote the Hilfer fractional ¯ψ-proportional derivative operator of the order ρκ(1,2] and type φi[0,1], ϑ(0,1], w1<ζj<ξi<ηi<w2, w1<δj<zi<ϵi<w2, κi,θj,ϕi,ϑjR, i=1,2,,n, j=1,2,,m, ¯ψ: [w1,w2]R is an increasing function with ¯ψ(z)0 for all z[w1,w2] and Ψ1,Ψ2: [w1,w2]×R×RR are continuous functions.

    In this work, motivated by the above mentioned papers, we study a coupled system of ψ-Hilfer generalized proportional sequential fractional differential equations with mixed nonlocal and integro-multi-point boundary conditions, of the form

    {(HDα1,β1,ρ,ψw1k1)(t)+λ1(HDα11,β1,ρ,ψw1k1)(t)=Υ1(t,k1(t),k2(t)),t[w1,w2],(HDα2,β2,ρ,ψw1k2)(t)+λ2(HDα21,β2,ρ,ψw1k2)(t)=Υ2(t,k2(t),k1(t)),t[w1,w2],k1(w1)=0,k1(w2)=ni=1ηik2(ξi)+mj=1ζjpIΦj,ρ,ψk2(θj),k2(w1)=0,k2(w2)=rk=1kk1(ϱk)+ql=1ΘlpIυl,ρ,ψk1(ϑl), (1.4)

    where HDX,βι,ρ,ψw1 denotes the ψ-Hilfer generalized proportional fractional derivative operator of order X{α1,α2} with the parameters βι,ι{1,2}, 1<X2, 0βι1, pIY,ρ,ψw1 is a generalized proportional fractional integral operator of order Y>0, Y{Φj,υl}, λ1,λ2,ηi,ζj,k,ΘlR{0}, ξi,θj,ϱk,ϑl(a,b), i=1,2,,n, j=1,2,,m, k=1,2,,r, l=1,2,,q and Υ1,Υ2: [w1,w2]×R×RR are nonlinear continuous functions.

    Here, we emphasize that problem (1.4) is novel, and its investigation will enhance the scope of the literature on nonlocal Hilfer-type fractional ψ-proportional systems. Note that, when ψ(t)=t, problem (1.4) reduces to a coupled system of Hilfer generalized proportional fractional differential equations with mixed nonlocal multi-point and integro-multi-point boundary conditions; while if ρ=1, reduces to a coupled system of ψ-Hilfer fractional differential equations with mixed nonlocal multi-point and integro-multi-point boundary conditions. If ψ(t)=t, ζj=0, Θl=0, problem (1.4) is reduced to problem (1.2).

    In solving (1.4), we first convert it into an equivalent fixed point problem, with the help of an auxiliary result based on a linear variant (1.4). Afterward, under different assumptions, we apply different fixed point theorems to establish our results on existence and uniqueness of solutions. For the first result (Theorem 3.1), we apply the Leray-Schauder's alternative to show that there exists at least one solution for the problem (1.4). The second result (Theorem 3.2), relying on Krasnosel'skii's fixed point theorem, shows that the problem (1.4) has at least one solution under different assumptions, and the last result (Theorem 3.3), shows the existence of a unique solution to the problem (1.4) by means of Banach's contraction mapping principle. In Section 4, we illustrate all the obtained theoretical results with the aid of constructed numerical examples. We emphasize that the problem (1.4) is novel and its investigation will enhance the scope of the literature on coupled systems of ψ-Hilfer generalized proportional fractional differential equations with mixed nonlocal and integro-multi-point boundary conditions. The used method is standard, but its configuration in the problem (1.4) is new.

    The structure of the rest of the paper is organized as follows: In Section 2, some necessary definitions and preliminary results related to our problem are presented. Section 3 contains the main results for the problem (1.4), while numerical examples illustrating these results are constructed in Section 4. A brief conclusion closes the paper.

    In this section, we introduce some necessary definitions and preliminary results needed in main results later.

    Definition 2.1. [11,12] Let the functions ϑ0,ϑ1: [0,1]×R[0,) be continuous such that for all tR and for ρ[0,1], we get

    limρ0+ϑ0(ρ,t)=0,limρ0+ϑ1(ρ,t)=1,limρ1ϑ0(ρ,t)=1,limρ1ϑ1(ρ,t)=0

    and

    ϑ0(ρ,t)0,0<ρ1,ϑ1(ρ,t)0,0ρ<1.

    Let also ψ(t) be a strictly positive increasing continuous function. So, the proportional differential operator of order ρ of function Υ(t) with respect to function ψ(t) is defined by

    pDρ,ψΥ1(t)=ϑ1(ρ,t)Υ(t)+ϑ0(ρ,t)Υ(t)ψ(t).

    Moreover, if ϑ0(ρ,t)=ρ and ϑ1(ρ,t)=1ρ, then operator pDρ,ψ becomes

    pDρ,ψΥ(t)=(1ρ)Υ1(t)+ρΥ(t)ψ(t).

    The integral corresponding to the above proportional derivative is defined as

    pI1,ρ,ψw1Υ1(t)=1ρtw1eρ1ρ(ψ(t)ψ(s))Υ(s)ψ(s)ds,

    where

    pI0,ρ,ψw1Υ1(t)=Υ1(t).

    The generalized proportional integral of order n corresponding to proportional derivative pDn,ρ,ψΥ1(t), is given by

    pIn,ρ,ψw1Υ1(t)=1ρnΓ(n)tw1eρ1ρ(ψ(t)ψ(s))(ψ(t)ψ(s))n1Υ(s)ψ(s)ds.

    Based on the generalized proportional integral of order n, we can obtain the following general proportional fractional integral and derivative.

    Definition 2.2. [11,12] Let ρ(0,1] and α>0. The fractional proportional integral of order α of the function f with respect to function ψ is defined by

    (pIα,ρ,ψw1Υ)(t)=1ραΓ(α)tw1eρ1ρ(ψ(t)ψ(s))(ψ(t)ψ(s))α1Υ(s)ψ(s)ds.

    Definition 2.3. [11,12] Let ρ(0,1] α>0 and ψ(t) is a continuous function on [w1,w2], ψ(t)>0. The generalized proportional fractional derivative of order α of the function Υ with respect to function ψ is defined by

    (pDα,ρ,ψw1Υ)(t)=pDn,ρ,ψρnαΓ(nα)tw1eρ1ρ(ψ(t)ψ(s))(ψ(t)ψ(s))nα1Υ(s)ψ(s)ds,

    where

    pDn,ρ,ψ=pDρ,ψpDρ,ψpDρ,ψpDρ,ψntimes.

    Below we present the generalized proportional fractional derivatives of order α of function Υ with respect to another function ψ in Hilfer sense.

    Definition 2.4. [27] For ρ(0,1]. Let functions Υ,ψCm([w1,w2],R) and ψ be positive and strictly increasing with ψ(t)0, for all t[w1,w2]. The ψ-Hilfer generalized propotional fractional derivative of order α and type β for Υ with respect to another function ψ is defined by

    (HDα,β,ρ,ψw1Υ)(t)=pIβ(nα),ρ,ψw1[Dn,ρ,ψ(pI(1β)(nα),ρ,ψw1Υ)](t),

    where order n1<α<n and 0β1.

    If γ=α+β(nα), then the ψ-Hilfer generalized proportional derivative HDα,β,ρ,ψw1 is equivalent to

    (HDα,β,ρ,ψw1Υ)(t)=pIβ(nα),ρ,ψw1[Dn,ρ,ψ(pI(1β)(nα),ρ,ψw1Υ)](t)=(pIβ(nα),ρ,ψw1Dγ,ρ,ψw1Υ)(t).

    Lemma 2.1. [27] Let n1<α<nN, 0<ρ1, 0β1 and n1<γ<n such that γ=α+nβαβ. If ΥC([w1,w2],R) and I(nγ,ρ,ψ)w1Cn([w1,w2],R), then

    (pIα,ρ,ψw1HDα,β,ρ,ψw1Υ)(t)=Υ(t)nj=1eρ1ρ(ψ(t)ψ(w1))(ψ(t)ψ(w1))γjργjΓ(γj+1)(pIjγ,ρ,ψw1f)(w1).

    Lemma 2.2. Let 1<α1,α2<2, 0β1,β21, γi=αi+βi(2αi), i=1,2, ¨Λ0 and z,wC([w1,w2],R). Then the pair (k1,k2) is the solution of the coupled system

    {(HDα1,β1,ρ,ψw1k1)(t)+λ1(HDα11,β1,ρ,ψw1k1)(t)=z(t),(HDα2,β2,ρ,ψw1k2)(t)+λ2(HDα21,β2,ρ,ψw1k2)(t)=w(t),k1(w1)=0,k1(w2)=ni=1ηik2(ξi)+mj=1ζjpIΦj,ρ,ψw1k2(θj),k2(w1)=0,k2(w2)=rk=1kk1(ϱk)+ql=1ΘlpIυl,ρ,ψw1k1(ϑl), (2.1)

    if and only if

    k1(t)=eρ1ρ(ψ(t)ψ(w1))¨Λργ11Γ(γ1)(ψ(t)ψ(w1))γ11[Y1(ni=1ηipIα2,ρ,ψw1w(ξi)λ2ni=1ηipI1,ρ,ψw1k2(ξi)+mj=1ζjpIα2+Φj,ρ,ψw1w(θj)λ2mj=1ζjpI1+Φj,ρ,ψw1k2(θj)pIα1,ρ,ψw1z(w2)+λ1pI1,ρ,ψw1k1(w2))+X2(rk=1kpIα1,ρ,ψw1z(ϱk)λ1rk=1kpI1,ρ,ψw1k1(ϱk)+ql=1ΘlpIα1+υl,ρ,ψw1z(ϑl)λ1ql=1ΘlpI1+υl,ρ,ψw1k1(ϑl)pIα2,ρ,ψw1w(w2)+λ2pI1,ρ,ψw1k2(w2))]+pIα1,ρ,ψw1z(t)λ1pI1,ρ,ψw1k1(t) (2.2)

    and

    k2(t)=eρ1ρ(ψ(t)ψ(w1))¨Λργ21Γ(γ2)(ψ(t)ψ(w1))γ21[Y2(ni=1ηipIα2,ρ,ψw1w(ξi)λ2ni=1ηipI1,ρ,ψw1k2(ξi)+mj=1ζjpIα2+Φj,ρ,ψw1w(θj)λ2mj=1ζjpI1+Φj,ρ,ψw1k2(θj)pIα1,ρ,ψw1z(w2)+λ1pI1,ρ,ψw1k1(w2))+X1(rk=1kpIα1,ρ,ψw1z(ϱk)λ1rk=1kpI1,ρ,ψw1k1(ϱk)+ql=1ΘlpIα1+υl,ρ,ψw1z(ϑl)λ1ql=1ΘlpI1+υl,ρ,ψw1k1(ϑl)pIα2,ρ,ψw1w(w2)+λ2pI1,ρ,ψw1k2(w2))]+pIα2,ρ,ψw1w(t)λ2pI1,ρ,ψw1k2(t), (2.3)

    where ¨Λ=X1Y1X2Y2,

    X1=eρ1ρ(ψ(w2)ψ(w1))ργ11Γ(γ1)(ψ(w2)ψ(w1))γ11,X2=ni=1ηieρ1ρ(ψ(ξi)ψ(w1))ργ21Γ(γ2)(ψ(ξi)ψ(w1))γ21+mj=1ζjeρ1ρ(ψ(θj)ψ(w1))ρΦj+γ21Γ(Φj+γ2)(ψ(θj)ψ(w1))Φj+γ21,Y1=rk=1keρ1ρ(ψ(ϱk)ψ(w1))ργ11Γ(γ1)(ψ(ϱk)ψ(w1))γ11+ql=1Θleρ1ρ(ψ(ϑl)ψ(w1))ρυl+γ11Γ(υl+γ1)(ψ(ϑl)ψ(w1))υl+γ11,Y2=eρ1ρ(ψ(w2)ψ(w1))ργ21Γ(γ2)(ψ(w2)ψ(w1))γ21. (2.4)

    Proof. Let the pair (k1,k2) be the solution of the system (2.1). We take the Riemann-Liouville integrals to Eq (2.1),

    {pIα1,ρ,ψw1[(HDα1,β1,ρ,ψw1k1)(t)+λ1(HDα11,β1,ρ,ψw1k1)(t)]=pIα1,ρ,ψw1z(t),pIα2,ρ,ψw1[(HDα2,β2,ρ,ψw1k2)(t)+λ2(HDα21,β2,ρ,ψw1k2)(t)]=pIα2,ρ,ψw1w(t). (2.5)

    Then, applying Lemma 2.1 with n=2 to Eq (2.5), we get

    k1(t)=pIα1,ρ,ψw1z(t)λ1pI1,ρ,ψw1k1(t)+eρ1ρ(ψ(t)ψ(w1))ργ11Γ(γ1)(ψ(t)ψ(w1))γ11(pI1γ1,ρ,ψw1x)(w1)+eρ1ρ(ψ(t)ψ(w1))ργ12Γ(γ11)(ψ(t)ψ(w1))γ12(pI2γ1,ρ,ψw1x)(w1)=pIα1,ρ,ψw1z(t)λ1pI1,ρ,ψw1k1(t)+c0eρ1ρ(ψ(t)ψ(w1))ργ11Γ(γ1)(ψ(t)ψ(w1))γ11+c1eρ1ρ(ψ(t)ψ(w1))ργ12Γ(γ11)(ψ(t)ψ(w1))γ12 (2.6)

    and

    k2(t)=pIα2,ρ,ψw1w(t)λ2pI1,ρ,ψw1k2(t)+eρ1ρ(ψ(t)ψ(w1))ργ21Γ(γ2)(ψ(t)ψ(w1))γ21(pI1γ2,ρ,ψw1y)(w1)+eρ1ρ(ψ(t)ψ(w1))ργ22Γ(γ21)(ψ(t)ψ(w1))γ22(pI2γ2,ρ,ψw1y)(w1)=pIα2,ρ,ψw1w(t)λ2pI1,ρ,ψw1k2(t)+c2eρ1ρ(ψ(t)ψ(w1))ργ21Γ(γ2)(ψ(t)ψ(w1))γ21+c3eρ1ρ(ψ(t)ψ(w1))ργ22Γ(γ21)(ψ(t)ψ(w1))γ22, (2.7)

    where

    c0=(pI1γ1,ρ,ψw1x)(w1),c1=(pI2γ1,ρ,ψw1x)(w1),c2=(pI1γ2,ρ,ψw1y)(w1)andc3=(pI2γ2,ρ,ψw1y)(w1).

    From the conditions k1(w1)=0 and k2(w1)=0 we get c1=0 and c3=0, since γ1[α1,2] and γ2[α2,2] (see [27]), and Eqs (2.6) and (2.7) are reduced to

    k1(t)=pIα1,ρ,ψw1z(t)λ1pI1,ρ,ψw1k1(t)+c0eρ1ρ(ψ(t)ψ(w1))ργ11Γ(γ1)(ψ(t)ψ(w1))γ11, (2.8)
    k2(t)=pIα2,ρ,ψw1w(t)λ2pI1,ρ,ψw1k2(t)+c2eρ1ρ(ψ(t)ψ(w1))ργ21Γ(γ2)(ψ(t)ψ(w1))γ21. (2.9)

    From the boundary conditions

    k1(w2)=ni=1ηik2(ξi)+mj=1ζjpIΦj,ρ,ψw1k2(θj)

    and

    k2(w2)=rk=1kk1(ϱk)+ql=1ΘlpIυl,ρ,ψw1k1(ϑl),

    we get

    pIα1,ρ,ψw1z(w2)λ1pI1,ρ,ψw1k1(w2)+c0eρ1ρ(ψ(w2)ψ(w1))ργ11Γ(γ1)(ψ(w2)ψ(w1))γ11=ni=1ηipIα2,ρ,ψw1w(ξi)λ2ni=1ηipI1,ρ,ψw1k2(ξi)+c2ni=1ηieρ1ρ(ψ(ξi)ψ(w1))ργ21Γ(γ2)(ψ(ξi)ψ(w1))γ21+mj=1ζjpIα2+Φj,ρ,ψw1w(θj)λ2mj=1ζjpI1+Φj,ρ,ψw1k2(θj)+c2mj=1ζjeρ1ρ(ψ(θj)ψ(w1))ρΦj+γ21Γ(Φj+γ2)(ψ(θj)ψ(w1))Φj+γ21 (2.10)

    and

    pIα2,ρ,ψw1w(w2)λ2pI1,ρ,ψw1k2(w2)+c2eρ1ρ(ψ(w2)ψ(w1))ργ21Γ(γ2)(ψ(w2)ψ(w1))γ21=rk=1kpIα1,ρ,ψw1z(ϱk)λ1rk=1kpI1,ρ,ψw1k1(ϱk)+c0rk=1keρ1ρ(ψ(ϱk)ψ(w1))ργ11Γ(γ1)(ψ(ϱk)ψ(w1))γ11+ql=1ΘlpIα1+υl,ρ,ψw1z(ϑl)λ1ql=1ΘlpI1+υl,ρ,ψw1k1(ϑl)+c0ql=1Θleρ1ρ(ψ(ϑl)ψ(w1))ρυl+γ11Γ(υl+γ1)(ψ(ϑl)ψ(w1))υl+γ11. (2.11)

    From Eqs (2.10) and (2.11), by using the notations (2.4) we get the system

    X1c0X2c2=M, (2.12)
    Y2k2c0+Y1c2=N, (2.13)

    where

    M=ni=1ηipIα2,ρ,ψw1w(ξi)λ2ni=1ηipI1w1k2(ξi)+mj=1ζjpIα2+Φj,ρ,ψw1w(θj)λ2mj=1ζjpI1+Φjw1k2(θj)pIα1,ρ,ψw1v(w2)+λ1pI1w1k1(w2),N=rk=1kpIα1,ρ,ψw1v(ϱk)λ1rk=1kpI1w1k1(ϱk)+ql=1ΘlpIα1+υl,ρ,ψw1v(ϑl)λ1ql=1ΘlpI1+υlw1k1(ϑl)pIα2,ρ,ψw1w(w2)+λ2pI1w1k2(w2).

    By solving the above system, we obtain the constants c0 and c2 as

    c0=Y1M+X2NX1Y1X2Y2andc2=Y2M+X1NX1Y1X2Y2.

    Now substitute the values of c0 and c2 into Eqs (2.8) and (2.9) and yield Eqs (2.2) and (2.3), as desired. We can prove the converse of the lemma by direct computation.

    In this section, we prove the existence and uniqueness results for the problem (1.4) by using three fixed ponit theorems.

    First, we defined the spaces

    X={k1|k1(t)C([w1,w2],R)}

    with the norm

    k1=sup{|k1(t)|,t[w1,w2]},

    and

    Y={k2|k2(t)C([w1,w2],R)}

    with the norm

    k2=sup{|k2(t)|,t[w1,w2]}.

    Then it is well known that (X,) and (Y,) are Banach apaces. Obviously, the product space of X×Y endowed with norm (k1,k2)=k1+k2 for (k1,k2)X×Y is a Banach space.

    In view of the Lemma 2.2, we define an operator T: X×YX×Y by

    T(k1,k2)(t)=(T1(k1,k2)(t),T2(k1,k2)(t)),

    where

    T1(k1,k2)(t)=eρ1ρ(ψ(t)ψ(w1))¨Λργ11Γ(γ1)(ψ(t)ψ(w1))γ11[Y1(ni=1ηipIα2,ρ,ψw1Υ2(ξi,k1(ξi),k2(ξi))λ2ni=1ηipI1,ρ,ψw1k2(ξi)+mj=1ζjpIα2+Φj,ρ,ψw1Υ2(θj,k1(θj),k2(θj))λ2mj=1ζjpI1+Φj,ρ,ψw1k2(θj)pIα1,ρ,ψw1Υ1(w2,k1(w2),k2(w2))+λ1pI1,ρ,ψw1k1(w2))+X2(rk=1kpIα1,ρ,ψw1Υ1(ϱk,k1(ϱk),k2(ϱk))λ1rk=1kpI1,ρ,ψw1k1(ϱk)+ql=1ΘlpIα1+υl,ρ,ψw1Υ1(ϑl,k1(ϑl),k2(ϑl))λ1ql=1ΘlpI1+υl,ρ,ψw1k1(ϑl)pIα2,ρ,ψw1Υ2(w2,k1(w2),k2(w2))+λ2pI1,ρ,ψw1k2(w2))]+pIα1,ρ,ψw1Υ1(t,k1(t),k2(t))λ1pI1,ρ,ψw1k1(t)

    and

    T2(k1,k2)(t)=eρ1ρ(ψ(t)ψ(w1))¨Λργ21Γ(γ2)(ψ(t)ψ(w1))γ21[Y2(ni=1ηipIα2,ρ,ψw1Υ2(ξi,k1(ξi),k2(ξi))λ2ni=1ηipI1,ρ,ψw1k2(ξi)+mj=1ζjpIα2+Φj,ρ,ψw1Υ2(θj,k1(θj),k2(θj))λ2mj=1ζjpI1+Φj,ρ,ψw1k2(θj)pIα1,ρ,ψw1Υ1(w2,k1(w2),k2(w2))+λ1pI1,ρ,ψw1k1(w2))+X1(rk=1kpIα1,ρ,ψw1Υ1(ϱk,k1(ϱk),k2(ϱk))λ1rk=1kpI1,ρ,ψw1k1(ϱk)+ql=1ΘlpIα1+υl,ρ,ψw1Υ1(ϑl,k1(ϑl),k2(ϑl))λ1ql=1ΘlpI1+υl,ρ,ψw1k1(ϑl)pIα2,ρ,ψw1Υ1(w2,k1(w2),k2(w2))+λ2pI1,ρ,ψw1k2(w2))]+pIα2,ρ,ψw1Υ2(t,k1(t),k2(t))λ2pI1,ρ,ψw1k2(t).

    Then, we introduce the following notation for computational convenience.

    Notation 3.1. Let Ai,Bi,Ci for i=1,2 be the constants:

    A1=(ψ(w2)ψ(w1))γ11|¨Λ|ργ11Γ(γ1)[Y1((ψ(w2)ψ(w1))α1ρα1Γ(α1+1))+X2(rk=1|k|(ψ(ϱk)ψ(w1))α1ρα1Γ(α1+1)+ql=1|Θl|(ψ(ϑl)ψ(w1))α1+υlρα1+υlΓ(α1+υl+1))]+(ψ(w2)ψ(w1))α1ρα1Γ(α1+1),B1=(ψ(w2)ψ(w1))γ11|¨Λ|ργ11Γ(γ1)[Y1(ni=1|ηi|(ψ(ξi)ψ(w1))α2ρα2Γ(α2+1)+mj=1|ζj|(ψ(θj)ψ(w1))α2+Φjρα2+ΦjΓ(α2+Φj+1))+X2((ψ(w2)ψ(w1))α2ρα2Γ(α2+1))],C1=(ψ(w2)ψ(w1))γ11|¨Λ|ργ11Γ(γ1)[Y1(|λ2|ni=1|ηi|(ψ(ξi)ψ(w1))ρ+|λ1|(ψ(w2)ψ(w1))ρ+|λ2|mj=1|ζj|(ψ(θj)ψ(w1))1+Φjρ1+ΦjΓ(2+Φj))+X2(|λ1|rk=1|k|(ψ(ϱk)ψ(w1))ρ+|λ2|(ψ(w2)ψ(w1))ρ+|λ1|ql=1|Θl|(ψ(ϑl)ψ(w1))1+υlρ1+υlΓ(1+υl+1))]+|λ1|(ψ(w2)ψ(w1))ρ,A2=(ψ(w2)ψ(w1))γ21|¨Λ|ργ21Γ(γ2)[Y2((ψ(w2)ψ(w1))α1ρ+α1Γ(α1+1))+X1(rk=1|k|(ψ(ϱk)ψ(w1))α1ρα1Γ(α1+1)+ql=1|Θl|(ψ(ϑl)ψ(w1))α1+υlρα1+υlΓ(α1+υl+1)+(ψ(w2)ψ(w1))α2ρα2Γ(α2+1))],B2=(ψ(w2)ψ(w1))γ21|¨Λ|ργ21Γ(γ2)[Y2(ni=1|ηi|(ψ(ξi)ψ(w1))α2ρα2Γ(α2+1)+mj=1|ζj|(ψ(θj)ψ(w1))α2+Φjρα2+ΦjΓ(α2+Φj+1))]+(ψ(w2)ψ(w1))α2ρα2Γ(α2+1),C2=(ψ(w2)ψ(w1))γ21|¨Λ|ργ21Γ(γ2)[Y2(|λ2|ni=1|ηi|(ψ(ξi)ψ(w1))ρ+|λ2|mj=1|ζj|(ψ(θj)ψ(w1))1+Φjρ1+ΦjΓ(2+Φj)+|λ1|(ψ(w2)ψ(w1))ρ)+X1(|λ1|rk=1|k|(ψ(ϱk)ψ(w1))ρ+|λ1|ql=1|Θl|(ψ(ϑl)ψ(w1))1+υlρ1+υlΓ(2+υl)+|λ2|(ψ(w2)ψ(w1))ρ)]+|λ2|(ψ(w2)ψ(w1))ρ.

    Now we prove our first existence result via Leray-Schauder alternative [28].

    Theorem 3.1. Let Υ1,Υ2: [w1,w2]×R2R be continuous functions. Suppose that:

    (H1) There exist ui,vi0 for i=1,2 and u0,v0>0 such that for each k1,k2R, t[w1,w2],

    |Υ1(t,k1,k2)|u0+u1|k1|+u2|k2|,|Υ2(t,k1,k2)|v0+v1|k1|+v2|k2|.

    If

    (A1+A2)u1+(B1+B2)v1+(C1+C2)<1

    and

    (A1+A2)u2+(B1+B2)v2+(C1+C2)<1,

    where the constants Ai,Bi,Ci for i=1,2 are defined in the Notation 3.1, then the problem (1.4) has at lest one solution on [w1,w2].

    Proof. Since f and g are continuous functions, then T is a continuous operator. We prove that TBr is uniformly bounded, where Br is the closed ball

    Br={(k1,k2)X×Y:(k1,k2)r}.

    For all (k1,k2)Br, by (H1) we have

    |Υ1(t,k1,k2)|u0+u1|k1|+u2|k2|u0+u1k1+u2k2u0+(u1+u2)r:=P1

    and similarly

    |Υ2(t,k1,k2)|v0+(v1+v2)r:=P2.

    So, for any k1,k2Br, we have

    |T1(k1,k2)(t)|1|¨Λ|ργ11Γ(γ1)(ψ(t)ψ(w1))γ11[Y1(ni=1|ηi|pIα2,ρ,ψw1|Υ2(ξi,k2(ξi),k1(ξi))|+|λ2|ni=1|ηi|pI1,ρ,ψw1|k2(ξi)|+mj=1|ζj|pIα2+Φj,ρ,ψw1|Υ2(θj,k2(θj),k1(θj))|+|λ2|mj=1|ζj|pI1+Φj,ρ,ψw1|k2(θj)|+pIα1,ρ,ψw1|Υ1(w2,k1(w2),k2(w2))|+|λ1|pI1w1|k1(w2)|)+X2(rk=1|k|pIα1,ρ,ψw1|Υ1(ϱk,k1(ϱk),k2(ϱk))|+|λ1|rk=1|k|pI1,ρ,ψw1|k1(ϱk)|+ql=1|Θl|pIα1+υl,ρ,ψw1|Υ1(ϑl,k1(ϑl),k2(ϑl))|+|λ1|ql=1|Θl|pI1+υl,ρ,ψw1|k1(ϑl)|+pIα2,ρ,ψw1|Υ2(w2,k2(w2),k1(w2))|+|λ2|pI1,ρ,ψw1|k2(w2)|)]+pIα1,ρ,ψw1|Υ1(t,k1(t),k2(t))|+|λ1|pI1,ρ,ψw1|k1(t)|(ψ(w2)ψ(w1))γ11|¨Λ|ργ11Γ(γ1)[Y1(P2ni=1|ηi|(ψ(ξi)ψ(w1))α2ρα2Γ(α2+1)+P2mj=1|ζj|(ψ(θj)ψ(w1))α2+Φjρα2+ΦjΓ(α2+Φj+1)+|λ2|k2ni=1|ηi|(ψ(ξi)ψ(w1))ρ+|λ2|k2mj=1|ζj|(ψ(θj)ψ(w1))1+Φjρ1+ΦjΓ(2+Φj)+P1(ψ(w2)ψ(w1))α1ρα1Γ(α1+1)+|λ1|k1(ψ(w2)ψ(w1))ρ)+X2(P1rk=1|k|(ψ(ϱk)ψ(w1))α1ρα1Γ(α1+1)+|λ1|k1rk=1|k|(ψ(ϱk)ψ(w1))ρ+|λ1|k1ql=1|Θl|(ψ(ϑl)ψ(w1))1+υlρ1+υlΓ(1+υl+1)+P1ql=1|Θl|(ψ(ϑl)ψ(w1))α1+υlρα1+υlΓ(α1+υl+1)+P2(ψ(w2)ψ(w1))α2ρα2Γ(α2+1)+|λ2|k2(ψ(w2)ψ(w1))ρ)]+P1(ψ(w2)ψ(w1))α1ρα1Γ(α1+1)+|λ1|k1(ψ(w2)ψ(w1))ρP1A1+P2B1+rC1,

    and hence

    T1(k1,k2)P1A1+P2B1+rC1.

    In the same way, we can obtain that

    T2(k1,k2)P1A2+P2B2+rC2.

    Consequently,

    T(k1,k2)(A1+A2)P1+(B1+B2)P2+(C1+C2)r.

    Therefore, the set TBr is uniformly bounded.

    Next, it is proven that TBr is equicontinuous. Let (k1,k2)Br and t1,t2[w1,w2] with t1<t2. Then, we have

    |T1(k1,k2)(t2)T1(k1,k2)(t1)|(ψ(t2)ψ(w1))γ11(ψ(t1)ψ(w1))γ11|¨Λ|ργ11Γ(γ1)[Y1(ni=1|ηi|pIα2,ρ,ψw1|Υ2(ξi,k2(ξi),k1(ξi))|+|λ2|ni=1|ηi|pI1,ρ,ψw1|k2(ξi)|+mj=1|ζj|pIα2+Φj,ρ,ψw1|Υ2(θj,k2(θj),k1(θj))|+|λ2|mj=1|ζj|pI1+Φj,ρ,ψw1|k2(θj)|+pIα1,ρ,ψw1|Υ1(w2,k1(w2),k2(w2))|+|λ1|pI1,ρ,ψw1|k1(w2)|)+X2(rk=1|k|pIα1,ρ,ψw1|Υ1(ϱk,k1(ϱk),k2(ϱk))|+|λ1|rk=1|k|pI1,ρ,ψw1|k1(ϱk)|+ql=1|Θl|pIα1+υl,ρ,ψw1|Υ1(ϑl,k1(ϑl),k2(ϑl))|+|λ1|ql=1|Θl|pI1+υl,ρ,ψw1|k1(ϑl)|+pIα2,ρ,ψw1|Υ2(w2,k2(w2),k1(w2))|+|λ2|pI1w1|k2(w2)|)]+1ρα1Γ(α1)|t1w1[(ψ(t2)ψ(s))α1(ψ(t1)ψ(s))α1]ψ(s)Υ1(x,k1(s),k2(s)ds|+1ρα1Γ(α1)|t2t1(ψ(t2)ψ(s))α1ψ(s)Υ1(x,k1(s),k2(s)ds|+|λ1||pI1,ρ,ψw1k1(t2)pI1,ρ,ψw1k1(t1)|(ψ(t2)ψ(w1))γ11(ψ(t1)ψ(w1))γ11|¨Λ|ργ11Γ(γ1)[Y1(P2ni=1|ηi|(ψ(ξi)ψ(w1))α2ρα2Γ(α2+1)+|λ2|rni=1|ηi|(ψ(ξi)ψ(w1))ρ+P2mj=1|ζj|(ψ(θj)ψ(w1))α2+Φjρα2+ΦjΓ(α2+Φj+1)+|λ2|rmj=1|ζj|(ψ(θj)ψ(w1))1+Φjρ1+ΦjΓ(2+Φj)+P1(ψ(w2)ψ(w1))α1ρα1Γ(α1+1)+|λ1|r(ψ(w2)ψ(w1))ρΓ(2))+X2(P1rk=1|k|(ψ(ϱk)ψ(w1))α1ρα1Γ(α1+1)+|λ1|rrk=1|k|(ψ(ϱk)ψ(w1))ρ+P1ql=1|Θl|(ψ(ϑl)ψ(w1))α1+ϑlρα1+ϑlΓ(α1+ϑl+1)+|λ1|rql=1|Θl|(ψ(ϑl)ψ(w1))1+ϑlρ1+ϑlΓ(2+ϑl)+P2(ψ(w2)ψ(w1))α2ρα2Γ(α2+1)+|λ2|r(ψ(w2)ψ(w1))ρ)] +P1ρα1Γ(α1+1)[(ψ(t2)ψ(w1))α1(ψ(t1)ψ(w1))α1+2(ψ(t2)ψ(t1))α1]+|λ1|ρr(ψ(t2)ψ(t1)).

    Then, we obtain that

    |T1(k1,k2)(t2)T1(k1,k2)(t1)|0,

    when t2t1, independently of k1 and k2. Similarly,

    |T2(k1,k2)(t2)T2(k1,k2)(t1)|0,

    as t2t1. Therefore TBr is equicontinuous on [w1,w2]. From the above three steps and Arzelˊa-Ascoli theorem, we conclude that T is completely continuous.

    Let

    U={(k1,k2)X×Y:(k1,k2)=μT(k1,k2),0μ1}.

    We prove that U is bounded. Let

    (k1,k2)C([w1,w2],R)

    be any solution of (k1,k2)=μT(k1,k2). For each t[w1,w2], we have

    k1(t)=μT1(k1,k2),k2(t)=μT2(k1,k2).

    Then

    |k1(t)|=μ|T1(k1,k2)(t)||T1(k1,k2)(t)|(ψ(w2)ψ(w1))γ11|¨Λ|ργ11Γ(γ1)[Y1((v0+v1|k1|+v2|k2|)ni=1|ηi|(ψ(ξi)ψ(w1))α2ρα2Γ(α2+1)+(v0+v1|k1|+v2|k2|)mj=1|ζj|(ψ(θj)ψ(w1))α2+Φjρα2+ΦjΓ(α2+Φj+1)+|λ2|k2ni=1|ηi|(ψ(ξi)ψ(w1))ρ+|λ2|k2mj=1|ζj|(ψ(θj)ψ(w1))1+Φjρ1+ΦjΓ(2+Φj)+(u0+u1|k1|+u2|k2|)(ψ(w2)ψ(w1))α1ρα1Γ(α1+1)+|λ1|k1(ψ(w2)ψ(w1))ρ)+X2((u0+u1|k1|+u2|k2|)rk=1|k|(ψ(ϱk)ψ(w1))α1ρα1Γ(α1+1)+|λ1|k1rk=1|k|(ψ(ϱk)ψ(w1))ρ+|λ1|k1ql=1|Θl|(ψ(ϑl)ψ(w1))1+υlρ1+υlΓ(2+υl)+(u0+u1|k1|+u2|k2|)ql=1|Θl|(ψ(ϑl)ψ(w1))α1+υlρα1+υlΓ(α1+υl+1)+(v0+v1|k1|+v2|k2|)(ψ(w2)ψ(w1))α2ρα2Γ(α2+1)+|λ2|k2(ψ(w2)ψ(w1))ρ)]+(u0+u1|k1|+u2|k2|)(ψ(w2)ψ(w1))α1ρα1Γ(α1+1)+|λ1|k1(ψ(w2)ψ(w1))ρ(u0+u1k1+u2k2)A1+(v0+v1k1+v2k2)B1+(k1+k2)C1,

    and thus

    k1(u0+u1k1+u2k2)A1+(v0+v1k1+v2k2)B1+(k1+k2)C1. (3.1)

    Similarly, we have

    k2(u0+u1k1+u2k2)A2+(v0+v1k1+v2k2)B2+(k1+k2)C2. (3.2)

    Thus we obtain

    k1+k2(A1+A2)u0+(B1+B2)v0+[(A1+A2)u1+(B1+B2)v1+(C1+C2)]k1+[(A1+A2)u2+(B1+B2)v2+(C1+C2)]k2.

    This imply that,

    (k1,k2)(A1+A2)u0+(B1+B2)v01P,

    where

    P=max{(A1+A2)u1+(B1+B2)v1+(C1+C2),(A1+A2)u2+(B1+B2)v2+(C1+C2)}.

    Then, the set U is bounded. Therefore, by Leray-Schauder alternative the problem (1.4) has at least one solution on [w1,w2].

    Now, we prove the second existence of results by applying Krasnosel'skii point theorem [29].

    Theorem 3.2. Suppose Υ1,Υ2: [w1,w2]×R2R are continuous functions. In addition we assume that:

    (H2) There exist positive functions φ1,φ2C([w1,w2],R+), such that

    |Υ1(t,k1,k2)|φ1(t),|Υ2(t,k1,k2)|φ2(t),for allt[w1,w2].

    If

    C1+C2<1, (3.3)

    then, the problem (1.4) has at least one solution on [w1,w2].

    Proof. First, we separate the operator T as

    T1(k1,k2)(t)=T11(k1,k2)(t)+T12(k1,k2)(t),
    T2(k1,k2)(t)=T21(k1,k2)(t)+T22(k1,k2)(t) 

    with

    T11(k1,k2)(t)=eρ1ρ(ψ(t)ψ(w1))¨Λργ11Γ(γ1)(ψ(t)ψ(w1))γ11[Y1(ni=1ηipIα2,ρ,ψw1Υ2(ξi,k1(ξi),k2(ξi))+mj=1ζjpIα2+Φj,ρ,ψw1Υ2(θj,k1(θj),k2(θj))pIα1,ρ,ψw1Υ1(w2,k1(w2),k2(w2)))+X2(rk=1kpIα1,ρ,ψw1Υ1(ϱk,k1(ϱk),k2(ϱk))+ql=1ΘlpIα1+υl,ρ,ψw1Υ1(ϑl,k1(ϑl),k2(ϑl))pIα2,ρ,ψw1Υ2(w2,k1(w2),k2(w2)))]+pIα1,ρ,ψw1Υ1(t,k1(t),k2(t)),t[w1,w2],T12(k1,k2)(t)=eρ1ρ(ψ(t)ψ(w1))¨Λργ11Γ(γ1)(ψ(t)ψ(w1))γ11[Y1(λ2ni=1ηipI1,ρ,ψw1k2(ξi)λ2mj=1ζjpI1+Φj,ρ,ψw1k2(θj)+λ1pI1,ρ,ψw1k1(w2))+X2(λ1rk=1kpI1,ρ,ψw1k1(ϱk)λ1ql=1ΘlpI1+υl,ρ,ψw1k1(ϑl)+λ2pI1,ρ,ψw1k2(w2))]λ1pI1,ρ,ψw1k1(t),t[w1,w2],T21(k1,k2)(t)=eρ1ρ(ψ(t)ψ(w1))¨Λργ21Γ(γ2)(ψ(t)ψ(w1))γ21[Y2(ni=1ηipIα2,ρ,ψw1Υ2(ξi,k1(ξi),k2(ξi))+mj=1ζjpIα2+Φj,ρ,ψw1Υ2(θj,k1(θj),k2(θj))pIα1,ρ,ψw1Υ1(w2,k1(w2),k2(w2)))+X1(rk=1kpIα1,ρ,ψw1Υ1(ϱk,k1(ϱk),k2(ϱk))+ql=1ΘlpIα1+υl,ρ,ψw1Υ1(ϑl,k1(ϑl),k2(ϑl))pIα2,ρ,ψw1Υ1(w2,k1(w2),k2(w2)))]+pIα2,ρ,ψw1Υ2(t,k1(t),k2(t)),t[w1,w2],T22(k1,k2)(t)=eρ1ρ(ψ(t)ψ(w1))¨Λργ21Γ(γ2)(ψ(t)ψ(w1))γ21[Y2(λ2ni=1ηipI1,ρ,ψw1k2(ξi)λ2mj=1ζjpI1+Φj,ρ,ψw1k2(θj)+λ1pI1,ρ,ψw1k1(w2))+X1(λ1rk=1kpI1,ρ,ψw1k1(ϱk)λ1ql=1ΘlpI1+υl,ρ,ψw1k1(ϑl)+λ2pI1,ρ,ψw1k2(w2))]λ2pI1,ρ,ψw1k2(t),t[w1,w2].

    We claim that TBrBr where

    Br={(k1,k2)X×Y:(k1,k2)r}.

    We set

    supt[w1,w2]φi(t)=φi

    for i=1,2 and choose

    rφ1(A1+A2)+φ2(B1+B2)1(C1+C2).

    Let (k1,k2),(ˉk1,ˉk2)Br. Acconding the proof of Theorem 3.1, the following inequalities are obtained

    |T11(k1,k2)(t)+T12(ˉk1,ˉk2)(t)|φ1A1+φ2B1+rC1,|T21(k1,k2)(t)+T22(ˉk1,ˉk2)(t)|φ1A2+φ2B2+rC2,

    and therefore

    T1(k1,k2)+T2(k1,k2)φ1(A1+A2)+φ2(B1+B2)+r(C1+C2)r.

    Hence,

    T11(k1,k2)(t)+T12(ˉk1,ˉk2)(t)Br

    and

    T21(k1,k2)(t)+T22(ˉk1,ˉk2)(t)Br.

    Consider the operators T11 and T21. By continuity of f and g, T11 and T21 are continuous operators. For any (k1,k2)Br, we have

    |T11(k1,k2)(t)|(ψ(t)ψ(w1))γ11|¨Λ|ργ11Γ(γ1)[Y1(ni=1|ηi|pIα2,ρ,ψw1|Υ2(ξi,k1(ξi),k2(ξi))|+mj=1|ζj|pIα2+Φj,ρ,ψw1|Υ2(θj,k1(θj),k2(θj))|+pIα1,ρ,ψw1|Υ1(w2,k1(w2),k2(w2))|)+X2(rk=1|k|pIα1,ρ,ψw1|Υ1(ϱk,k1(ϱk),k2(ϱk))|+ql=1|Θl|pIα1+υl,ρ,ψw1|Υ1(ϑl,k1(ϑl),k2(ϑl))|+pIα2,ρ,ψw1|Υ2(w2,k1(w2),k2(w2))|)]+pIα1,ρ,ψw1|Υ1(t,k1(t),k2(t))|φ1A1+φ2B1.

    In a similar way, we can get

    |T21(k1,k2)(t)|φ1A2+φ2B2.

    Hence, we obtain that

    (T11,T21)(k1,k2)φ1(A1+A2)+φ2(B1+B2),

    which yields that (T11,T12)Br is uniformly bounded. For any t1,t2[w1,w2], t2>t1 and for all (k1,k2)Br the operators (T11,T12)Br are equicontinuous by the proof of Theorem 3.1.

    Lastly, it is proven that the operators T12 and T22 are contraction mappings. For all (k1,k2), (ˉk1,ˉk2)Br, we have:

    |T12(ˉk1,ˉk2)(t)T12(k1,k2)(t)|(ψ(w2)ψ(w1))γ11|¨Λ|ργ11Γ(γ1)[Y1(|λ2|ni=1|ηi|pI1,ρ,ψw1|ˉk2(ξi)k2(ξi)|+|λ2|mj=1|ζj|pI1+Φj,ρ,ψw1|ˉk2(θj)k2(θj)|+|λ1|pI1,ρ,ψw1|ˉk1(w2)k1(w2)|)+X2(|λ1|rk=1|k|pI1,ρ,ψw1|ˉk1(ϱk)k1(ϱk)|+|λ1|ql=1|Θl|pI1+υl,ρ,ψw1|ˉk1(ϑl)k1(ϑl)|+|λ2|pI1,ρ,ψw1|ˉk2(w2)k2(w2)|)]+|λ1|pI1,ρ,ψw1|ˉk1(t)k1(t)|(ψ(w2)ψ(w1))γ11|¨Λ|ργ11Γ(γ1)[Y1(|λ2|ˉk2k2ni=1|ηi|(ψ(ξi)ψ(w1))ρ+|λ2|ˉk2k2mj=1|ζj|(ψ(θj)ψ(w1))1+Φjρ1+ΦjΓ(2+Φj)+|λ1|ˉk1k1(ψ(w2)ψ(w1))ρ)+X2(|λ1|ˉk1k1rk=1|k|(ψ(ϱk)ψ(w1))ρ+|λ1|ˉk1k1ql=1|Θl|(ψ(ϑl)ψ(w1))1+υlρ1+υlΓ(1+υl+1)+|λ2|ˉk2k2(ψ(w2)ψ(w1))ρ)]+|λ1|ˉk1k1(ψ(w2)ψ(w1))ρC1(ˉk1k1+ˉk2k2).

    Additionally, we also obtain that

    |T21(ˉk1,ˉk2)(t)T21(k1,k2)(t)|C2(ˉk1k1+ˉk2k2).

    Combining the above inequalities, we have

    (T11,T21)(k1,k2)(C1+C2)(ˉk1k1+ˉk2k2).

    We have (T11,T21) is a contraction. Consequently, by Krasnosel'skii's fixed point theorem, the problem (1.4) has at least one solution on [w1,w2].

    Banach's fixed point theorem [30] is applied to obtain our uniqueness and existence result.

    Theorem 3.3. Let Υ1,Υ2: [w1,w2]×R2R such that:

    (H3) There exist positive constants L1,L2, such that, for all t[w1,w2] and oi,ˉoiR, i=1,2, we have

    |Υ1(t,o2,ˉo2)Υ1(t,o1,ˉo1)|L1(|o2o1|+|ˉo2ˉo1|),|Υ2(t,o2,ˉo2)Υ2(t,o1,ˉo1)|L2(|o2o1|+|ˉo2ˉo1|).

    Then, the problem (1.4) has a unique solution, provided that

    L1(A1+A2)+L2(B1+B2)+C1+C2<1. (3.4)

    Proof. Let

    supt[w1,w2]|Υ1(t,0,0)|=M1<,
    supt[w1,w2]|Υ2(t,0,0)|=M2<

    and

    Br={(k1,k2)X×Y:(k1,k2)r}

    with

    rM1(A1+A2)+M2(B1+B2)1[L1(A1+A2)+L2(B1+B2)+C1+C2].

    For all (k1,k2)Br and t[w1,w2]. By applying (H3), we obtain the following inequalities

    |Υ1(t,k1(t),k2(t))||Υ1(t,k1(t),k2(t))Υ1(t,0,0)|+|Υ1(t,0,0)|L1(|k1(t)|+|k2(t)|)+M1L1(k1+k2)L1r+M1,|Υ2(t,k1(t),k2(t))||Υ2(t,k1(t),k2(t))Υ2(t,0,0)|+|Υ2(t,0,0)|L2(|k1(t)|+|k2(t)|)+M2L2r+M2.

    We have

    |T1(k1,k2)(t)|(ψ(w2)ψ(w1))γ11|¨Λ|ργ11Γ(γ1)[Y1((L2r+M2)ni=1|ηi|(ψ(ξi)ψ(w1))α2ρα2Γ(α2+1)+(L2r+M2)mj=1|ζj|(ψ(θj)ψ(w1))α2+Φjρα2+ΦjΓ(α2+Φj+1)+|λ2|k2ni=1|ηi|(ψ(ξi)ψ(w1))ρ+|λ2|k2mj=1|ζj|(ψ(θj)ψ(w1))1+Φjρ1+ΦjΓ(2+Φj)+(L1r+M1)(ψ(w2)ψ(w1))α1ρα1Γ(α1+1)+|λ1|k1(ψ(w2)ψ(w1))ρ)+X2((L1r+M1)rk=1|k|(ψ(ϱk)ψ(w1))α1ρα1Γ(α1+1)+|λ1|k1rk=1|k|(ψ(ϱk)ψ(w1))ρ+|λ1|k1ql=1|Θl|(ψ(ϑl)ψ(w1))1+υlρ1+υlΓ(1+υl+1)+(L1r+M1)ql=1|Θl|(ψ(ϑl)ψ(w1))α1+υlρα1+υlΓ(α1+υl+1)+(L2r+M2)(ψ(w2)ψ(w1))α2ρα2Γ(α2+1)+|λ2|k2(ψ(w2)ψ(w1))ρ)]+(L1r+M1)(ψ(w2)ψ(w1))α1ρα1Γ(α1+1)+|λ1|k1(ψ(w2)ψ(w1))ρ(L1r+M1)A1+(L2r+M2)B1+rC1.

    Thus,

    T1(k1,k2)(L1r+M1)A1+(L2r+M2)B1+rC1.

    We also have

    T2(k1,k2)(L1r+M1)A2+(L2r+M2)B2+rC2.

    Therefore

    T(k1,k2)M1(A1+A2)+M2(B1+B2)+[L1(A1+A2)+L2(B1+B2)+C1+C2]r.

    Hence, T(Br)Br. Now, it is shown that (T1,T2) is a contraction mapping. For all (k1,k2),(ˉk1,ˉk2)Br, we have

    |T1(ˉk1,ˉk2)(t)T1(k1,k2)(t)|(ψ(w2)ψ(w1))γ11|¨Λ|ργ11Γ(γ1)[Y1(L2(ˉk1k1+ˉk2k2)ni=1|ηi|(ψ(ξi)ψ(w1))α2ρα2Γ(α2+1)+L2(ˉk1k1+ˉk2k2)mj=1|ζj|(ψ(θj)ψ(w1))α2+Φjρα2+ΦjΓ(α2+Φj+1)+|λ2|ˉk2k2ni=1|ηi|(ψ(ξi)ψ(w1))ρ+|λ2|ˉk2k2mj=1|ζj|(ψ(θj)ψ(w1))1+Φjρ1+ΦjΓ(2+Φj)+L1(ˉk1k1+ˉk2k2)(ψ(w2)ψ(w1))α1ρα1Γ(α1+1)+|λ1|ˉk1k1(ψ(w2)ψ(w1))ρ)+X2(L1(ˉk1k1+ˉk2k2)rk=1|k|(ψ(ϱk)ψ(w1))α1ρα1Γ(α1+1)+|λ1|ˉk1k1rk=1|k|(ψ(ϱk)ψ(w1))ρ+|λ1|ˉk1k1ql=1|Θl|(ψ(ϑl)ψ(w1))1+υlρ1+υlΓ(2+υl)+L1(ˉk1k1+ˉk2k2)ql=1|Θl|(ψ(ϑl)ψ(w1))α1+υlρα1+υlΓ(α1+υl+1)+L2(ˉk1k1+ˉk2k2)(ψ(w2)ψ(w1))α2ρα2Γ(α2+1)+|λ2|ˉk2k2(ψ(w2)ψ(w1))ρ)]+L1(ˉk1k1+ˉk2k2)(ψ(w2)ψ(w1))α1ρα1Γ(α1+1)+|λ1|ˉk1k1(ψ(w2)ψ(w1))ρ[L1A1+L2B1+C1](ˉk1k1+ˉk2k2).

    By a similar argument, we have

    |T2(ˉk1,ˉk2)(t)T2(k1,k2)(t)|L1(ˉk1k1+ˉk2k2)A2+L2(ˉk1k1+ˉk2k2)B2+(ˉk1k1+ˉk2k2)C2.

    Hence, we obtain that

    T(ˉk1,ˉk2)T(k1,k2)[L1(A1+A2)+L2(B1+B2)+C1+C2](ˉk1k1+ˉk2k2).

    By assumption (3.4), the operator T is a contraction mapping. By Banach's fixed point theorem the problem (1.4) has a unique solution.

    Example 4.1. Consider the following coupled system of ψ-Hilfer genneralized proportional fractional differential equation,

    {(HD32,12,34,log(t)90.1k1)(t)+112(HD321,12,34,log(t)90.1k1)(t)=Υ1(t,k1(t),k2(t)),t[110,3],(HD54,14,34,log(t)90.1k2)(t)+115(HD541,14,34,log(t)90.1k2)(t)=Υ2(t,k2(t),k1(t)),t[110,3],k1(110)=0,k1(3)=221k2(311)+423k2(711)+423pI12,34,log(t)90.1k2(1011)+425pI32,34,log(t)90.1k2(812),k2(110)=0,k2(3)=131k1(16)+341k1(511)+423pI43,34,log(t)90.1k1(23). (4.1)

    Here, we take

    ψ(t)=log(t)9,w1=1/10,w2=3,α1=3/2,α2=5/4,β1=1/2,β2=1/4,ρ=3/4,
    λ1=1/12,λ2=1/15,η1=2/21,η2=4/23,ξ1=3/11,ξ2=7/11,
    ζ1=4/23,ζ2=6/25,θ1=10/11,θ2=8/12,Φ1=1/2,Φ2=3/2,
    1=1/31,2=3/41,ϱ1=1/6,ϱ2=5/11,υ1=4/3,ϑ1=2/3.

    From the above data, we obtain

    k11.1096,ˉk10.9391,k20.2570,ˉk20.7302,¨Λ0.4005,
    A10.3385,A23.6140,B10.4068,B20.6287,C10.0891,C20.3720.

    (i) In order to illustrate Theorem 3.1, consider the functions f and g, defined by

    Υ1(t,k1,k2)=cos2k14+|k1|3ek22325t(1+2|k1(t)|+|k1(t)|2)+e10tk72sin2k125(1+k62),Υ2(t,k1,k2)=112e|k2|+3k1sin2|k1k2|10+2t2+3k2cos4k1(t+4)3. (4.2)

    Then, we have

    |Υ1(t,k1,k2)|14+1325t|k1|+125|k2|,|Υ2(t,k1,k2)|112+310+2t2|k1|+3(t+4)3|k2|.

    Thus, (H1) is satisfied with

    u0=1/4,u1=0.05,u2=1/25,v0=1/12,v1=0.2994,v2=0.3613.

    Then

    (A1+A2)u1+(B1+B2)v1+(C1+C2)0.9687<1

    and

    (A1+A2)u2+(B1+B2)v2+(C1+C2)0.9933<1.

    Thus, all assumptions of Theorem 3.1 are satisfied. Hence, the proplem (4.1), with f and g, given by (4.2), has at least one solution on [1/10,3].

    (ii) Consider now the following functions f and g,

    Υ1(t,k1,k2)=tan1(1+k21)+t3+4t2+cos2(k2)5,Υ2(t,k1,k2)=(k1k2)41+(k1k2)4+sint+e|k1|33. (4.3)

    It is obvious to check that the above functions satisfy

    |Υ1(t,k1,k2)|5π+210+12t3+2t:=φ1(t),|Υ2(t,k1,k2)|sint+43:=φ2(t).

    Then we find that C1+C20.4610<1. Hence, by Theorem 3.2, the coupled system (4.1), with f and g, given by (4.3), has at lest one solution on an interval [1/10,3].

    (iii) To illustrate Theorem 3.3, we consider the functions f and g as

    Υ1(t,k1,k2)=12+(logt2)+2(k1)2+|k1|5(1+4|k1|)+sin|k2|10t+11,Υ2(t,k1,k2)=π+t2+2t3+tan1|k1|100e2log3t+1+k22+|k2|(7+210t)(1+|k2|). (4.4)

    We have

    |Υ1(t,ˉk1,ˉk2)Υ1(t,k1,k2)|110|ˉk1k1|+112|ˉk2k2|,|Υ2(t,ˉk1,ˉk2)Υ2(t,k1,k2)|110|ˉk1k1|+19|ˉk2k2|,

    and therefore the Lipschitz condition for f and g is satisfied with L1=1/10 and L2=1/9. In addition, we find that

    L1(A1+A2)+L2(B1+B2)+C1+C20.9714<1.

    Thus, by Theorem 3.3, problem (4.1), with f and g, given by (4.4), has a unique solution on [1/10,3].

    Example 4.2. We investigate the behavior of solutions by replacing the values of proportional constant ρ by 0.1,0.2,,0.9, in the following coupled linear system of ψ-Hilfer generalized proportional fractional differential equations of the form:

    {(HD32,12,ρ,t20k1)(t)+110(HD12,12,ρ,t20k1)(t)=eρ1ρt2(t2)12,t(0,1],(HD1110,12,ρ,t20k2)(t)+15(HD110,12,ρ,t20k2)(t)=e2ρ2ρt2(t2)12,t(0,1],k1(0)=0,k1(1)=150k2(15)+15pI32,ρ,t20k2(120),k2(0)=0,k2(1)=k1(710)+12pI115,ρ,t20k1(325). (4.5)

    Here, we set

    By using integrating factor technique, we can obtain

    (4.6)
    (4.7)

    where , and

    (4.8)

    with the canstants and are defined by

    For finding the analytic solutions, we use two constants and from Table 1 and substitute them in Eqs (4.6) and (4.7), respectively.

    Table 1.  Table of two constants and with varying the values of .
    No. ρ c1 c3
    1 0.1 0.2753 0.9029
    2 0.2 0.3394 1.0376
    3 0.3 0.7134 1.1597
    4 0.4 1.0612 1.3129
    5 0.5 1.4429 1.4882
    6 0.6 1.8446 1.6497
    7 0.7 2.2518 1.7895
    8 0.8 2.6547 1.9073
    9 0.9 3.0472 2.0051

     | Show Table
    DownLoad: CSV

    Next, using the Matlab program, we can find the approximate analytical solutions of and with different values of as . Two graphs of and can be drawn.

    From Figure 1, if the value is increasing then the value of is decreasing for each point . From the Figure 2, we see that if the value of increases, then the value of decreases for each . The lower and upper bounds for the above two curves correspond to and , respectively, when the value of increases.

    Figure 1.  The graph of solutions with different values of .
    Figure 2.  The figraph of solutions with varying values of .

    In this paper, we investigated a coupled system of -Hilfer fractional proportional differential equations supplemented with nonlocal integro-multipoint boundary conditions. We rely on standard fixed point theorems, Banach, Krasnosel'skii and Leray-Schauder alternative to establish the desired existence and uniqueness results. The obtained theoretical results are well illustrated by numerical examples. Our results are new and contribute significialy to the existing results in the literature concerning -Hilfer fractional proportional nonlocal integro-multi-point coupled systems.

    Our results are novel and contribute to the existing literature on nonlocal systems of nonlinear -Hilfer generalized fractional proportional differential equations. Note that the results presented in this paper are wider in scope and produced a variety of new results as special cases. For instance, fixing the parameters in the nonlocal integro-multi-point Hilfer generalized proportional fractional system in (1.4), we obtained some new results as special cases associated with the following:

    ● Nonlocal -Hilfer generalized proportional fractional systems of order in if

    ● Integro-multi-point nonlocal -Hilfer generalized proportional fractional systems of order in if

    ● Nonlocal Integro-multi-point Hilfer generalized proportional fractional systems of order in if

    ● Integro-multi-point nonlocal Hilfer generalized fractional systems of order in if

    Furthermore, additional new results can be recorded as special cases for different combinations of the parameters , , , , , , involved in the system (1.4). For example, by taking all values where , we obtain the results for a coupled system of nonlinear -Hilfer generalized proportional fractional differential equations supplemented by the following nonlocal boundary conditions:

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research was funded by National Science, Research and Innovation Fund (NSRF) and King Mongkut's University of Technology North Bangkok with Contract No. KMUTNB-FF-66-11.

    The authors declare that there are no conflicts of interest.



    [1] J. Jeremy, K. Michael, B. Wolfgang, B. Karen, B. Louis, B. Bruce, et al., Historical overfishing and the recent collapse of coastal ecosystems, Science, 293 (2001), 629–637. https://doi.org/10.1126/science.1059199 doi: 10.1126/science.1059199
    [2] A. Myers, B. Worm, Rapid worldwide depletion of predatory fish communities, Nature, 423 (2003), 280–283. https://doi.org/10.1038/nature01610 doi: 10.1038/nature01610
    [3] S. Murawski, Definitions of overfishing from an ecosystem perspective, Ices J. Mar., 57(2000), 649–658. https://doi.org/10.1006/jmsc.2000.0738 doi: 10.1006/jmsc.2000.0738
    [4] M. Scheffer, S. Carpenter, Y. De, Cascading effects of overfishing marine systems, Trends Ecol. Evol., 20 (2005), 579–581. https://doi.org/10.1016/j.tree.2005.08.018 doi: 10.1016/j.tree.2005.08.018
    [5] K. Nicholas, P. Nathan, L. Cassandra, A. Riley A, W. Rima, A. David, et al., Overfishing drives over one-third of all sharks and rays toward a global extinction crisis, Curr. Biol., 31 (2021), 4773–4787. https://doi.org/10.1016/j.cub.2021.08.062 doi: 10.1016/j.cub.2021.08.062
    [6] K. Nicholas, L. Sarah, A. John, D. Rachel, M. Peter, R. Lucy, et al., Extinction risk and conservation of the world¡¯s sharks and rays, eLife, 3 (2014), e00590. https://doi.org/10.7554/eLife.00590 doi: 10.7554/eLife.00590
    [7] C. Clark, Mathematical Bioeconomics: The Optimal Management of Renewal Resources, Wiley Press, New York, 1976.
    [8] A. Martin, S. Ruan, Predator-prey models with delay and prey harvesting, J. Math. Biol., 43 (2001), 247–267. https://doi.org/10.1007/s002850100095 doi: 10.1007/s002850100095
    [9] R. May, Stability and Complextiy in Model Ecosystems, Princeton University Press, Princeton, 2001.
    [10] R. Lande, S. Engen, B. Saether, Stochastic Population Dynamics in Ecology and Conservation, Oxford University Press, Oxford, 2003.
    [11] W. Li, K. Wang, Optimal harvesting policy for general stochastic logistic population model, J. Math. Anal. Appl., 368 (2010), 420-428. https://doi.org/10.1016/j.amc.2011.05.079 doi: 10.1016/j.amc.2011.05.079
    [12] S. Wang, L. Wang, T. Wei, Optimal harvesting for a stochastic predator¨Cprey model with S-type distributed time delays, Methodol. Comput. Appl. Probab., 20 (2018), 37–68. https://doi.org/10.1007/s11009-016-9519-2 doi: 10.1007/s11009-016-9519-2
    [13] L. Jia, X. Liu, Optimal harvesting strategy based on uncertain logistic population model, Chaos Solitons Fractals, 152 (2021), 111329. https://doi.org/10.1016/j.chaos.2021.111329 doi: 10.1016/j.chaos.2021.111329
    [14] W. Giger, The Rhine red, the fish dead-the 1986 Schweizerhalle disaster, a retrospect and long-term impact assessment, Environ. Sci. Pollut. Res., 16 (2009), 98–111. https://doi.org/10.1007/s11356-009-0156-y doi: 10.1007/s11356-009-0156-y
    [15] C. Campagna, F. Short, B. Polidoro, R. McManus, B. Collette, N. Pilcher, et al., Gulf of Mexico Oil Blowout increases risks to globally threatened species, BioSci., 61 (2011), 393–397. https://doi.org/10.1525/bio.2011.61.5.8 doi: 10.1525/bio.2011.61.5.8
    [16] J. Bao, X. Mao, G. Yin, C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal. Theor., 74 (2011), 6601–6616. https://doi.org/10.1016/j.na.2011.06.043 doi: 10.1016/j.na.2011.06.043
    [17] X. Zhang, K. Wang, Stochastic SIR model with jumps, Appl. Math. Lett., 26 (2013), 867–874. https://doi.org/10.1016/j.aml.2013.03.013 doi: 10.1016/j.aml.2013.03.013
    [18] T. Nafeisha, Z. Teng, M. Ahmadjan, Global dynamics in a stochastic three species food-chain model with harvesting and distributed delays, Adv. Differ. Equations, 2019 (2019), 187. https://doi.org/10.1186/s13662-019-2122-4 doi: 10.1186/s13662-019-2122-4
    [19] T. Nafeisha, Z. Teng, W. Chen, Dynamic analysis of a stochastic four species food-chain model with harvesting and distributed delay, Bound. Value Prob., 2021 (2021), 12. https://doi.org/10.1186/s13661-021-01487-9 doi: 10.1186/s13661-021-01487-9
    [20] T. Nafeisha, Z. Teng, Global dynamics in stochastic n-species food chain systems with white noise and Lévy jumps, Math. Methods Appl. Sci., 45 (2022), 5184–5214. https://doi.org/10.1002/mma.8101 doi: 10.1002/mma.8101
    [21] Y. Shao, Dynamics and optimal harvesting of a stochastic predator-prey system with regime switching, S-type distributed time delays and Lévy jumps.AIMS Math., 7 (2022), 4068–4093. https://doi.org/10.3934/math.2022225
    [22] I. Barbalat, Systeme d¡±equations differentielles d¡±oscillations non lineaires. Rev. Roum. Math. Pures, 4 (1959), 260–270.
    [23] G. Prato, J. Zabczyk, Ergodicity for infinite dimensional systems, Cambridge University Press, Cambridge, 1996.
  • This article has been cited by:

    1. Nilüfer Özdemir, Elanur Eren, Some Results on Almost Contact Manifolds with B-Metric, 2025, 6, 2717-6185, 81, 10.54974/fcmathsci.1581680
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1130) PDF downloads(84) Cited by(0)

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog