No. | ρ | c1 | c3 |
1 | 0.1 | 0.2753 | 0.9029 |
2 | 0.2 | 0.3394 | 1.0376 |
3 | 0.3 | 0.7134 | 1.1597 |
4 | 0.4 | 1.0612 | 1.3129 |
5 | 0.5 | 1.4429 | 1.4882 |
6 | 0.6 | 1.8446 | 1.6497 |
7 | 0.7 | 2.2518 | 1.7895 |
8 | 0.8 | 2.6547 | 1.9073 |
9 | 0.9 | 3.0472 | 2.0051 |
A stochastic n-species marine food chain model with harvesting and Lévy noises is proposed. First, the criterion on the asymptotic stability in distribution is established. Second, the criterion on the existence of optimal harvesting strategy (OHS) and the maximum of expectation of sustainable yield (MESY) are derived. Furthermore, the numerical simulations are presented to verify the theoretical results. Our results show that (i) noises intensity can easily affect the dynamics of marine populations, leading to the imbalances of marine ecology, (ii) the establishment of an optimal harvesting strategy should fully consider the impact of noises intensity for better managing and protecting marine resources.
Citation: Nafeisha Tuerxun, Zhidong Teng. Optimal harvesting strategy of a stochastic n-species marine food chain model driven by Lévy noises[J]. Electronic Research Archive, 2023, 31(9): 5207-5225. doi: 10.3934/era.2023265
[1] | Quanxiang Pan . Real hypersurfaces in complex space forms with special almost contact structures. AIMS Mathematics, 2023, 8(11): 27200-27209. doi: 10.3934/math.20231391 |
[2] | Rabia Cakan Akpınar, Esen Kemer Kansu . Metallic deformation on para-Sasaki-like para-Norden manifold. AIMS Mathematics, 2024, 9(7): 19125-19136. doi: 10.3934/math.2024932 |
[3] | Mohd Danish Siddiqi, Fatemah Mofarreh . Schur-type inequality for solitonic hypersurfaces in (k,μ)-contact metric manifolds. AIMS Mathematics, 2024, 9(12): 36069-36081. doi: 10.3934/math.20241711 |
[4] | Gonca Durmaz Güngör, Ishak Altun . Fixed point results for almost (ζ−θρ)-contractions on quasi metric spaces and an application. AIMS Mathematics, 2024, 9(1): 763-774. doi: 10.3934/math.2024039 |
[5] | Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended b-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977 |
[6] | Muhammad Suhail Aslam, Mohammad Showkat Rahim Chowdhury, Liliana Guran, Manar A. Alqudah, Thabet Abdeljawad . Fixed point theory in complex valued controlled metric spaces with an application. AIMS Mathematics, 2022, 7(7): 11879-11904. doi: 10.3934/math.2022663 |
[7] | Mohammad Nazrul Islam Khan, Uday Chand De . Liftings of metallic structures to tangent bundles of order r. AIMS Mathematics, 2022, 7(5): 7888-7897. doi: 10.3934/math.2022441 |
[8] | Siniša N. Ješić, Nataša A. Ćirović, Rale M. Nikolić, Branislav M. Ranƌelović . A fixed point theorem in strictly convex b-fuzzy metric spaces. AIMS Mathematics, 2023, 8(9): 20989-21000. doi: 10.3934/math.20231068 |
[9] | Noura Alhouiti . Theorems of existence and uniqueness for pointwise-slant immersions in Kenmotsu space forms. AIMS Mathematics, 2024, 9(7): 17489-17503. doi: 10.3934/math.2024850 |
[10] | Maryam Salem Alatawi, Ali Ahmad, Ali N. A. Koam, Sadia Husain, Muhammad Azeem . Computing vertex resolvability of benzenoid tripod structure. AIMS Mathematics, 2022, 7(4): 6971-6983. doi: 10.3934/math.2022387 |
A stochastic n-species marine food chain model with harvesting and Lévy noises is proposed. First, the criterion on the asymptotic stability in distribution is established. Second, the criterion on the existence of optimal harvesting strategy (OHS) and the maximum of expectation of sustainable yield (MESY) are derived. Furthermore, the numerical simulations are presented to verify the theoretical results. Our results show that (i) noises intensity can easily affect the dynamics of marine populations, leading to the imbalances of marine ecology, (ii) the establishment of an optimal harvesting strategy should fully consider the impact of noises intensity for better managing and protecting marine resources.
In the last years, there has been a significant development in ordinary and partial differential equations involving fractional derivatives. These kind of equations have gained considerable importance due to their application in various sciences, such as physics, biology, economics, mechanics, chemistry, control theory, engineering, signal and image processing, etc [1,2,3,4,5,6,7].
Nonlinear coupled systems of fractional order differential equations appear often in investigations connected with disease models [8], anomalous diffusion [9] and ecological models [10]. Unlike the classical derivative operator, one can find a variety of its fractional counterparts such as Riemann-Liouville, Caputo, Hadamard, Erdelyi-Kober, Hilfer, Caputo-Hadamard, etc. Recently, a new class of fractional proportional derivative operators was introduced and discussed in [11,12,13]. Then, the concept of Hilfer type generalized proportional fractional derivative operators was proposed in [14]. For the detailed advantages of the Hilfer derivative, see [15] and a recent application in calcium diffusion in [16].
Many researchers studied initial and boundary value problems for differential equations and inclusions including different kinds of fractional derivative operators, for instance, see [17,18,19,20,21]. In [22], the authors studied a nonlocal-initial value problem of order in (0,1) involving a ¯ψ∗-Hilfer generalized proportional fractional derivative of a function with respect to another function. Recently, in [23], the authors investigated the existence and uniqueness of solutions for a nonlocal mixed boundary value problem for Hilfer fractional ¯ψ∗-proportional type differential equations and inclusions of order in (1,2] of the form
{Dα,β,σ,ψw+1u(t)=Υ(t,u(t)),t∈[w1,w2],0≤w1<w2,u(w1)=0,u(w2)=m∑j=1ηju(ξj)+n∑i=1ζiIϕi,σ,ψc+u(θi)+r∑k=1λkDδk,β,σ,ψc+u(μk), | (1.1) |
where Dχ,β,σ,ψc+, denotes the ψ-Hilfer generalized proportional fractional derivative operator of order χ∈{α,δk}, α,δk∈(1,2] and type β∈[0,1], respectively, σ∈(0,1], ηj,ζi,λk∈R are given constants, Υ: [w1,w2]×R→R is a given continuous function, Iϕi;σ,ψw1+ is the generalized proportional fractional integral operator of order ϕi>0 and ξj,θi,μk∈(w1,w2), j=1,2,⋯,m, i=1,2,⋯,n, k=1,2,⋯,r, are given points.
In [24], the authors discussed the existence of solutions for a nonlinear coupled system of (k,ψ)-Hilfer fractional differential equations of different orders in (1,2], complemented with coupled (k,ψ)-Riemann-Liouville fractional integral boundary conditions. In [25] a coupled system of Hilfer type generalized proportional fractional differential equations with nonlocal multi-point boundary conditions of the form
{(Dδ1,η,σw+1+kDδ1−1,η,σw+1)τ1(t)=Υ1(t,τ1(t),τ2(t)),t∈[w1,w2],(Dδ2,η,σw+1+k1Dδ2−1,η,σw+1)τ2(t)=Υ2(t,τ1(t),τ2(t)),t∈[w1,w2],τ1(w1)=0,τ1(w2)=m∑j=1θjτ2(ξj),τ2(w1)=0,τ2(w2)=n∑i=1εiτ1(λi), | (1.2) |
is investigated, in which Dδ1,η,σw+1 and Dδ2,η,σw+1 are the fractional derivatives of Hilfer generalized proportional type of order 1<δ1,δ2<2, the Hilfer parameter 0≤η≤1, σ∈(0,1], k,k1∈R, Υ1,Υ2: [w1,w2]×R→R are continuous functions, w1≥0, θj,εi∈R, ξj,λi∈(w1,w2) for i=1,2,3,⋯,n and j=1,2,⋯,m. Existence and uniqueness results are proved by applying classical Banach and Krasnosel'skii fixed-point theorems, and the Leray-Schauder alternative.
Very recently in [26] the authors established existence and uniqueness results for a class of coupled systems of nonlinear Hilfer-type fractional ¯ψ∗-proportional differential equations equipped with nonlocal multi-point and integro-multi-strip coupled boundary conditions of the form:
{Dρ1,φ1,ϑ∗,¯ψ∗w1+σ(z)=Ψ1(z,σ(z),τ(z)),z∈[w1,w2],Dρ2,φ2,ϑ∗,¯ψ∗w1+τ(z) =Ψ2(z,σ(z),τ(z)),z∈[w1,w2],σ(w1)=0,∫w2w1¯ψ′∗(s)σ(s)ds=n∑i=1κi∫ηiξi¯ψ′∗(s)τ(s)ds+m∑j=1θjτ(ζj),τ(w1) =0,∫w2w1¯ψ′∗(s)τ(s)ds=n∑i=1ϕi∫ϵiδi¯ψ′∗(s)σ(s)ds+m∑j=1ϑjσ(zj), | (1.3) |
where Dρκ,φa,ϑ∗,¯ψ∗w1+ and κ=1,2 denote the Hilfer fractional ¯ψ∗-proportional derivative operator of the order ρκ∈(1,2] and type φi∈[0,1], ϑ∗∈(0,1], w1<ζj<ξi<ηi<w2, w1<δj<zi<ϵi<w2, κi,θj,ϕi,ϑj∈R, i=1,2,⋯,n, j=1,2,⋯,m, ¯ψ∗: [w1,w2]→R is an increasing function with ¯ψ′∗(z)≠0 for all z∈[w1,w2] and Ψ1,Ψ2: [w1,w2]×R×R→R are continuous functions.
In this work, motivated by the above mentioned papers, we study a coupled system of ψ-Hilfer generalized proportional sequential fractional differential equations with mixed nonlocal and integro-multi-point boundary conditions, of the form
{(HDα1,β1,ρ,ψw1k1)(t)+λ1(HDα1−1,β1,ρ,ψw1k1)(t)=Υ1(t,k1(t),k2(t)),t∈[w1,w2],(HDα2,β2,ρ,ψw1k2)(t)+λ2(HDα2−1,β2,ρ,ψw1k2)(t)=Υ2(t,k2(t),k1(t)),t∈[w1,w2],k1(w1)=0,k1(w2)=n∑i=1ηik2(ξi)+m∑j=1ζjpIΦj,ρ,ψk2(θj),k2(w1)=0,k2(w2)=r∑k=1ℵkk1(ϱk)+q∑l=1ΘlpIυl,ρ,ψk1(ϑl), | (1.4) |
where HDX,βι,ρ,ψw1 denotes the ψ-Hilfer generalized proportional fractional derivative operator of order X∈{α1,α2} with the parameters βι,ι∈{1,2}, 1<X≤2, 0≤βι≤1, pIY,ρ,ψw1 is a generalized proportional fractional integral operator of order Y>0, Y∈{Φj,υl}, λ1,λ2,ηi,ζj,ℵk,Θl∈R∖{0}, ξi,θj,ϱk,ϑl∈(a,b), i=1,2,⋯,n, j=1,2,⋯,m, k=1,2,⋯,r, l=1,2,⋯,q and Υ1,Υ2: [w1,w2]×R×R→R are nonlinear continuous functions.
Here, we emphasize that problem (1.4) is novel, and its investigation will enhance the scope of the literature on nonlocal Hilfer-type fractional ψ-proportional systems. Note that, when ψ(t)=t, problem (1.4) reduces to a coupled system of Hilfer generalized proportional fractional differential equations with mixed nonlocal multi-point and integro-multi-point boundary conditions; while if ρ=1, reduces to a coupled system of ψ-Hilfer fractional differential equations with mixed nonlocal multi-point and integro-multi-point boundary conditions. If ψ(t)=t, ζj=0, Θl=0, problem (1.4) is reduced to problem (1.2).
In solving (1.4), we first convert it into an equivalent fixed point problem, with the help of an auxiliary result based on a linear variant (1.4). Afterward, under different assumptions, we apply different fixed point theorems to establish our results on existence and uniqueness of solutions. For the first result (Theorem 3.1), we apply the Leray-Schauder's alternative to show that there exists at least one solution for the problem (1.4). The second result (Theorem 3.2), relying on Krasnosel'skii's fixed point theorem, shows that the problem (1.4) has at least one solution under different assumptions, and the last result (Theorem 3.3), shows the existence of a unique solution to the problem (1.4) by means of Banach's contraction mapping principle. In Section 4, we illustrate all the obtained theoretical results with the aid of constructed numerical examples. We emphasize that the problem (1.4) is novel and its investigation will enhance the scope of the literature on coupled systems of ψ-Hilfer generalized proportional fractional differential equations with mixed nonlocal and integro-multi-point boundary conditions. The used method is standard, but its configuration in the problem (1.4) is new.
The structure of the rest of the paper is organized as follows: In Section 2, some necessary definitions and preliminary results related to our problem are presented. Section 3 contains the main results for the problem (1.4), while numerical examples illustrating these results are constructed in Section 4. A brief conclusion closes the paper.
In this section, we introduce some necessary definitions and preliminary results needed in main results later.
Definition 2.1. [11,12] Let the functions ϑ0,ϑ1: [0,1]×R→[0,∞) be continuous such that for all t∈R and for ρ∈[0,1], we get
limρ→0+ϑ0(ρ,t)=0,limρ→0+ϑ1(ρ,t)=1,limρ→1−ϑ0(ρ,t)=1,limρ→1−ϑ1(ρ,t)=0 |
and
ϑ0(ρ,t)≠0,0<ρ≤1,ϑ1(ρ,t)≠0,0≤ρ<1. |
Let also ψ(t) be a strictly positive increasing continuous function. So, the proportional differential operator of order ρ of function Υ(t) with respect to function ψ(t) is defined by
pDρ,ψΥ1(t)=ϑ1(ρ,t)Υ(t)+ϑ0(ρ,t)Υ′(t)ψ′(t). |
Moreover, if ϑ0(ρ,t)=ρ and ϑ1(ρ,t)=1−ρ, then operator pDρ,ψ becomes
pDρ,ψΥ(t)=(1−ρ)Υ1(t)+ρΥ′(t)ψ′(t). |
The integral corresponding to the above proportional derivative is defined as
pI1,ρ,ψw1Υ1(t)=1ρ∫tw1eρ−1ρ(ψ(t)−ψ(s))Υ(s)ψ′(s)ds, |
where
pI0,ρ,ψw1Υ1(t)=Υ1(t). |
The generalized proportional integral of order n corresponding to proportional derivative pDn,ρ,ψΥ1(t), is given by
pIn,ρ,ψw1Υ1(t)=1ρnΓ(n)∫tw1eρ−1ρ(ψ(t)−ψ(s))(ψ(t)−ψ(s))n−1Υ(s)ψ′(s)ds. |
Based on the generalized proportional integral of order n, we can obtain the following general proportional fractional integral and derivative.
Definition 2.2. [11,12] Let ρ∈(0,1] and α>0. The fractional proportional integral of order α of the function f with respect to function ψ is defined by
(pIα,ρ,ψw1Υ)(t)=1ραΓ(α)∫tw1eρ−1ρ(ψ(t)−ψ(s))(ψ(t)−ψ(s))α−1Υ(s)ψ′(s)ds. |
Definition 2.3. [11,12] Let ρ∈(0,1] α>0 and ψ(t) is a continuous function on [w1,w2], ψ′(t)>0. The generalized proportional fractional derivative of order α of the function Υ with respect to function ψ is defined by
(pDα,ρ,ψw1Υ)(t)=pDn,ρ,ψρn−αΓ(n−α)∫tw1eρ−1ρ(ψ(t)−ψ(s))(ψ(t)−ψ(s))n−α−1Υ(s)ψ′(s)ds, |
where
pDn,ρ,ψ=pDρ,ψ⋅pDρ,ψ⋅pDρ,ψ⋯pDρ,ψ⏟ntimes. |
Below we present the generalized proportional fractional derivatives of order α of function Υ with respect to another function ψ in Hilfer sense.
Definition 2.4. [27] For ρ∈(0,1]. Let functions Υ,ψ∈Cm([w1,w2],R) and ψ be positive and strictly increasing with ψ′(t)≠0, for all t∈[w1,w2]. The ψ-Hilfer generalized propotional fractional derivative of order α and type β for Υ with respect to another function ψ is defined by
(HDα,β,ρ,ψw1Υ)(t)=pIβ(n−α),ρ,ψw1[Dn,ρ,ψ(pI(1−β)(n−α),ρ,ψw1Υ)](t), |
where order n−1<α<n and 0≤β≤1.
If γ=α+β(n−α), then the ψ-Hilfer generalized proportional derivative HDα,β,ρ,ψw1 is equivalent to
(HDα,β,ρ,ψw1Υ)(t)=pIβ(n−α),ρ,ψw1[Dn,ρ,ψ(pI(1−β)(n−α),ρ,ψw1Υ)](t)=(pIβ(n−α),ρ,ψw1Dγ,ρ,ψw1Υ)(t). |
Lemma 2.1. [27] Let n−1<α<n∈N, 0<ρ≤1, 0≤β≤1 and n−1<γ<n such that γ=α+nβ−αβ. If Υ∈C([w1,w2],R) and I(n−γ,ρ,ψ)w1∈Cn([w1,w2],R), then
(pIα,ρ,ψw1HDα,β,ρ,ψw1Υ)(t)=Υ(t)−n∑j=1eρ−1ρ(ψ(t)−ψ(w1))(ψ(t)−ψ(w1))γ−jργ−jΓ(γ−j+1)(pIj−γ,ρ,ψw1f)(w1). |
Lemma 2.2. Let 1<α1,α2<2, 0≤β1,β2≤1, γi=αi+βi(2−αi), i=1,2, ¨Λ≠0 and z,w∈C([w1,w2],R). Then the pair (k1,k2) is the solution of the coupled system
{(HDα1,β1,ρ,ψw1k1)(t)+λ1(HDα1−1,β1,ρ,ψw1k1)(t)=z(t),(HDα2,β2,ρ,ψw1k2)(t)+λ2(HDα2−1,β2,ρ,ψw1k2)(t)=w(t),k1(w1)=0,k1(w2)=n∑i=1ηik2(ξi)+m∑j=1ζjpIΦj,ρ,ψw1k2(θj),k2(w1)=0,k2(w2)=r∑k=1ℵkk1(ϱk)+q∑l=1ΘlpIυl,ρ,ψw1k1(ϑl), | (2.1) |
if and only if
k1(t)=eρ−1ρ(ψ(t)−ψ(w1))¨Λργ1−1Γ(γ1)(ψ(t)−ψ(w1))γ1−1[Y1(n∑i=1ηipIα2,ρ,ψw1w(ξi)−λ2n∑i=1ηipI1,ρ,ψw1k2(ξi)+m∑j=1ζjpIα2+Φj,ρ,ψw1w(θj)−λ2m∑j=1ζjpI1+Φj,ρ,ψw1k2(θj)−pIα1,ρ,ψw1z(w2)+λ1pI1,ρ,ψw1k1(w2))+X2(r∑k=1ℵkpIα1,ρ,ψw1z(ϱk)−λ1r∑k=1ℵkpI1,ρ,ψw1k1(ϱk)+q∑l=1ΘlpIα1+υl,ρ,ψw1z(ϑl)−λ1q∑l=1ΘlpI1+υl,ρ,ψw1k1(ϑl)−pIα2,ρ,ψw1w(w2)+λ2pI1,ρ,ψw1k2(w2))]+pIα1,ρ,ψw1z(t)−λ1pI1,ρ,ψw1k1(t) | (2.2) |
and
k2(t)=eρ−1ρ(ψ(t)−ψ(w1))¨Λργ2−1Γ(γ2)(ψ(t)−ψ(w1))γ2−1[Y2(n∑i=1ηipIα2,ρ,ψw1w(ξi)−λ2n∑i=1ηipI1,ρ,ψw1k2(ξi)+m∑j=1ζjpIα2+Φj,ρ,ψw1w(θj)−λ2m∑j=1ζjpI1+Φj,ρ,ψw1k2(θj)−pIα1,ρ,ψw1z(w2)+λ1pI1,ρ,ψw1k1(w2))+X1(r∑k=1ℵkpIα1,ρ,ψw1z(ϱk)−λ1r∑k=1ℵkpI1,ρ,ψw1k1(ϱk)+q∑l=1ΘlpIα1+υl,ρ,ψw1z(ϑl)−λ1q∑l=1ΘlpI1+υl,ρ,ψw1k1(ϑl)−pIα2,ρ,ψw1w(w2)+λ2pI1,ρ,ψw1k2(w2))]+pIα2,ρ,ψw1w(t)−λ2pI1,ρ,ψw1k2(t), | (2.3) |
where ¨Λ=X1Y1−X2Y2,
X1=eρ−1ρ(ψ(w2)−ψ(w1))ργ1−1Γ(γ1)(ψ(w2)−ψ(w1))γ1−1,X2=n∑i=1ηieρ−1ρ(ψ(ξi)−ψ(w1))ργ2−1Γ(γ2)(ψ(ξi)−ψ(w1))γ2−1+m∑j=1ζjeρ−1ρ(ψ(θj)−ψ(w1))ρΦj+γ2−1Γ(Φj+γ2)(ψ(θj)−ψ(w1))Φj+γ2−1,Y1=r∑k=1ℵkeρ−1ρ(ψ(ϱk)−ψ(w1))ργ1−1Γ(γ1)(ψ(ϱk)−ψ(w1))γ1−1+q∑l=1Θleρ−1ρ(ψ(ϑl)−ψ(w1))ρυl+γ1−1Γ(υl+γ1)(ψ(ϑl)−ψ(w1))υl+γ1−1,Y2=eρ−1ρ(ψ(w2)−ψ(w1))ργ2−1Γ(γ2)(ψ(w2)−ψ(w1))γ2−1. | (2.4) |
Proof. Let the pair (k1,k2) be the solution of the system (2.1). We take the Riemann-Liouville integrals to Eq (2.1),
{pIα1,ρ,ψw1[(HDα1,β1,ρ,ψw1k1)(t)+λ1(HDα1−1,β1,ρ,ψw1k1)(t)]=pIα1,ρ,ψw1z(t),pIα2,ρ,ψw1[(HDα2,β2,ρ,ψw1k2)(t)+λ2(HDα2−1,β2,ρ,ψw1k2)(t)]=pIα2,ρ,ψw1w(t). | (2.5) |
Then, applying Lemma 2.1 with n=2 to Eq (2.5), we get
k1(t)=pIα1,ρ,ψw1z(t)−λ1pI1,ρ,ψw1k1(t)+eρ−1ρ(ψ(t)−ψ(w1))ργ1−1Γ(γ1)(ψ(t)−ψ(w1))γ1−1(pI1−γ1,ρ,ψw1x)(w1)+eρ−1ρ(ψ(t)−ψ(w1))ργ1−2Γ(γ1−1)(ψ(t)−ψ(w1))γ1−2(pI2−γ1,ρ,ψw1x)(w1)=pIα1,ρ,ψw1z(t)−λ1pI1,ρ,ψw1k1(t)+c0eρ−1ρ(ψ(t)−ψ(w1))ργ1−1Γ(γ1)(ψ(t)−ψ(w1))γ1−1+c1eρ−1ρ(ψ(t)−ψ(w1))ργ1−2Γ(γ1−1)(ψ(t)−ψ(w1))γ1−2 | (2.6) |
and
k2(t)=pIα2,ρ,ψw1w(t)−λ2pI1,ρ,ψw1k2(t)+eρ−1ρ(ψ(t)−ψ(w1))ργ2−1Γ(γ2)(ψ(t)−ψ(w1))γ2−1(pI1−γ2,ρ,ψw1y)(w1)+eρ−1ρ(ψ(t)−ψ(w1))ργ2−2Γ(γ2−1)(ψ(t)−ψ(w1))γ2−2(pI2−γ2,ρ,ψw1y)(w1)=pIα2,ρ,ψw1w(t)−λ2pI1,ρ,ψw1k2(t)+c2eρ−1ρ(ψ(t)−ψ(w1))ργ2−1Γ(γ2)(ψ(t)−ψ(w1))γ2−1+c3eρ−1ρ(ψ(t)−ψ(w1))ργ2−2Γ(γ2−1)(ψ(t)−ψ(w1))γ2−2, | (2.7) |
where
c0=(pI1−γ1,ρ,ψw1x)(w1),c1=(pI2−γ1,ρ,ψw1x)(w1),c2=(pI1−γ2,ρ,ψw1y)(w1)andc3=(pI2−γ2,ρ,ψw1y)(w1). |
From the conditions k1(w1)=0 and k2(w1)=0 we get c1=0 and c3=0, since γ1∈[α1,2] and γ2∈[α2,2] (see [27]), and Eqs (2.6) and (2.7) are reduced to
k1(t)=pIα1,ρ,ψw1z(t)−λ1pI1,ρ,ψw1k1(t)+c0eρ−1ρ(ψ(t)−ψ(w1))ργ1−1Γ(γ1)(ψ(t)−ψ(w1))γ1−1, | (2.8) |
k2(t)=pIα2,ρ,ψw1w(t)−λ2pI1,ρ,ψw1k2(t)+c2eρ−1ρ(ψ(t)−ψ(w1))ργ2−1Γ(γ2)(ψ(t)−ψ(w1))γ2−1. | (2.9) |
From the boundary conditions
k1(w2)=n∑i=1ηik2(ξi)+m∑j=1ζjpIΦj,ρ,ψw1k2(θj) |
and
k2(w2)=r∑k=1ℵkk1(ϱk)+q∑l=1ΘlpIυl,ρ,ψw1k1(ϑl), |
we get
pIα1,ρ,ψw1z(w2)−λ1pI1,ρ,ψw1k1(w2)+c0eρ−1ρ(ψ(w2)−ψ(w1))ργ1−1Γ(γ1)(ψ(w2)−ψ(w1))γ1−1=n∑i=1ηipIα2,ρ,ψw1w(ξi)−λ2n∑i=1ηipI1,ρ,ψw1k2(ξi)+c2n∑i=1ηieρ−1ρ(ψ(ξi)−ψ(w1))ργ2−1Γ(γ2)(ψ(ξi)−ψ(w1))γ2−1+m∑j=1ζjpIα2+Φj,ρ,ψw1w(θj)−λ2m∑j=1ζjpI1+Φj,ρ,ψw1k2(θj)+c2m∑j=1ζjeρ−1ρ(ψ(θj)−ψ(w1))ρΦj+γ2−1Γ(Φj+γ2)(ψ(θj)−ψ(w1))Φj+γ2−1 | (2.10) |
and
pIα2,ρ,ψw1w(w2)−λ2pI1,ρ,ψw1k2(w2)+c2eρ−1ρ(ψ(w2)−ψ(w1))ργ2−1Γ(γ2)(ψ(w2)−ψ(w1))γ2−1=r∑k=1ℵkpIα1,ρ,ψw1z(ϱk)−λ1r∑k=1ℵkpI1,ρ,ψw1k1(ϱk)+c0r∑k=1ℵkeρ−1ρ(ψ(ϱk)−ψ(w1))ργ1−1Γ(γ1)(ψ(ϱk)−ψ(w1))γ1−1+q∑l=1ΘlpIα1+υl,ρ,ψw1z(ϑl)−λ1q∑l=1ΘlpI1+υl,ρ,ψw1k1(ϑl)+c0q∑l=1Θleρ−1ρ(ψ(ϑl)−ψ(w1))ρυl+γ1−1Γ(υl+γ1)(ψ(ϑl)−ψ(w1))υl+γ1−1. | (2.11) |
From Eqs (2.10) and (2.11), by using the notations (2.4) we get the system
X1c0−X2c2=M, | (2.12) |
Y2k2c0+Y1c2=N, | (2.13) |
where
M=n∑i=1ηipIα2,ρ,ψw1w(ξi)−λ2n∑i=1ηipI1w1k2(ξi)+m∑j=1ζjpIα2+Φj,ρ,ψw1w(θj)−λ2m∑j=1ζjpI1+Φjw1k2(θj)−pIα1,ρ,ψw1v(w2)+λ1pI1w1k1(w2),N=r∑k=1ℵkpIα1,ρ,ψw1v(ϱk)−λ1r∑k=1ℵkpI1w1k1(ϱk)+q∑l=1ΘlpIα1+υl,ρ,ψw1v(ϑl)−λ1q∑l=1ΘlpI1+υlw1k1(ϑl)−pIα2,ρ,ψw1w(w2)+λ2pI1w1k2(w2). |
By solving the above system, we obtain the constants c0 and c2 as
c0=Y1M+X2NX1Y1−X2Y2andc2=Y2M+X1NX1Y1−X2Y2. |
Now substitute the values of c0 and c2 into Eqs (2.8) and (2.9) and yield Eqs (2.2) and (2.3), as desired. We can prove the converse of the lemma by direct computation.
In this section, we prove the existence and uniqueness results for the problem (1.4) by using three fixed ponit theorems.
First, we defined the spaces
X={k1|k1(t)∈C([w1,w2],R)} |
with the norm
‖k1‖=sup{|k1(t)|,t∈[w1,w2]}, |
and
Y={k2|k2(t)∈C([w1,w2],R)} |
with the norm
‖k2‖=sup{|k2(t)|,t∈[w1,w2]}. |
Then it is well known that (X,‖⋅‖) and (Y,‖⋅‖) are Banach apaces. Obviously, the product space of X×Y endowed with norm ‖(k1,k2)‖=‖k1‖+‖k2‖ for (k1,k2)∈X×Y is a Banach space.
In view of the Lemma 2.2, we define an operator T: X×Y→X×Y by
T(k1,k2)(t)=(T1(k1,k2)(t),T2(k1,k2)(t)), |
where
T1(k1,k2)(t)=eρ−1ρ(ψ(t)−ψ(w1))¨Λργ1−1Γ(γ1)(ψ(t)−ψ(w1))γ1−1[Y1(n∑i=1ηipIα2,ρ,ψw1Υ2(ξi,k1(ξi),k2(ξi))−λ2n∑i=1ηipI1,ρ,ψw1k2(ξi)+m∑j=1ζjpIα2+Φj,ρ,ψw1Υ2(θj,k1(θj),k2(θj))−λ2m∑j=1ζjpI1+Φj,ρ,ψw1k2(θj)−pIα1,ρ,ψw1Υ1(w2,k1(w2),k2(w2))+λ1pI1,ρ,ψw1k1(w2))+X2(r∑k=1ℵkpIα1,ρ,ψw1Υ1(ϱk,k1(ϱk),k2(ϱk))−λ1r∑k=1ℵkpI1,ρ,ψw1k1(ϱk)+q∑l=1ΘlpIα1+υl,ρ,ψw1Υ1(ϑl,k1(ϑl),k2(ϑl))−λ1q∑l=1ΘlpI1+υl,ρ,ψw1k1(ϑl)−pIα2,ρ,ψw1Υ2(w2,k1(w2),k2(w2))+λ2pI1,ρ,ψw1k2(w2))]+pIα1,ρ,ψw1Υ1(t,k1(t),k2(t))−λ1pI1,ρ,ψw1k1(t) |
and
T2(k1,k2)(t)=eρ−1ρ(ψ(t)−ψ(w1))¨Λργ2−1Γ(γ2)(ψ(t)−ψ(w1))γ2−1[Y2(n∑i=1ηipIα2,ρ,ψw1Υ2(ξi,k1(ξi),k2(ξi))−λ2n∑i=1ηipI1,ρ,ψw1k2(ξi)+m∑j=1ζjpIα2+Φj,ρ,ψw1Υ2(θj,k1(θj),k2(θj))−λ2m∑j=1ζjpI1+Φj,ρ,ψw1k2(θj)−pIα1,ρ,ψw1Υ1(w2,k1(w2),k2(w2))+λ1pI1,ρ,ψw1k1(w2))+X1(r∑k=1ℵkpIα1,ρ,ψw1Υ1(ϱk,k1(ϱk),k2(ϱk))−λ1r∑k=1ℵkpI1,ρ,ψw1k1(ϱk)+q∑l=1ΘlpIα1+υl,ρ,ψw1Υ1(ϑl,k1(ϑl),k2(ϑl))−λ1q∑l=1ΘlpI1+υl,ρ,ψw1k1(ϑl)−pIα2,ρ,ψw1Υ1(w2,k1(w2),k2(w2))+λ2pI1,ρ,ψw1k2(w2))]+pIα2,ρ,ψw1Υ2(t,k1(t),k2(t))−λ2pI1,ρ,ψw1k2(t). |
Then, we introduce the following notation for computational convenience.
Notation 3.1. Let Ai,Bi,Ci for i=1,2 be the constants:
A1=(ψ(w2)−ψ(w1))γ1−1|¨Λ|ργ1−1Γ(γ1)[Y1((ψ(w2)−ψ(w1))α1ρα1Γ(α1+1))+X2(r∑k=1|ℵk|(ψ(ϱk)−ψ(w1))α1ρα1Γ(α1+1)+q∑l=1|Θl|(ψ(ϑl)−ψ(w1))α1+υlρα1+υlΓ(α1+υl+1))]+(ψ(w2)−ψ(w1))α1ρα1Γ(α1+1),B1=(ψ(w2)−ψ(w1))γ1−1|¨Λ|ργ1−1Γ(γ1)[Y1(n∑i=1|ηi|(ψ(ξi)−ψ(w1))α2ρα2Γ(α2+1)+m∑j=1|ζj|(ψ(θj)−ψ(w1))α2+Φjρα2+ΦjΓ(α2+Φj+1))+X2((ψ(w2)−ψ(w1))α2ρα2Γ(α2+1))],C1=(ψ(w2)−ψ(w1))γ1−1|¨Λ|ργ1−1Γ(γ1)[Y1(|λ2|n∑i=1|ηi|(ψ(ξi)−ψ(w1))ρ+|λ1|(ψ(w2)−ψ(w1))ρ+|λ2|m∑j=1|ζj|(ψ(θj)−ψ(w1))1+Φjρ1+ΦjΓ(2+Φj))+X2(|λ1|r∑k=1|ℵk|(ψ(ϱk)−ψ(w1))ρ+|λ2|(ψ(w2)−ψ(w1))ρ+|λ1|q∑l=1|Θl|(ψ(ϑl)−ψ(w1))1+υlρ1+υlΓ(1+υl+1))]+|λ1|(ψ(w2)−ψ(w1))ρ,A2=(ψ(w2)−ψ(w1))γ2−1|¨Λ|ργ2−1Γ(γ2)[Y2((ψ(w2)−ψ(w1))α1ρ+α1Γ(α1+1))+X1(r∑k=1|ℵk|(ψ(ϱk)−ψ(w1))α1ρα1Γ(α1+1)+q∑l=1|Θl|(ψ(ϑl)−ψ(w1))α1+υlρα1+υlΓ(α1+υl+1)+(ψ(w2)−ψ(w1))α2ρα2Γ(α2+1))],B2=(ψ(w2)−ψ(w1))γ2−1|¨Λ|ργ2−1Γ(γ2)[Y2(n∑i=1|ηi|(ψ(ξi)−ψ(w1))α2ρα2Γ(α2+1)+m∑j=1|ζj|(ψ(θj)−ψ(w1))α2+Φjρα2+ΦjΓ(α2+Φj+1))]+(ψ(w2)−ψ(w1))α2ρα2Γ(α2+1),C2=(ψ(w2)−ψ(w1))γ2−1|¨Λ|ργ2−1Γ(γ2)[Y2(|λ2|n∑i=1|ηi|(ψ(ξi)−ψ(w1))ρ+|λ2|m∑j=1|ζj|(ψ(θj)−ψ(w1))1+Φjρ1+ΦjΓ(2+Φj)+|λ1|(ψ(w2)−ψ(w1))ρ)+X1(|λ1|r∑k=1|ℵk|(ψ(ϱk)−ψ(w1))ρ+|λ1|q∑l=1|Θl|(ψ(ϑl)−ψ(w1))1+υlρ1+υlΓ(2+υl)+|λ2|(ψ(w2)−ψ(w1))ρ)]+|λ2|(ψ(w2)−ψ(w1))ρ. |
Now we prove our first existence result via Leray-Schauder alternative [28].
Theorem 3.1. Let Υ1,Υ2: [w1,w2]×R2→R be continuous functions. Suppose that:
(H1) There exist ui,vi≥0 for i=1,2 and u0,v0>0 such that for each k1,k2∈R, t∈[w1,w2],
|Υ1(t,k1,k2)|≤u0+u1|k1|+u2|k2|,|Υ2(t,k1,k2)|≤v0+v1|k1|+v2|k2|. |
If
(A1+A2)u1+(B1+B2)v1+(C1+C2)<1 |
and
(A1+A2)u2+(B1+B2)v2+(C1+C2)<1, |
where the constants Ai,Bi,Ci for i=1,2 are defined in the Notation 3.1, then the problem (1.4) has at lest one solution on [w1,w2].
Proof. Since f and g are continuous functions, then T is a continuous operator. We prove that TBr is uniformly bounded, where Br is the closed ball
Br={(k1,k2)∈X×Y:‖(k1,k2)‖≤r}. |
For all (k1,k2)∈Br, by (H1) we have
|Υ1(t,k1,k2)|≤u0+u1|k1|+u2|k2|≤u0+u1‖k1‖+u2‖k2‖≤u0+(u1+u2)r:=P1 |
and similarly
|Υ2(t,k1,k2)|≤v0+(v1+v2)r:=P2. |
So, for any k1,k2∈Br, we have
|T1(k1,k2)(t)|≤1|¨Λ|ργ1−1Γ(γ1)(ψ(t)−ψ(w1))γ1−1[Y1(n∑i=1|ηi|pIα2,ρ,ψw1|Υ2(ξi,k2(ξi),k1(ξi))|+|λ2|n∑i=1|ηi|pI1,ρ,ψw1|k2(ξi)|+m∑j=1|ζj|pIα2+Φj,ρ,ψw1|Υ2(θj,k2(θj),k1(θj))|+|λ2|m∑j=1|ζj|pI1+Φj,ρ,ψw1|k2(θj)|+pIα1,ρ,ψw1|Υ1(w2,k1(w2),k2(w2))|+|λ1|pI1w1|k1(w2)|)+X2(r∑k=1|ℵk|pIα1,ρ,ψw1|Υ1(ϱk,k1(ϱk),k2(ϱk))|+|λ1|r∑k=1|ℵk|pI1,ρ,ψw1|k1(ϱk)|+q∑l=1|Θl|pIα1+υl,ρ,ψw1|Υ1(ϑl,k1(ϑl),k2(ϑl))|+|λ1|q∑l=1|Θl|pI1+υl,ρ,ψw1|k1(ϑl)|+pIα2,ρ,ψw1|Υ2(w2,k2(w2),k1(w2))|+|λ2|pI1,ρ,ψw1|k2(w2)|)]+pIα1,ρ,ψw1|Υ1(t,k1(t),k2(t))|+|λ1|pI1,ρ,ψw1|k1(t)|≤(ψ(w2)−ψ(w1))γ1−1|¨Λ|ργ1−1Γ(γ1)[Y1(P2n∑i=1|ηi|(ψ(ξi)−ψ(w1))α2ρα2Γ(α2+1)+P2m∑j=1|ζj|(ψ(θj)−ψ(w1))α2+Φjρα2+ΦjΓ(α2+Φj+1)+|λ2|‖k2‖n∑i=1|ηi|(ψ(ξi)−ψ(w1))ρ+|λ2|‖k2‖m∑j=1|ζj|(ψ(θj)−ψ(w1))1+Φjρ1+ΦjΓ(2+Φj)+P1(ψ(w2)−ψ(w1))α1ρα1Γ(α1+1)+|λ1|‖k1‖(ψ(w2)−ψ(w1))ρ)+X2(P1r∑k=1|ℵk|(ψ(ϱk)−ψ(w1))α1ρα1Γ(α1+1)+|λ1|‖k1‖r∑k=1|ℵk|(ψ(ϱk)−ψ(w1))ρ+|λ1|‖k1‖q∑l=1|Θl|(ψ(ϑl)−ψ(w1))1+υlρ1+υlΓ(1+υl+1)+P1q∑l=1|Θl|(ψ(ϑl)−ψ(w1))α1+υlρα1+υlΓ(α1+υl+1)+P2(ψ(w2)−ψ(w1))α2ρα2Γ(α2+1)+|λ2|‖k2‖(ψ(w2)−ψ(w1))ρ)]+P1(ψ(w2)−ψ(w1))α1ρα1Γ(α1+1)+|λ1|‖k1‖(ψ(w2)−ψ(w1))ρ≤P1A1+P2B1+rC1, |
and hence
‖T1(k1,k2)‖≤P1A1+P2B1+rC1. |
In the same way, we can obtain that
‖T2(k1,k2)‖≤P1A2+P2B2+rC2. |
Consequently,
‖T(k1,k2)‖≤(A1+A2)P1+(B1+B2)P2+(C1+C2)r. |
Therefore, the set TBr is uniformly bounded.
Next, it is proven that TBr is equicontinuous. Let (k1,k2)∈Br and t1,t2∈[w1,w2] with t1<t2. Then, we have
|T1(k1,k2)(t2)−T1(k1,k2)(t1)|≤(ψ(t2)−ψ(w1))γ1−1−(ψ(t1)−ψ(w1))γ1−1|¨Λ|ργ1−1Γ(γ1)[Y1(n∑i=1|ηi|pIα2,ρ,ψw1|Υ2(ξi,k2(ξi),k1(ξi))|+|λ2|n∑i=1|ηi|pI1,ρ,ψw1|k2(ξi)|+m∑j=1|ζj|pIα2+Φj,ρ,ψw1|Υ2(θj,k2(θj),k1(θj))|+|λ2|m∑j=1|ζj|pI1+Φj,ρ,ψw1|k2(θj)|+pIα1,ρ,ψw1|Υ1(w2,k1(w2),k2(w2))|+|λ1|pI1,ρ,ψw1|k1(w2)|)+X2(r∑k=1|ℵk|pIα1,ρ,ψw1|Υ1(ϱk,k1(ϱk),k2(ϱk))|+|λ1|r∑k=1|ℵk|pI1,ρ,ψw1|k1(ϱk)|+q∑l=1|Θl|pIα1+υl,ρ,ψw1|Υ1(ϑl,k1(ϑl),k2(ϑl))|+|λ1|q∑l=1|Θl|pI1+υl,ρ,ψw1|k1(ϑl)|+pIα2,ρ,ψw1|Υ2(w2,k2(w2),k1(w2))|+|λ2|pI1w1|k2(w2)|)]+1ρα1Γ(α1)|∫t1w1[(ψ(t2)−ψ(s))α−1−(ψ(t1)−ψ(s))α−1]ψ′(s)Υ1(x,k1(s),k2(s)ds|+1ρα1Γ(α1)|∫t2t1(ψ(t2)−ψ(s))α−1ψ′(s)Υ1(x,k1(s),k2(s)ds|+|λ1||pI1,ρ,ψw1k1(t2)−pI1,ρ,ψw1k1(t1)|≤(ψ(t2)−ψ(w1))γ1−1−(ψ(t1)−ψ(w1))γ1−1|¨Λ|ργ1−1Γ(γ1)[Y1(P2n∑i=1|ηi|(ψ(ξi)−ψ(w1))α2ρα2Γ(α2+1)+|λ2|rn∑i=1|ηi|(ψ(ξi)−ψ(w1))ρ+P2m∑j=1|ζj|(ψ(θj)−ψ(w1))α2+Φjρα2+ΦjΓ(α2+Φj+1)+|λ2|rm∑j=1|ζj|(ψ(θj)−ψ(w1))1+Φjρ1+ΦjΓ(2+Φj)+P1(ψ(w2)−ψ(w1))α1ρα1Γ(α1+1)+|λ1|r(ψ(w2)−ψ(w1))ρΓ(2))+X2(P1r∑k=1|ℵk|(ψ(ϱk)−ψ(w1))α1ρα1Γ(α1+1)+|λ1|rr∑k=1|ℵk|(ψ(ϱk)−ψ(w1))ρ+P1q∑l=1|Θl|(ψ(ϑl)−ψ(w1))α1+ϑlρα1+ϑlΓ(α1+ϑl+1)+|λ1|rq∑l=1|Θl|(ψ(ϑl)−ψ(w1))1+ϑlρ1+ϑlΓ(2+ϑl)+P2(ψ(w2)−ψ(w1))α2ρα2Γ(α2+1)+|λ2|r(ψ(w2)−ψ(w1))ρ)] +P1ρα1Γ(α1+1)[(ψ(t2)−ψ(w1))α1−(ψ(t1)−ψ(w1))α1+2(ψ(t2)−ψ(t1))α1]+|λ1|ρr(ψ(t2)−ψ(t1)). |
Then, we obtain that
|T1(k1,k2)(t2)−T1(k1,k2)(t1)|→0, |
when t2→t1, independently of k1 and k2. Similarly,
|T2(k1,k2)(t2)−T2(k1,k2)(t1)|→0, |
as t2→t1. Therefore TBr is equicontinuous on [w1,w2]. From the above three steps and Arzelˊa-Ascoli theorem, we conclude that T is completely continuous.
Let
U={(k1,k2)∈X×Y:(k1,k2)=μT(k1,k2),0≤μ≤1}. |
We prove that U is bounded. Let
(k1,k2)∈C([w1,w2],R) |
be any solution of (k1,k2)=μT(k1,k2). For each t∈[w1,w2], we have
k1(t)=μT1(k1,k2),k2(t)=μT2(k1,k2). |
Then
|k1(t)|=μ|T1(k1,k2)(t)|≤|T1(k1,k2)(t)|≤(ψ(w2)−ψ(w1))γ1−1|¨Λ|ργ1−1Γ(γ1)[Y1((v0+v1|k1|+v2|k2|)n∑i=1|ηi|(ψ(ξi)−ψ(w1))α2ρα2Γ(α2+1)+(v0+v1|k1|+v2|k2|)m∑j=1|ζj|(ψ(θj)−ψ(w1))α2+Φjρα2+ΦjΓ(α2+Φj+1)+|λ2|‖k2‖n∑i=1|ηi|(ψ(ξi)−ψ(w1))ρ+|λ2|‖k2‖m∑j=1|ζj|(ψ(θj)−ψ(w1))1+Φjρ1+ΦjΓ(2+Φj)+(u0+u1|k1|+u2|k2|)(ψ(w2)−ψ(w1))α1ρα1Γ(α1+1)+|λ1|‖k1‖(ψ(w2)−ψ(w1))ρ)+X2((u0+u1|k1|+u2|k2|)r∑k=1|ℵk|(ψ(ϱk)−ψ(w1))α1ρα1Γ(α1+1)+|λ1|‖k1‖r∑k=1|ℵk|(ψ(ϱk)−ψ(w1))ρ+|λ1|‖k1‖q∑l=1|Θl|(ψ(ϑl)−ψ(w1))1+υlρ1+υlΓ(2+υl)+(u0+u1|k1|+u2|k2|)q∑l=1|Θl|(ψ(ϑl)−ψ(w1))α1+υlρα1+υlΓ(α1+υl+1)+(v0+v1|k1|+v2|k2|)(ψ(w2)−ψ(w1))α2ρα2Γ(α2+1)+|λ2|‖k2‖(ψ(w2)−ψ(w1))ρ)]+(u0+u1|k1|+u2|k2|)(ψ(w2)−ψ(w1))α1ρα1Γ(α1+1)+|λ1|‖k1‖(ψ(w2)−ψ(w1))ρ≤(u0+u1‖k1‖+u2‖k2‖)A1+(v0+v1‖k1‖+v2‖k2‖)B1+(‖k1‖+‖k2‖)C1, |
and thus
‖k1‖≤(u0+u1‖k1‖+u2‖k2‖)A1+(v0+v1‖k1‖+v2‖k2‖)B1+(‖k1‖+‖k2‖)C1. | (3.1) |
Similarly, we have
‖k2‖≤(u0+u1‖k1‖+u2‖k2‖)A2+(v0+v1‖k1‖+v2‖k2‖)B2+(‖k1‖+‖k2‖)C2. | (3.2) |
Thus we obtain
‖k1‖+‖k2‖≤(A1+A2)u0+(B1+B2)v0+[(A1+A2)u1+(B1+B2)v1+(C1+C2)]‖k1‖+[(A1+A2)u2+(B1+B2)v2+(C1+C2)]‖k2‖. |
This imply that,
‖(k1,k2)‖≤(A1+A2)u0+(B1+B2)v01−P∗, |
where
P∗=max{(A1+A2)u1+(B1+B2)v1+(C1+C2),(A1+A2)u2+(B1+B2)v2+(C1+C2)}. |
Then, the set U is bounded. Therefore, by Leray-Schauder alternative the problem (1.4) has at least one solution on [w1,w2].
Now, we prove the second existence of results by applying Krasnosel'skii point theorem [29].
Theorem 3.2. Suppose Υ1,Υ2: [w1,w2]×R2→R are continuous functions. In addition we assume that:
(H2) There exist positive functions φ1,φ2∈C([w1,w2],R+), such that
|Υ1(t,k1,k2)|≤φ1(t),|Υ2(t,k1,k2)|≤φ2(t),for allt∈[w1,w2]. |
If
C1+C2<1, | (3.3) |
then, the problem (1.4) has at least one solution on [w1,w2].
Proof. First, we separate the operator T as
T1(k1,k2)(t)=T11(k1,k2)(t)+T12(k1,k2)(t), |
T2(k1,k2)(t)=T21(k1,k2)(t)+T22(k1,k2)(t) |
with
T11(k1,k2)(t)=eρ−1ρ(ψ(t)−ψ(w1))¨Λργ1−1Γ(γ1)(ψ(t)−ψ(w1))γ1−1[Y1(n∑i=1ηipIα2,ρ,ψw1Υ2(ξi,k1(ξi),k2(ξi))+m∑j=1ζjpIα2+Φj,ρ,ψw1Υ2(θj,k1(θj),k2(θj))−pIα1,ρ,ψw1Υ1(w2,k1(w2),k2(w2)))+X2(r∑k=1ℵkpIα1,ρ,ψw1Υ1(ϱk,k1(ϱk),k2(ϱk))+q∑l=1ΘlpIα1+υl,ρ,ψw1Υ1(ϑl,k1(ϑl),k2(ϑl))−pIα2,ρ,ψw1Υ2(w2,k1(w2),k2(w2)))]+pIα1,ρ,ψw1Υ1(t,k1(t),k2(t)),t∈[w1,w2],T12(k1,k2)(t)=eρ−1ρ(ψ(t)−ψ(w1))¨Λργ1−1Γ(γ1)(ψ(t)−ψ(w1))γ1−1[Y1(−λ2n∑i=1ηipI1,ρ,ψw1k2(ξi)−λ2m∑j=1ζjpI1+Φj,ρ,ψw1k2(θj)+λ1pI1,ρ,ψw1k1(w2))+X2(−λ1r∑k=1ℵkpI1,ρ,ψw1k1(ϱk)−λ1q∑l=1ΘlpI1+υl,ρ,ψw1k1(ϑl)+λ2pI1,ρ,ψw1k2(w2))]−λ1pI1,ρ,ψw1k1(t),t∈[w1,w2],T21(k1,k2)(t)=eρ−1ρ(ψ(t)−ψ(w1))¨Λργ2−1Γ(γ2)(ψ(t)−ψ(w1))γ2−1[Y2(n∑i=1ηipIα2,ρ,ψw1Υ2(ξi,k1(ξi),k2(ξi))+m∑j=1ζjpIα2+Φj,ρ,ψw1Υ2(θj,k1(θj),k2(θj))−pIα1,ρ,ψw1Υ1(w2,k1(w2),k2(w2)))+X1(r∑k=1ℵkpIα1,ρ,ψw1Υ1(ϱk,k1(ϱk),k2(ϱk))+q∑l=1ΘlpIα1+υl,ρ,ψw1Υ1(ϑl,k1(ϑl),k2(ϑl))−pIα2,ρ,ψw1Υ1(w2,k1(w2),k2(w2)))]+pIα2,ρ,ψw1Υ2(t,k1(t),k2(t)),t∈[w1,w2],T22(k1,k2)(t)=eρ−1ρ(ψ(t)−ψ(w1))¨Λργ2−1Γ(γ2)(ψ(t)−ψ(w1))γ2−1[Y2(−λ2n∑i=1ηipI1,ρ,ψw1k2(ξi)−λ2m∑j=1ζjpI1+Φj,ρ,ψw1k2(θj)+λ1pI1,ρ,ψw1k1(w2))+X1(−λ1r∑k=1ℵkpI1,ρ,ψw1k1(ϱk)−λ1q∑l=1ΘlpI1+υl,ρ,ψw1k1(ϑl)+λ2pI1,ρ,ψw1k2(w2))]−λ2pI1,ρ,ψw1k2(t),t∈[w1,w2]. |
We claim that TBr⊂Br where
Br={(k1,k2)∈X×Y:‖(k1,k2)‖≤r}. |
We set
supt∈[w1,w2]φi(t)=‖φi‖ |
for i=1,2 and choose
r≥‖φ1‖(A1+A2)+‖φ2‖(B1+B2)1−(C1+C2). |
Let (k1,k2),(ˉk1,ˉk2)∈Br. Acconding the proof of Theorem 3.1, the following inequalities are obtained
|T11(k1,k2)(t)+T12(ˉk1,ˉk2)(t)|≤‖φ1‖A1+‖φ2‖B1+rC1,|T21(k1,k2)(t)+T22(ˉk1,ˉk2)(t)|≤‖φ1‖A2+‖φ2‖B2+rC2, |
and therefore
‖T1(k1,k2)+T2(k1,k2)‖≤‖φ1‖(A1+A2)+‖φ2‖(B1+B2)+r(C1+C2)≤r. |
Hence,
T11(k1,k2)(t)+T12(ˉk1,ˉk2)(t)⊂Br |
and
T21(k1,k2)(t)+T22(ˉk1,ˉk2)(t)⊂Br. |
Consider the operators T11 and T21. By continuity of f and g, T11 and T21 are continuous operators. For any (k1,k2)∈Br, we have
|T11(k1,k2)(t)|≤(ψ(t)−ψ(w1))γ1−1|¨Λ|ργ1−1Γ(γ1)[Y1(n∑i=1|ηi|pIα2,ρ,ψw1|Υ2(ξi,k1(ξi),k2(ξi))|+m∑j=1|ζj|pIα2+Φj,ρ,ψw1|Υ2(θj,k1(θj),k2(θj))|+pIα1,ρ,ψw1|Υ1(w2,k1(w2),k2(w2))|)+X2(r∑k=1|ℵk|pIα1,ρ,ψw1|Υ1(ϱk,k1(ϱk),k2(ϱk))|+q∑l=1|Θl|pIα1+υl,ρ,ψw1|Υ1(ϑl,k1(ϑl),k2(ϑl))|+pIα2,ρ,ψw1|Υ2(w2,k1(w2),k2(w2))|)]+pIα1,ρ,ψw1|Υ1(t,k1(t),k2(t))|≤‖φ1‖A1+‖φ2‖B1. |
In a similar way, we can get
|T21(k1,k2)(t)|≤‖φ1‖A2+‖φ2‖B2. |
Hence, we obtain that
‖(T11,T21)(k1,k2)‖≤‖φ1‖(A1+A2)+‖φ2‖(B1+B2), |
which yields that (T11,T12)Br is uniformly bounded. For any t1,t2∈[w1,w2], t2>t1 and for all (k1,k2)∈Br the operators (T11,T12)Br are equicontinuous by the proof of Theorem 3.1.
Lastly, it is proven that the operators T12 and T22 are contraction mappings. For all (k1,k2), (ˉk1,ˉk2)∈Br, we have:
|T12(ˉk1,ˉk2)(t)−T12(k1,k2)(t)|≤(ψ(w2)−ψ(w1))γ1−1|¨Λ|ργ1−1Γ(γ1)[Y1(|λ2|n∑i=1|ηi|pI1,ρ,ψw1|ˉk2(ξi)−k2(ξi)|+|λ2|m∑j=1|ζj|pI1+Φj,ρ,ψw1|ˉk2(θj)−k2(θj)|+|λ1|pI1,ρ,ψw1|ˉk1(w2)−k1(w2)|)+X2(|λ1|r∑k=1|ℵk|pI1,ρ,ψw1|ˉk1(ϱk)−k1(ϱk)|+|λ1|q∑l=1|Θl|pI1+υl,ρ,ψw1|ˉk1(ϑl)−k1(ϑl)|+|λ2|pI1,ρ,ψw1|ˉk2(w2)−k2(w2)|)]+|λ1|pI1,ρ,ψw1|ˉk1(t)−k1(t)|≤(ψ(w2)−ψ(w1))γ1−1|¨Λ|ργ1−1Γ(γ1)[Y1(|λ2|‖ˉk2−k2‖n∑i=1|ηi|(ψ(ξi)−ψ(w1))ρ+|λ2|‖ˉk2−k2‖m∑j=1|ζj|(ψ(θj)−ψ(w1))1+Φjρ1+ΦjΓ(2+Φj)+|λ1|‖ˉk1−k1‖(ψ(w2)−ψ(w1))ρ)+X2(|λ1|‖ˉk1−k1‖r∑k=1|ℵk|(ψ(ϱk)−ψ(w1))ρ+|λ1|‖ˉk1−k1‖q∑l=1|Θl|(ψ(ϑl)−ψ(w1))1+υlρ1+υlΓ(1+υl+1)+|λ2|‖ˉk2−k2‖(ψ(w2)−ψ(w1))ρ)]+|λ1|‖ˉk1−k1‖(ψ(w2)−ψ(w1))ρ≤C1(‖ˉk1−k1‖+‖ˉk2−k2‖). |
Additionally, we also obtain that
|T21(ˉk1,ˉk2)(t)−T21(k1,k2)(t)|≤C2(‖ˉk1−k1‖+‖ˉk2−k2‖). |
Combining the above inequalities, we have
‖(T11,T21)(k1,k2)‖≤(C1+C2)(‖ˉk1−k1‖+‖ˉk2−k2‖). |
We have (T11,T21) is a contraction. Consequently, by Krasnosel'skii's fixed point theorem, the problem (1.4) has at least one solution on [w1,w2].
Banach's fixed point theorem [30] is applied to obtain our uniqueness and existence result.
Theorem 3.3. Let Υ1,Υ2: [w1,w2]×R2→R such that:
(H3) There exist positive constants L1,L2, such that, for all t∈[w1,w2] and oi,ˉoi∈R, i=1,2, we have
|Υ1(t,o2,ˉo2)−Υ1(t,o1,ˉo1)|≤L1(|o2−o1|+|ˉo2−ˉo1|),|Υ2(t,o2,ˉo2)−Υ2(t,o1,ˉo1)|≤L2(|o2−o1|+|ˉo2−ˉo1|). |
Then, the problem (1.4) has a unique solution, provided that
L1(A1+A2)+L2(B1+B2)+C1+C2<1. | (3.4) |
Proof. Let
supt∈[w1,w2]|Υ1(t,0,0)|=M1<∞, |
supt∈[w1,w2]|Υ2(t,0,0)|=M2<∞ |
and
Br={(k1,k2)∈X×Y:‖(k1,k2)‖≤r} |
with
r≥M1(A1+A2)+M2(B1+B2)1−[L1(A1+A2)+L2(B1+B2)+C1+C2]. |
For all (k1,k2)∈Br and t∈[w1,w2]. By applying (H3), we obtain the following inequalities
|Υ1(t,k1(t),k2(t))|≤|Υ1(t,k1(t),k2(t))−Υ1(t,0,0)|+|Υ1(t,0,0)|≤L1(|k1(t)|+|k2(t)|)+M1≤L1(‖k1‖+‖k2‖)≤L1r+M1,|Υ2(t,k1(t),k2(t))|≤|Υ2(t,k1(t),k2(t))−Υ2(t,0,0)|+|Υ2(t,0,0)|≤L2(|k1(t)|+|k2(t)|)+M2≤L2r+M2. |
We have
|T1(k1,k2)(t)|≤(ψ(w2)−ψ(w1))γ1−1|¨Λ|ργ1−1Γ(γ1)[Y1((L2r+M2)n∑i=1|ηi|(ψ(ξi)−ψ(w1))α2ρα2Γ(α2+1)+(L2r+M2)m∑j=1|ζj|(ψ(θj)−ψ(w1))α2+Φjρα2+ΦjΓ(α2+Φj+1)+|λ2|‖k2‖n∑i=1|ηi|(ψ(ξi)−ψ(w1))ρ+|λ2|‖k2‖m∑j=1|ζj|(ψ(θj)−ψ(w1))1+Φjρ1+ΦjΓ(2+Φj)+(L1r+M1)(ψ(w2)−ψ(w1))α1ρα1Γ(α1+1)+|λ1|‖k1‖(ψ(w2)−ψ(w1))ρ)+X2((L1r+M1)r∑k=1|ℵk|(ψ(ϱk)−ψ(w1))α1ρα1Γ(α1+1)+|λ1|‖k1‖r∑k=1|ℵk|(ψ(ϱk)−ψ(w1))ρ+|λ1|‖k1‖q∑l=1|Θl|(ψ(ϑl)−ψ(w1))1+υlρ1+υlΓ(1+υl+1)+(L1r+M1)q∑l=1|Θl|(ψ(ϑl)−ψ(w1))α1+υlρα1+υlΓ(α1+υl+1)+(L2r+M2)(ψ(w2)−ψ(w1))α2ρα2Γ(α2+1)+|λ2|‖k2‖(ψ(w2)−ψ(w1))ρ)]+(L1r+M1)(ψ(w2)−ψ(w1))α1ρα1Γ(α1+1)+|λ1|‖k1‖(ψ(w2)−ψ(w1))ρ≤(L1r+M1)A1+(L2r+M2)B1+rC1. |
Thus,
‖T1(k1,k2)‖≤(L1r+M1)A1+(L2r+M2)B1+rC1. |
We also have
‖T2(k1,k2)‖≤(L1r+M1)A2+(L2r+M2)B2+rC2. |
Therefore
‖T(k1,k2)‖≤M1(A1+A2)+M2(B1+B2)+[L1(A1+A2)+L2(B1+B2)+C1+C2]r. |
Hence, T(Br)⊂Br. Now, it is shown that (T1,T2) is a contraction mapping. For all (k1,k2),(ˉk1,ˉk2)∈Br, we have
|T1(ˉk1,ˉk2)(t)−T1(k1,k2)(t)|≤(ψ(w2)−ψ(w1))γ1−1|¨Λ|ργ1−1Γ(γ1)[Y1(L2(‖ˉk1−k1‖+‖ˉk2−k2‖)n∑i=1|ηi|(ψ(ξi)−ψ(w1))α2ρα2Γ(α2+1)+L2(‖ˉk1−k1‖+‖ˉk2−k2‖)m∑j=1|ζj|(ψ(θj)−ψ(w1))α2+Φjρα2+ΦjΓ(α2+Φj+1)+|λ2|‖ˉk2−k2‖n∑i=1|ηi|(ψ(ξi)−ψ(w1))ρ+|λ2|‖ˉk2−k2‖m∑j=1|ζj|(ψ(θj)−ψ(w1))1+Φjρ1+ΦjΓ(2+Φj)+L1(‖ˉk1−k1‖+‖ˉk2−k2‖)(ψ(w2)−ψ(w1))α1ρα1Γ(α1+1)+|λ1|‖ˉk1−k1‖(ψ(w2)−ψ(w1))ρ)+X2(L1(‖ˉk1−k1‖+‖ˉk2−k2‖)r∑k=1|ℵk|(ψ(ϱk)−ψ(w1))α1ρα1Γ(α1+1)+|λ1|‖ˉk1−k1‖r∑k=1|ℵk|(ψ(ϱk)−ψ(w1))ρ+|λ1|‖ˉk1−k1‖q∑l=1|Θl|(ψ(ϑl)−ψ(w1))1+υlρ1+υlΓ(2+υl)+L1(‖ˉk1−k1‖+‖ˉk2−k2‖)q∑l=1|Θl|(ψ(ϑl)−ψ(w1))α1+υlρα1+υlΓ(α1+υl+1)+L2(‖ˉk1−k1‖+‖ˉk2−k2‖)(ψ(w2)−ψ(w1))α2ρα2Γ(α2+1)+|λ2|‖ˉk2−k2‖(ψ(w2)−ψ(w1))ρ)]+L1(‖ˉk1−k1‖+‖ˉk2−k2‖)(ψ(w2)−ψ(w1))α1ρα1Γ(α1+1)+|λ1|‖ˉk1−k1‖(ψ(w2)−ψ(w1))ρ≤[L1A1+L2B1+C1](‖ˉk1−k1‖+‖ˉk2−k2‖). |
By a similar argument, we have
|T2(ˉk1,ˉk2)(t)−T2(k1,k2)(t)|≤L1(‖ˉk1−k1‖+‖ˉk2−k2‖)A2+L2(‖ˉk1−k1‖+‖ˉk2−k2‖)B2+(‖ˉk1−k1‖+‖ˉk2−k2‖)C2. |
Hence, we obtain that
‖T(ˉk1,ˉk2)−T(k1,k2)‖≤[L1(A1+A2)+L2(B1+B2)+C1+C2](‖ˉk1−k1‖+‖ˉk2−k2‖). |
By assumption (3.4), the operator T is a contraction mapping. By Banach's fixed point theorem the problem (1.4) has a unique solution.
Example 4.1. Consider the following coupled system of ψ-Hilfer genneralized proportional fractional differential equation,
{(HD32,12,34,log(t)90.1k1)(t)+112(HD32−1,12,34,log(t)90.1k1)(t)=Υ1(t,k1(t),k2(t)),t∈[110,3],(HD54,14,34,log(t)90.1k2)(t)+115(HD54−1,14,34,log(t)90.1k2)(t)=Υ2(t,k2(t),k1(t)),t∈[110,3],k1(110)=0,k1(3)=221k2(311)+423k2(711)+423pI12,34,log(t)90.1k2(1011)+425pI32,34,log(t)90.1k2(812),k2(110)=0,k2(3)=131k1(16)+341k1(511)+423pI43,34,log(t)90.1k1(23). | (4.1) |
Here, we take
ψ(t)=log(t)9,w1=1/10,w2=3,α1=3/2,α2=5/4,β1=1/2,β2=1/4,ρ=3/4, |
λ1=1/12,λ2=1/15,η1=2/21,η2=4/23,ξ1=3/11,ξ2=7/11, |
ζ1=4/23,ζ2=6/25,θ1=10/11,θ2=8/12,Φ1=1/2,Φ2=3/2, |
ℵ1=1/31,ℵ2=3/41,ϱ1=1/6,ϱ2=5/11,υ1=4/3,ϑ1=2/3. |
From the above data, we obtain
k1≈1.1096,ˉk1≈0.9391,k2≈0.2570,ˉk2≈0.7302,¨Λ≈−0.4005, |
A1≈0.3385,A2≈3.6140,B1≈0.4068,B2≈0.6287,C1≈0.0891,C2≈0.3720. |
(i) In order to illustrate Theorem 3.1, consider the functions f and g, defined by
Υ1(t,k1,k2)=cos2k14+|k1|3e−k22325√t(1+2|k1(t)|+|k1(t)|2)+e−10tk72sin2k125(1+k62),Υ2(t,k1,k2)=112e−|k2|+3k1sin2|k1k2|10+2t2+3k2cos4k1√(t+4)3. | (4.2) |
Then, we have
|Υ1(t,k1,k2)|≤14+1325√t|k1|+125|k2|,|Υ2(t,k1,k2)|≤112+310+2t2|k1|+3√(t+4)3|k2|. |
Thus, (H1) is satisfied with
u0=1/4,u1=0.05,u2=1/25,v0=1/12,v1=0.2994,v2=0.3613. |
Then
(A1+A2)u1+(B1+B2)v1+(C1+C2)≈0.9687<1 |
and
(A1+A2)u2+(B1+B2)v2+(C1+C2)≈0.9933<1. |
Thus, all assumptions of Theorem 3.1 are satisfied. Hence, the proplem (4.1), with f and g, given by (4.2), has at least one solution on [1/10,3].
(ii) Consider now the following functions f and g,
Υ1(t,k1,k2)=tan−1(√1+k21)+t3+4t2+cos2(k2)5,Υ2(t,k1,k2)=(k1k2)41+(k1k2)4+sint+e−|k1|33. | (4.3) |
It is obvious to check that the above functions satisfy
|Υ1(t,k1,k2)|≤5π+210+12t3+2t:=φ1(t),|Υ2(t,k1,k2)|≤sint+43:=φ2(t). |
Then we find that C1+C2≈0.4610<1. Hence, by Theorem 3.2, the coupled system (4.1), with f and g, given by (4.3), has at lest one solution on an interval [1/10,3].
(iii) To illustrate Theorem 3.3, we consider the functions f and g as
Υ1(t,k1,k2)=12+(logt2)+2(k1)2+|k1|5(1+4|k1|)+sin|k2|10t+11,Υ2(t,k1,k2)=π+t2+2t3+tan−1|k1|100e2log3t+1+k22+|k2|(7+210t)(1+|k2|). | (4.4) |
We have
|Υ1(t,ˉk1,ˉk2)−Υ1(t,k1,k2)|≤110|ˉk1−k1|+112|ˉk2−k2|,|Υ2(t,ˉk1,ˉk2)−Υ2(t,k1,k2)|≤110|ˉk1−k1|+19|ˉk2−k2|, |
and therefore the Lipschitz condition for f and g is satisfied with L1=1/10 and L2=1/9. In addition, we find that
L1(A1+A2)+L2(B1+B2)+C1+C2≈0.9714<1. |
Thus, by Theorem 3.3, problem (4.1), with f and g, given by (4.4), has a unique solution on [1/10,3].
Example 4.2. We investigate the behavior of solutions by replacing the values of proportional constant ρ by 0.1,0.2,⋯,0.9, in the following coupled linear system of ψ-Hilfer generalized proportional fractional differential equations of the form:
{(HD32,12,ρ,t20k1)(t)+110(HD12,12,ρ,t20k1)(t)=eρ−1ρt2⋅(t2)−12,t∈(0,1],(HD1110,12,ρ,t20k2)(t)+15(HD110,12,ρ,t20k2)(t)=e2ρ−2ρt2⋅(t2)−12,t∈(0,1],k1(0)=0,k1(1)=150k2(15)+15pI32,ρ,t20k2(120),k2(0)=0,k2(1)=k1(710)+12pI115,ρ,t20k1(325). | (4.5) |
Here, we set
By using integrating factor technique, we can obtain
(4.6) |
(4.7) |
where , and
(4.8) |
with the canstants and are defined by
For finding the analytic solutions, we use two constants and from Table 1 and substitute them in Eqs (4.6) and (4.7), respectively.
No. | ρ | c1 | c3 |
1 | 0.1 | 0.2753 | 0.9029 |
2 | 0.2 | 0.3394 | 1.0376 |
3 | 0.3 | 0.7134 | 1.1597 |
4 | 0.4 | 1.0612 | 1.3129 |
5 | 0.5 | 1.4429 | 1.4882 |
6 | 0.6 | 1.8446 | 1.6497 |
7 | 0.7 | 2.2518 | 1.7895 |
8 | 0.8 | 2.6547 | 1.9073 |
9 | 0.9 | 3.0472 | 2.0051 |
Next, using the Matlab program, we can find the approximate analytical solutions of and with different values of as . Two graphs of and can be drawn.
From Figure 1, if the value is increasing then the value of is decreasing for each point . From the Figure 2, we see that if the value of increases, then the value of decreases for each . The lower and upper bounds for the above two curves correspond to and , respectively, when the value of increases.
In this paper, we investigated a coupled system of -Hilfer fractional proportional differential equations supplemented with nonlocal integro-multipoint boundary conditions. We rely on standard fixed point theorems, Banach, Krasnosel'skii and Leray-Schauder alternative to establish the desired existence and uniqueness results. The obtained theoretical results are well illustrated by numerical examples. Our results are new and contribute significialy to the existing results in the literature concerning -Hilfer fractional proportional nonlocal integro-multi-point coupled systems.
Our results are novel and contribute to the existing literature on nonlocal systems of nonlinear -Hilfer generalized fractional proportional differential equations. Note that the results presented in this paper are wider in scope and produced a variety of new results as special cases. For instance, fixing the parameters in the nonlocal integro-multi-point Hilfer generalized proportional fractional system in (1.4), we obtained some new results as special cases associated with the following:
● Nonlocal -Hilfer generalized proportional fractional systems of order in if
● Integro-multi-point nonlocal -Hilfer generalized proportional fractional systems of order in if
● Nonlocal Integro-multi-point Hilfer generalized proportional fractional systems of order in if
● Integro-multi-point nonlocal Hilfer generalized fractional systems of order in if
Furthermore, additional new results can be recorded as special cases for different combinations of the parameters , , , , , , involved in the system (1.4). For example, by taking all values where , we obtain the results for a coupled system of nonlinear -Hilfer generalized proportional fractional differential equations supplemented by the following nonlocal boundary conditions:
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This research was funded by National Science, Research and Innovation Fund (NSRF) and King Mongkut's University of Technology North Bangkok with Contract No. KMUTNB-FF-66-11.
The authors declare that there are no conflicts of interest.
[1] |
J. Jeremy, K. Michael, B. Wolfgang, B. Karen, B. Louis, B. Bruce, et al., Historical overfishing and the recent collapse of coastal ecosystems, Science, 293 (2001), 629–637. https://doi.org/10.1126/science.1059199 doi: 10.1126/science.1059199
![]() |
[2] |
A. Myers, B. Worm, Rapid worldwide depletion of predatory fish communities, Nature, 423 (2003), 280–283. https://doi.org/10.1038/nature01610 doi: 10.1038/nature01610
![]() |
[3] |
S. Murawski, Definitions of overfishing from an ecosystem perspective, Ices J. Mar., 57(2000), 649–658. https://doi.org/10.1006/jmsc.2000.0738 doi: 10.1006/jmsc.2000.0738
![]() |
[4] |
M. Scheffer, S. Carpenter, Y. De, Cascading effects of overfishing marine systems, Trends Ecol. Evol., 20 (2005), 579–581. https://doi.org/10.1016/j.tree.2005.08.018 doi: 10.1016/j.tree.2005.08.018
![]() |
[5] |
K. Nicholas, P. Nathan, L. Cassandra, A. Riley A, W. Rima, A. David, et al., Overfishing drives over one-third of all sharks and rays toward a global extinction crisis, Curr. Biol., 31 (2021), 4773–4787. https://doi.org/10.1016/j.cub.2021.08.062 doi: 10.1016/j.cub.2021.08.062
![]() |
[6] |
K. Nicholas, L. Sarah, A. John, D. Rachel, M. Peter, R. Lucy, et al., Extinction risk and conservation of the world¡¯s sharks and rays, eLife, 3 (2014), e00590. https://doi.org/10.7554/eLife.00590 doi: 10.7554/eLife.00590
![]() |
[7] | C. Clark, Mathematical Bioeconomics: The Optimal Management of Renewal Resources, Wiley Press, New York, 1976. |
[8] |
A. Martin, S. Ruan, Predator-prey models with delay and prey harvesting, J. Math. Biol., 43 (2001), 247–267. https://doi.org/10.1007/s002850100095 doi: 10.1007/s002850100095
![]() |
[9] | R. May, Stability and Complextiy in Model Ecosystems, Princeton University Press, Princeton, 2001. |
[10] | R. Lande, S. Engen, B. Saether, Stochastic Population Dynamics in Ecology and Conservation, Oxford University Press, Oxford, 2003. |
[11] |
W. Li, K. Wang, Optimal harvesting policy for general stochastic logistic population model, J. Math. Anal. Appl., 368 (2010), 420-428. https://doi.org/10.1016/j.amc.2011.05.079 doi: 10.1016/j.amc.2011.05.079
![]() |
[12] |
S. Wang, L. Wang, T. Wei, Optimal harvesting for a stochastic predator¨Cprey model with S-type distributed time delays, Methodol. Comput. Appl. Probab., 20 (2018), 37–68. https://doi.org/10.1007/s11009-016-9519-2 doi: 10.1007/s11009-016-9519-2
![]() |
[13] |
L. Jia, X. Liu, Optimal harvesting strategy based on uncertain logistic population model, Chaos Solitons Fractals, 152 (2021), 111329. https://doi.org/10.1016/j.chaos.2021.111329 doi: 10.1016/j.chaos.2021.111329
![]() |
[14] |
W. Giger, The Rhine red, the fish dead-the 1986 Schweizerhalle disaster, a retrospect and long-term impact assessment, Environ. Sci. Pollut. Res., 16 (2009), 98–111. https://doi.org/10.1007/s11356-009-0156-y doi: 10.1007/s11356-009-0156-y
![]() |
[15] |
C. Campagna, F. Short, B. Polidoro, R. McManus, B. Collette, N. Pilcher, et al., Gulf of Mexico Oil Blowout increases risks to globally threatened species, BioSci., 61 (2011), 393–397. https://doi.org/10.1525/bio.2011.61.5.8 doi: 10.1525/bio.2011.61.5.8
![]() |
[16] |
J. Bao, X. Mao, G. Yin, C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal. Theor., 74 (2011), 6601–6616. https://doi.org/10.1016/j.na.2011.06.043 doi: 10.1016/j.na.2011.06.043
![]() |
[17] |
X. Zhang, K. Wang, Stochastic SIR model with jumps, Appl. Math. Lett., 26 (2013), 867–874. https://doi.org/10.1016/j.aml.2013.03.013 doi: 10.1016/j.aml.2013.03.013
![]() |
[18] |
T. Nafeisha, Z. Teng, M. Ahmadjan, Global dynamics in a stochastic three species food-chain model with harvesting and distributed delays, Adv. Differ. Equations, 2019 (2019), 187. https://doi.org/10.1186/s13662-019-2122-4 doi: 10.1186/s13662-019-2122-4
![]() |
[19] |
T. Nafeisha, Z. Teng, W. Chen, Dynamic analysis of a stochastic four species food-chain model with harvesting and distributed delay, Bound. Value Prob., 2021 (2021), 12. https://doi.org/10.1186/s13661-021-01487-9 doi: 10.1186/s13661-021-01487-9
![]() |
[20] |
T. Nafeisha, Z. Teng, Global dynamics in stochastic n-species food chain systems with white noise and Lévy jumps, Math. Methods Appl. Sci., 45 (2022), 5184–5214. https://doi.org/10.1002/mma.8101 doi: 10.1002/mma.8101
![]() |
[21] | Y. Shao, Dynamics and optimal harvesting of a stochastic predator-prey system with regime switching, S-type distributed time delays and Lévy jumps.AIMS Math., 7 (2022), 4068–4093. https://doi.org/10.3934/math.2022225 |
[22] | I. Barbalat, Systeme d¡±equations differentielles d¡±oscillations non lineaires. Rev. Roum. Math. Pures, 4 (1959), 260–270. |
[23] | G. Prato, J. Zabczyk, Ergodicity for infinite dimensional systems, Cambridge University Press, Cambridge, 1996. |
1. | Nilüfer Özdemir, Elanur Eren, Some Results on Almost Contact Manifolds with B-Metric, 2025, 6, 2717-6185, 81, 10.54974/fcmathsci.1581680 |
No. | ρ | c1 | c3 |
1 | 0.1 | 0.2753 | 0.9029 |
2 | 0.2 | 0.3394 | 1.0376 |
3 | 0.3 | 0.7134 | 1.1597 |
4 | 0.4 | 1.0612 | 1.3129 |
5 | 0.5 | 1.4429 | 1.4882 |
6 | 0.6 | 1.8446 | 1.6497 |
7 | 0.7 | 2.2518 | 1.7895 |
8 | 0.8 | 2.6547 | 1.9073 |
9 | 0.9 | 3.0472 | 2.0051 |