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Abstract: A stochastic n-species marine food chain model with harvesting and Lévy noises is pro-
posed. First, the criterion on the asymptotic stability in distribution is established. Second, the criterion
on the existence of optimal harvesting strategy (OHS) and the maximum of expectation of sustainable
yield (MESY) are derived. Furthermore, the numerical simulations are presented to verify the the-
oretical results. Our results show that (i) noises intensity can easily affect the dynamics of marine
populations, leading to the imbalances of marine ecology, (ii) the establishment of an optimal harvest-
ing strategy should fully consider the impact of noises intensity for better managing and protecting
marine resources.
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1. Introduction

Overfishing occurs when fish are harvested at a rate faster than the resource can replenish itself.
This practice has consequences that extend beyond the depletion of single-species fish populations,
potentially leading to global food insecurity, ecological extinction, and other devastating effects [1–4].
Marine ecosystems and their associated livelihoods worldwide are threatened by overfishing. Nicholas
et al. [5] have shown that overfishing is pushing over one-third of all sharks and rays towards global
extinction. They suggest that marine life could face a future similar to that of land biodiversity, where
human pressures have resulted in the loss of numerous species, possibly triggering a sixth mass extinc-
tion. According to IUCN Red List criteria [6], they estimate that one-quarter of 1,041 chondrichthyan
fishes are threatened due to overfishing (both targeted and incidental). Therefore, it is urgent to estab-
lish the optimal harvesting strategy (OHS) for overfishing to prevent extinctions and promote popula-
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tion recovery. Consequently, investigating OHS has significant implications for marine ecosystems.
Mathematical models are widely utilized to analyze the OHS of populations [7–13]. Clark [7]

proposes several deterministic population systems with harvesting and establishes the OHS. Martin
and Ruan [8] investigate the predator-prey models with delay and prey harvesting. However, nature
is full of random phenomena, and various populations in the ecosystem experience different forms
of random perturbations. May [9] indicates that environmental noise affects competition coefficient,
environmental capacity, the growth rate and other parameters of population systems. Lande et al. [10]
demonstrate that the extinction of numerous species caused by over-harvesting may be largely due to
the ignorance of randomness. Therefore, it is crucial to investigate the OHS of population system in
random environment. Li and Wang [11] establish a general stochastic logistic population model with
white noises and explore the optimal harvesting policy. Wang et al. [12] propose a stochastic predator-
prey model with time delays and shows how randomness influences the extinction and OHS. Therefore,
exploring the OHS of stochastic marine population systems is meaningful.

Lévy noise, another type of environmental perturbations, is considered below. During the process of
species evolution, population growth is often affected by random disturbances in the environment, such
as toxic pollutants, epidemics, earthquakes, floods and other factors [14–17]. For example, the Sandoz
chemical accident in 1986 resulted in the death of over 600,000 fish in the Rhine [14], while the 2010
Gulf of Mexico oil spill caused a devastating impact on marine life in the Gulf of Mexico [15]. Bao et
al. [16] propose that non-Gaussian Lévy noise is suitable for concluding these phenomena and revealed
that Lévy noise can inhibit the explosive increase of population. Zhang et al. [17] also proposed to use
Lévy noise to describe the random perturbations.

A lot of work has been done to study the stochastic food chain population dynamics model so
far. Our previous work has investigated the dynamics of a stochastic three species food chain model
in [18], the dynamics of a four-species stochastic food chain model with delays in [19] and the dynamic
behaviors of a stochastic n-species food chain model with Lévy noises and white noises in [20] as
follows: 

dx1(t) =x1(t)[r1 − a11x1(t) − a12x2(t)]dt + σ1x1(t)dB1(t)

+

∫
Z

x1(t−)γ1(u)Ñ(dt, du),

dxi(t) =xi(t)[ri − aiixi(t) + aii−1xi−1(t) − aii+1xi+1(t)]dt + σixi(t)dBi(t)

+

∫
Z

xi(t−)γi(u)Ñ(dt, du), 2 ≤ i ≤ n − 1,

dxn(t) =xn(t)[rn − annxn(t) + ann−1xn−1(t)]dt + σnxn(t)dBn(t)

+

∫
Z

xn(t−)γn(u)Ñ(dt, du).

(1.1)

By introducing a new research method, that is algebraic approach, the sufficient and necessary criteria
for the stochastic extinction, persistence in mean and global stability are established in [20]. These
conclusions directly generalize some research results on three and four species stochastic food chain
dynamics models in [18, 19]. However, due to the high dimensionality of model (1.1) and technical
difficulties, the stability in distribution and optimal harvesting problems have not been discussed until
now. In this paper, we consider the effects of harvesting and Lévy noises, then address these issues by
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proposing a stochastic n-species food chain model as follows:

dx1(t) =x1(t)[r1 − h1 − a11x1(t) − a12x2(t)]dt + σ1x1(t)dB1(t)

+

∫
Z

x1(t−)γ1(u)Ñ(dt, du),

dxi(t) =xi(t)[ri − hi − aiixi(t) + aii−1xi−1(t) − aii+1xi+1(t)]dt + σixi(t)dBi(t)

+

∫
Z

xi(t−)γi(u)Ñ(dt, du), 2 ≤ i ≤ n − 1,

dxn(t) =xn(t)[rn − hi − annxn(t) + ann−1xn−1(t)]dt + σnxn(t)dBn(t)

+

∫
Z

xn(t−)γn(u)Ñ(dt, du).

(1.2)

On the basis of the research results in [20], our primary objective is to establish criteria for the
stability in distribution of model (1.2). Additionally, we aim to establish criteria for the optimal har-
vesting strategy in the sense of sustainable yield. Lastly, we will verify the theoretical results through
numerical examples and propose some open questions and propositions.

This paper is organized as follows. In Section 2, we provide the basic assumption, and further
introduce several important lemmas that will be used to prove the major results. In Section 3, we state
and prove the stability in distribution of model (1.2). In Section 4, we outline the non-existence and
existence criteria for OHS and MESY. Finally, in Section 5, we illustrate our major results through
numerical examples.

2. Preliminaries

Denote by (Ω, {Ft}t≥0, P) the complete probability space, and its filtration {Ft}t≥0 satisfies the usual
conditions. In this paper, we assume that model (1.2) is defined on the probability space (Ω, {Ft}t≥0, P).
In addition, for an integrable function f (t) defined for t ∈ [0,+∞), we define the mean value of f (t) on
interval [0, t] for any t > 0 by ⟨ f (t)⟩ = 1

t

∫ t

0
f (s)ds.

In models (1.1) and (1.2), parameter r1 > 0 is the intrinsic growth rate of species x1, ri ≤ 0 represents
the death rate of species xi for i = 2, 3, · · · , n, hi ≥ 0 represents the harvesting rate of human for the
species xi for i = 1, 2, · · · , n, xi(t−) is the left limit of xi(t) at time t, aii > 0 (i = 1, 2, · · · , n) is the
density dependent coefficient of species xi, aii+1 ≥ 0 (i = 2, 3, · · · , n − 1) is the capture rate of which
species xi+1 preys on species xi, aii−1 ≥ 0 (i = 2, 3, · · · , n) stands for efficiency of food conversion
from species xi−1 to species xi. Bi(t) (i = 1, 2, · · · , n) are independent standard Brownian motion,
and σ2

i > 0 is the intensity of Bi(t). Lévy noises Ñ(dt, du) = N(dt, du) − λ(du)dt, where N(dt, du) is
a poisson counting measure with characteristic measure λ on a Borel-measurable subset Z of (0,∞)
satisfying λ(Z) < +∞. Functions γi(u) : Z → R (i = 1, 2, · · · , n) represent the effects of random jumps
for species xi that are assumed to be continuous on Z. In this paper we further assume that Lévy noises
Ñ(dt, du) and Brownian motion Bi(t) (i = 1, 2, · · · , n) are also independent.

For any solution (x1(t), · · · , xn(t)) of model (1.2), the initial value is given as follows.

xi(0) = xi0, i = 1, 2, · · · , n, (2.1)

where xi0 (i = 1, 2, · · · , n) are positive constants.
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Denote bi = ri +
∫

z
[ln(1 + γi(u)) − γi(u)]λ(du) − σ2

i
2 and ci = bi − hi for i = 1, 2, · · · , n, and

αk = (c1, c2, · · · , ck)T for k = 1, 2, · · · , n. Furthermore, we denote

Ak =


a11 a12 0 · · · 0 0 0
−a21 a22 a23 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · ·

0 0 0 · · · −ak−1k−2 ak−1k−1 ak−1k

0 0 0 · · · 0 −akk−1 akk


.

Particularly, we have

A1 = [a11], A2 =

[
a11 a12

−a21 a22

]
.

Denote by Hk the determinant of Ak. Let A(i)
k be the matrix gained from matrix Ak by changing its

i-th column to αk, and D(i)
k is the determinant of A(i)

k . Furthermore, for any square matrix P we denote
by P(i, j) the algebraic complement corresponding to the element of i-th row and j-th column of P.

For the Lévy noises in models (1.1) and (1.2), we always assume that the following condition is
satisfied.

(H) For i = 1, 2, · · · , n and u ∈ Z, 1 + γi(u) > 0 holds, and a constant z > 0 exists such that∫
Z
[ln(1 + γi(u))]2λ(du) < z.

Using the same method as in [20], the following conclusions can be established for model (1.2).

Lemma 1. Hk > 0 for every k = 1, 2, · · · , n.

Lemma 2. For any initial values (x10, x20, · · · , xn0) ∈ Rn
+, model (1.2) possesses a globally unique

positive solution x(t) = (x1(t), · · · , xn(t)) ∈ Rn
+ a.s. for all t ≥ 0 satisfying the initial condition (2.1).

Furthermore, for any constant q > 0, there are constants Ci(q) > 0 (i = 1, 2, · · · , n) such that

lim sup
t→∞

E[xq
i (t)] ≤ Ci(q), i = 1, 2, · · · , n.

Similar to [20], we define

N1 =
a12

a11

A(2)
k (3, 2)

Hk(3, k)
, Ni =

aii−1

aii
Ni−1 +

aii+1

aii

A(i+1)
k (i + 2, i + 1)

Hk(i + 2, k)
, i = 1, 2, · · · , k − 2,

Nk−1 =
ak−1k−2

ak−1k−1
Nk−2.

Lemma 3. For any positive solution (x1(t), · · · , xn(t)) of model (1.2), assume that D(n)
n > 0 and (1 +

ann−1
ann

Nn−1) > 0 if n ≥ 3, then limt→∞⟨xi(t)⟩ =
D(i)

n
Hn

a.s., i = 1, 2, · · · , n.

A simple calculation we can obtain that for any integers k, i, j ∈ {1, 2, · · · , n} with i, j ≤ k

A(i)
k ( j, i) = Ak( j, i).
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Therefore, we further have

N1 =
a12

a11

Ak(3, 2)
Hk(3, k)

,

Ni =
aii−1

aii
Ni−1 +

aii+1

aii

Ak(i + 2, i + 1)
Hk(i + 2, k)

, i = 1, 2, · · · , k − 2,

Nk−1 =
ak−1k−2

ak−1k−1
Nk−2.

(2.2)

3. Stability in distribution

Theorem 1. Let (x1(t;ψ), x2(t;ψ), · · · , xn(t;ψ)) and (z1(t;ψ∗), z2(t;ψ∗), · · · , zn(t;ψ∗)) be two solutions
of model (1.2) with initial values ψ, ψ∗ ∈ Rn

+. Assume that there are positive constants wi (i =
1, 2, · · · , n) such that

w1a11 − w2a21 > 0, wiaii − wi−1ai−1i − wi+1ai+1i > 0 (i = 2, 3, · · · , n − 1),
wnann − wn−1an−1n > 0.

Then we have

lim
t→∞

E(
n∑

i=1

|xi(t, ψ) − zi(t, ψ∗)|2)
1
2 = 0.

Proof. We only need to show

lim
t→∞

E|xi(t;ψ) − zi(t;ψ∗)| = 0, i = 1, 2, · · · , n. (3.1)

Define the functions as follows

Vi(xi) = | ln xi(t;ψ) − ln zi(t;ψ∗)|, i = 1, 2, · · · , n.

Applying Itô formula, then

LVi(xi) ≤ − aii|xi(t;ψ) − zi(t;ψ∗)| + aii−1|xi−1(t;ψ) − zi−1(t;ψ∗)|
+ aii+1|xi+1(t;ψ) − zi+1(t;ψ∗)|, i = 1, 2, · · · , n.

(3.2)

where a10 = ann+1 = 0 are stupulated. Define the following function

V(t) =
n∑

i=1

wiVi(xi). (3.3)

From (3.1) we obtain

LV(t) =
n∑

i=1

wiLVi(xi)

≤ −

n∑
i=1

(wiaii − wi−1ai−1i − wi+1ai+1i)|xi(t;ψ) − zi(t;ψ∗)|,
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where a01 = an+1n = 0 and ω0 = ωn+1 = 0 are stipulated. Therefore,

E[V(t)] ≤E[V(0)] −
n∑

i=1

(wiaii − wi−1ai1i − wi+1ai+1i)
∫ t

0
E[|xi(s;ψ) − zi(s;ψ∗)]|ds.

which implies ∫ ∞

0
E[|xi(s;ψ) − zi(s;ψ∗)|]ds < +∞, i = 1, 2, · · · , n. (3.4)

Define the functions

Fi(t) = E[|xi(t;ψ) − zi(t;ψ∗)|], i = 1, 2, · · · , n.

Then, for any t1, t2 ∈ [0,+∞) and each i = 1, 2, · · · , n,

|Fi(t2) − Fi(t1)| =|E[|xi(t2;ψ) − zi(t2;ψ∗)| − |xi(t1;ψ) − zi(t1;ψ∗)|]|
≤E[|xi(t2;ψ) − xi(t1;ψ)|] + E[|zi(t2;ψ∗) − zi(t1;ψ∗)|].

(3.5)

Applying Itô formula to model (1.2), then

xi(t2; ϕ) − xi(t1; ϕ) =
∫ t2

t1
xi(s; ϕ)[ri − hi + aii−1xi−1(s; ϕ) − aiixi(s)

− aii+1xi+1(s; ϕ)]ds +
∫ t2

t1
σixi(s; ϕ)dBi(s)

+

∫ t2

t1

∫
Z

xi(s−)γi(u)Ñ(ds, du), i = 1, 2, ..., n.

(3.6)

For any t2 > t1 and q > 1, from the first equation of (3.6) and Hölder’s inequality, then

(E[|x1(t2;ψ) − x1(t1;ψ)|])q

≤E[(
∫ t2

t1
x1(s;ψ)|r1 − h1 − a11x1(s;ψ) − a12x2(s;ψ)|ds

+ |

∫ t2

t1
σ1x1(s;ψ)dB1(s)|)q] + |

∫ t2

t1

∫
Z

x1(s−)γ1(u)Ñ(ds, du)|

≤3qE[(
∫ t2

t1
x1(s;ψ)|r1 − h1 − a11x1(s;ψ) − a12x2(s;ψ)|ds)q]

+ 3qE[|
∫ t2

t1
σ1x1(s;ψ)dB1(s)|q] + 3qE[|

∫ t2

t1

∫
Z

xi(s−)γi(u)Ñ(ds, du)|q].

(3.7)

Similarly,

E[(
∫ t2

t1
x1(s;ψ)|r1 − h1 − a11x1(s;ψ) − a12x2(s;ψ)|ds)q]

≤(t2 − t1)q−1E[
∫ t2

t1
(|r1 − h1|x1(s;ψ) + a11x2

1(s;ψ) + a12x1(s;ψ)x2(s;ψ))qds]

≤3q(t2 − t1)q−1|r1 − h1|
q
∫ t2

t1
E[xq

1(s;ψ)]ds + 3qaq
11(t2 − t1)q−1

∫ t2

t1
E[x2q

1 (s;ψ)]ds

+ 3q(t2 − t1)q−1E[
∫ t2

t1
(a12x1(s;ψ)x2(s;ψ))qds].

(3.8)
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and

E[
∫ t2

t1
(a12x1(s;ψ)x2(s;ψ))qds]

≤E[
∫ t2

t1
(
1
2

a12x2
1(s;ψ) +

1
2

a12x2
2(s;ψ))qds]

≤aq
12

∫ t2

t1
E[x2q

1 (s;ψ)]ds + aq
12

∫ t2

t1
E[x2q

2 (s;ψ)]ds.

(3.9)

In view of Theorem 7.1 in [21] on the Burkholder-Davis-Gundy inequality, for 1 < q ≤ 2 and any
t2 > t1, then

E[|
∫ t2

t1
σ1x1(s;ψ)dB1(s)|q] ≤ DqE[

∫ t2

t1
|σ1x1(s;ψ)|2ds]q/2

≤ Dqσ
q
1(t2 − t1)

q−2
2

∫ t2

t1
E[xq

1(s;ψ)]ds.
(3.10)

Using the Kunita first inequality in [21], there exists a constant Kq > 0 and from assumption (H) we
can obtain

E[|
∫ t2

t1

∫
Z

x1(s;ψ)γ1(u)Ñ(ds, du)|q]

≤KqE[
∫ t2

t1

∫
Z
|x1(s)γ1(u)|2λ(du)ds]q/2 + E[

∫ t2

t1

∫
Z
|x1(s)γ1(u)|qλ(du)ds]

≤KqLq/2(t2 − t1)
q−2

2

∫ t2

t1
E[xq

1(s;ψ)]ds + KqLq/2
∫ t2

t1
E[xq

1(s;ψ)]ds.

(3.11)

From Lemma 2, there exists C∗∗i (q) > 0 for i = 1, 2, · · · , n such that supt≥−γ E[xq
i (t)] ≤ C∗∗i (q).

Therefore, from (3.7)–(3.10) there is a δ > 0 satisfies that for 1 < q ≤ 2 and any t1 ≥ 0, t2 ≥ 0 with
|t2 − t1| ≤ δ, such that

(E[|x1(t2;ψ) − x1(t1;ψ)|])q

≤3q[Dqσ
q
1(t2 − t1)

q
2 C∗∗1 (q)] + (t2 − t1)

q
2 3q[KqLq/2C∗∗1 (q) + KqLq/2(t2 − t1)1−q/2C∗∗1 (q)]

+ 3q[3q(t2 − t1)q|r1 − h1|
qC∗∗1 (q) + 3qaq

11(t2 − t1)qC∗∗1 (2q)]
+ 32q(t2 − t1)qaq

12[C∗∗1 (2q) +C∗∗2 (2q)]

≤M∗∗1 |t2 − t1|
q
2 ,

where

M∗∗1 =3qDqσ
q
1C
∗∗
1 (q) + 3qKqLq/2[1 + δ

2−q
2 ]C∗∗1 (q) + [81δ]

q
2 [|r1 − h1|

qC∗∗1 (q) + aq
11C

∗∗
1 (2q)]

+ [81δ]
q
2 aq

12[C∗∗1 (2q) +C∗∗2 (2q)].

Similarly, we also obtain

(E[|z1(t2;ψ∗) − z1(t1;ψ∗)|])q ≤ M∗∗1 |t2 − t1|
q
2 .

for any t1 ≥ 0, t2 ≥ 0 with |t2 − t1| ≤ δ and 1 < q ≤ 2. Thus, from (3.5), we obtain

|F1(t2) − F1(t1)| ≤E[|x1(t2;ψ) − x1(t1;ψ)|] + E[|z1(t2;ψ∗) − z1(t1;ψ∗)|]

≤2(M∗∗1 )
1
q
√
|t2 − t1|.

(3.12)
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Using similar argument, for Fi(t) (i = 2, 3, · · · , n), we also can obtain that there is a δ > 0 for any
t1 ≥ 0, t2 ≥ 0 with |t2 − t1| ≤ δ and 1 < q ≤ 2

|Fi(t2) − Fi(t1)| ≤ 2(M∗∗i )
1
q
√
|t2 − t1|, i = 2, 3, · · · , n, (3.13)

where

M∗∗i =3qDqσ
q
i C
∗∗
i (q) + 3qKqLq/2[1 + δ

2−q
2 ]C∗∗i (q)

+ [144δ]
q
2 [|ri + hi|

qC∗∗i (q) + aq
iiC
∗∗
i (2q)] + [144δ]

q
2 aq

ii+1[C∗∗i (2q) +C∗∗i+1(2q)]

+ [144δ]
q
2 aq

ii−1[C∗∗i−1(2q) +C∗∗i+1(2q)], i = 2, 3, · · · , n.

From (3.12) and (3.13), we obtain that Fi(t), i = 1, 2, · · · , n for t ∈ (0,∞) are uniformly continuous.
Therefore, from (3.4) and Barbalat lemma in [22] we finally obtain that (3.1) holds. This completes
the proof. □

Let P(Rn
+) be the space of all probability measures on C(Rn

+). For Q1,Q2 ∈ P(Rn
+), we define

dLB(Q1,Q2) = sup
f∈LB
|

∫
Rn
+

f (y)Q1(dy) −
∫

Rn
+

f (y)Q2(dy)|, (3.14)

where
LB = { f : Rn

+ → R : | f (y1) − f (y2)| ≤ ∥y1 − y2∥, | f (·)| ≤ 1}. (3.15)

Denote by p(t, ϕ, dx) the transition probability of process x(t) = (x1(t), x2(t), · · · , xn(t)). We have the
following results.

Theorem 2. Assume that there exists constants wi > 0 (i = 1, 2, · · · , n) such that

w1a11 − w2a21 > 0, wiaii − wi−1ai−1i − wi+1ai+1i > 0 (i = 2, 3, · · · , n − 1),
wnann − wn−1an−1n > 0.

Then model (1.2) is asymptotically stable in distribution, that is, there is a probability measure
v(·) satisfies that for any initial function ψ ∈ Rn

+, the transition probability p(t, ψ, ·) of solution
(x1(t, ψ), x2(t, ψ), · · · , xn(t, ψ)) such that

lim
t→∞

dLB(p(t, ψ, ·), v(·)) = 0.

Proof. For any initial data ψ ∈ Rn
+, the family probability p(t, ψ, ·) is tight which obtained from Theo-

rem 1 and Chebyshev’s inequality. For any f ∈ LB and t, s > 0, we compute

| E f (y(t + s;ψ))p(t + s, ψ, dy) − E f (y(t;ψ))p(t, ψ, dy) |
= | E[E( f (y(t + s;ψ)) | Fs)] − E[ f (y(t;ψ))] |

= |

∫
Rn
+

E[ f (y(t; ϕ))]p(s, ψ, dϕ) − E[ f (y(t;ψ))] |≤
∫

Rn
+

| E f (y(t; ϕ)) − E f (y(t;ψ)) | p(s, ψ, dϕ).

It is clear that there exists a constant T > 0 from (3.1), such that for all t ≥ T ,

sup
f∈LB
| E f (y(t; ϕ)) − E f (y(t;ψ)) |≤ ε.

Electronic Research Archive Volume 31, Issue 9, 5207–5225.



5215

Consequently
| E f (y(t + s;ψ)) − E f (y(t;ψ)) |≤ ε.

Since f is arbitrary, we gain

sup
f∈LB
| E f (y(t + s;ψ)) − E f (y(t;ψ)) |≤ ε.

That is,
dLB(p(t + s, ψ, ·), p(t, ψ, ·)) ≤ ε.

Therefore {p(t, ψ, ·) : t ≥ 0} is Cauchy in the space P(Rn
+). Hence, there is a unique v(·) ∈ P(Rn

+) such
that

lim
t→∞

dLB(p(t, ψ0, ·), v(·)) = 0.

where ψ0 = (c10, c20, ..., cn0)T ∈ Rn
+, and c10, · · · , cn0 are positive constants. It then follows from (3.1)

that
lim
t→∞

dLB(p(t, ψ, ·), p(t, ψ0, ·) = 0.

Hence,

lim
t→∞

dLB(p(t, ψ, ·), v(·) ≤ lim
t→∞

dLB(p(t, ψ, ·), p(t, ψ0, ·)) + lim
t→∞

dLB(p(t, ψ0, ·), v(·)) = 0.

This completes the proof. □

4. Optimal harvesting strategy

Since Hn > 0 in Lemma 1, the inverse matrix A−1
n exists. Let B = (b1, b2, · · · , bn)T and H =

(h1, h2, · · · , hn)T . Moreover, let E be the unit matrix, andH∗ = (An(A−1
n )T + E)−1B ≜ (h∗1, h

∗
2, · · · , h

∗
n)T .

Theorem 3. Assume that the following conditions hold
(1) (1 + ann−1

ann
Nn−1) > 0 if n ≥ 3;

(2) there exists constants wi > 0 (i = 1, 2, · · · , n) such that

w1a11 − w2a21 > 0, wiaii − wi−1ai−1i − wi+1ai+1i > 0 (i = 2, 3, · · · , n − 1),
wnann − wn−1an−1n > 0.

Then the following conclusions hold.
(A1) If D(n)

n |hi=h∗i > 0, A−1
n + (A−1

n )T is positive semi-definite and h∗i ≥ 0 (i = 1, 2, · · · , n), then model
(1.2) has the OHS H = H∗, and

MES Y ≜ S (H∗) = (H∗)T A−1
n (B −H∗). (4.1)

(A2) If any of the following conditions stands, then the OHS for model (1.2) does not exist.
(B1) D(n)

n |hi=h∗i ,i=1,2,··· ,n ≤ 0;
(B2) There is a h∗i with h∗i < 0;
(B3) A−1

n + (A−1
n )T is not positive semi-definite.
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Proof. Let Y = {H = (h1, h2, · · · , hn)T ∈ Rn : D(n)
n > 0, hi ≥ 0, i = 1, 2, · · · , n}, which means that for

anyH ∈ Y, the conclusion of Lemma 3 stands.
First, we prove the conclusion (A1). Since H∗ ∈ Y, the set Y is not empty. A unique probability

measure v(·) is gained from Theorem 2. Then, v(·) is also strong mixing by Corollary 3.4.3 [23]. From
Theorem 3.2.6 [23], we gain that the measure v(·) is ergodic. For any initial value ψ ∈ Rn

+, model (1.2)
possess a positive gloabl solution x(t) = (x1(t), x2(t), · · · , xn(t)). It yields by Theorem 3.3.1 [23] that

lim
t→∞

1
t

∫ t

0
HT x(s)ds =

∫
Rn
+

HT xv(dx), (4.2)

where H = (h1, h2, · · · , hn)T ∈ Y. Let ϱ(z) be the stationary probability density of model (1.2), then
we have

S (H) = lim
t→∞

E[
n∑

i=1

hixi(t)] = lim
t→∞

E[HT x(t)] =
∫

Rn
+

HT xϱ(x)dx. (4.3)

In view of the invariant measure is sole, there also exists a one-to-one correspondence among ϱ(z) and
its corresponding invariant measure. Hence, we have∫

Rn
+

HT xϱ(x)dx =
∫

Rn
+

HT xv(dx). (4.4)

Combining (4.2)–(4.4) with the conclusion of Lemma 3, then

S (H) = lim
t→+∞

1
t

∫ t

0
HT x(s)ds

=h1 lim
t→+∞

1
t

∫ t

0
x1(s)ds + h2 lim

t→+∞

1
t

∫ t

0
x2(s)ds + · · · + hn lim

t→+∞

1
t

∫ t

0
xn(s)ds

=h1
D(1)

n

Hn
+ h2

D(2)
n

Hn
+ · · · + hn

D(n)
n

Hn
.

Moreover, S (H) = HT (An)−1(B − H) is derived by careful calculation. Computing the gradient of
S (H), then

∂S (H)
∂H

=
∂HT

∂H
(An)−1(B −H) +

∂(B −H)T

∂H
((An)−1)TH .

Since ∂HT

∂H
= E, then

∂S (H)
∂H

= (An)−1(B −H) − ((An)−1)TH = (An)−1B − ((An)−1 + ((An)−1)T )H .

By solving ∂S (H)
∂H
= 0, the following critical value is gained

H = ((An)−1 + ((An)−1)T )−1(An)−1B.

That is,
H = [(An)−1((An)((An)−1)T + E)]−1(An)−1B = ((An)((An)−1)T + E)−1B = H∗.
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Calculating the Hessian matrix of S (H), we obtain

∂

∂H
(
∂S (H)
∂H

) = −
∂((An)−1 + ((An))T )H

∂H
= −((An)−1 + ((An)−1)T ). (4.5)

Since (An)−1 + ((An)−1)T is positive semi-definit, from the existence principle of extremum value of
multi-variable function we obtain that S (H) has a global maximum value atH = H∗. Obviously,H∗

is also sole. Therefore, if H∗ ∈ Y, that is h∗i ≥ 0 (i = 1, 2, · · · , n) and D(n)
n |hi=h∗i ,i=1,2,··· ,n > 0, then we

finally obtain thatH∗ is an OHS, and MESY shown in (20).
Next, we prove the conclusion (A2). We first assume that (B1) or (B2) stands. Suppose that Γ̃ =

(γ1, γ2, · · · , γn) is the OHS for model (1.2), thus Γ ∈ Y, that is

D(n)
n |hi=γi,i=1,2,··· ,n > 0, γi ≥ 0, i = 1, 2, · · · , n. (4.6)

On the other hand, if Γ ∈ Y is the OHS, then Γ is a unique solution of equation ∂S (H)
∂H
= 0. Therefore,

we have (h∗1, h
∗
2, · · · , h

∗
n) = (γ1, γ2, · · · , γn). Thus, condition (4.6) becomes into

D(n)
n |hi=h∗i ,i=1,2,··· ,n > 0, h∗i ≥ 0, i = 1, 2, · · · , n.

However, this is impossible.
Finally, consider (B3). It can be assumed that (B1) and (B2) fail to stand in this case. Therefore,

h∗i ≥ 0 (i = 1, 2, · · · , n) and D(n)
n |hi=h∗i ,i=1,2,··· ,n > 0. Thus, Y is not empty, i.e., (4.2)–(4.4) hold. Denote

(An)−1 + ((An)−1)T = (hi j)n×n. Then, by calculating we have

h11 =
2(a22a33 · · · ann + · · · + a22a34 · · · ann−1 + a23a32 · · · ann)

Hn

Obviously, h11 > 0, which means that (An)−1 + ((An)−1)T is not negative semi-definite. It can be further
derived from the conditions in (B3) that (An)−1 + ((An)−1)T is indefinite. Hence, there is not the OHS if
B3 holds. This completes the proof. □

Remark 1. In Theorem 3 we see that the conditions (1) and (2) are required. From the following
argumentations we will find that when n = 3 and n = 4 condition (2) can bring out condition (1).
Therefore, we propose the following proposition. However, when n > 4 whether condition (2) can
bring out condition (1) still is an open problem. Thus, the following conjecture can be proposed.

Proposition 1. When n = 3 and n = 4, if condition (2) holds then condition (1) also holds.

Proof. Let k = 3, then condition (2) becomes to

w1a11 − w2a21 > 0, w2a22 − w1a12 − w3a32 > 0 w3a33 − w2a23 > 0. (4.7)

From (2.2), by calculating we have

N1 = −
a12a23

a11a22 + a12a21
, N2 = −

a12a21a23

a22(a11a22 + a12a21)
,

and
1 +

a32

a33
N2 =

a22a33(a11a22 + a12a21) − a12a21a23a32

a22a33(a11a22 + a12a21)
.
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From (4.7) we derive

a22 ≥
1

w2
(w1a12) + w3a32, a33 ≥

w2a23

w3
.

Therefore, we further have

a22a33(a11a22 + a12a21) − a12a21a23a32

>[
1

w2
(w1a12 + w3a32)

1
w3

w2a23(a11a22 + a12a21)] − a12a21a23a32

=(
w1a12

w2w3
+

a32

w2
)w2a23(a11a22 + a12a21) − a12a21a23a32

=(
w1a12a23

w3
+ a23a32)(a11a22 + a12a21) − a12a21a23a32

=
w1a12a23

w3
(a11a22 + a12a21) + a11a22a23a32 > 0.

This shows that 1 + a32
a33

N2 > 0.
Let k = 4, then condition (2) becomes to

w1a11 − w2a21 > 0, w2a22 − w1a12 − w3a32 > 0,
w3a33 − w2a23 − w4a43 > 0, w4a44 − w3a34 > 0.

(4.8)

From (2.2), by calculating, we have

N1 = −
a12a23a44

a43H2
, N2 = −

(a12a21a23a44H3 + a23a34a43H2
2)

a22a43H2H3
,

N3 = −
a32(a12a21a23a44H3 + a23a34a43H2

2)
a33a22a43H2H3

,

and

1 +
a43

a44
N3 = 1 −

(a12a21a23a32a44H3 + a23a32a34a43H2
2)

a22a33a44H2H3

=
a22a33a44H2H3 − a12a21a23a32a44H3 − a23a32a34a43H2

2

a22a33a44H2H3
.

From (4.8) we obtain

a11 >
w2

w1
a21, aii >

1
wi

(wi−1ai−1i + wi+1ai+1i), i = 2, 3, a44 >
w3

w4
a34.

Therefore,

(a22a33H2 − a12a21a23a32)a44H3

>(
1

w2
[w1a12 + w3a32]

1
w3

[w2a23 + w4a43][a11a22 + a12a21] − a12a21a23a32)a44H3

≥((
1

w2
w1a12

1
w3

[w2a23 + w4a43] +
w4

w2
a32a43)(a11a22 + a12a21))a44H3

≥
w4

w2
a32a43(a11a22 + a12a21)

w3

w4
a34H3.
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Since

H3 > (a11a22 + a12a21)a33 > (a11a22 + a12a21)
w2

w3
a23,

we further obtain

(a22a33H2 − a12a21a23a32)a44H3

>
w4

w2
a32a43(a11a22 + a12a21)

w3

w4
a34(a11a22 + a12a21)

w2

w3
a23

=a23a32a34a43H2
2 .

This shows that 1 + a43
a44

N3 > 0. □

Conjecture 1. When n > 4, if condition (2) holds then condition (1) also holds.

5. Numerical examples

To support our analysis results, we will provide the numerical examples for model (1.2). The numer-
ical simulations can be performed qualitatively, and parameters are selected in an epidemiologically
feasible way.

Example 1. In model (1.2) we take n = 4, r1 = 1.5, r2 = −0.6, r3 = −0.08, r4 = −0.01, γ1 = 0.1,
γ2 = 0.15, γ3 = 0.15, γ4 = 0.1, a11 = 1.6, a12 = 0.2, a22 = 2.2, a21 = 2.5, a23 = 0.1, a32 = 2.5, a33 = 2,
a34 = 0.3, a43 = 1.3, a44 = 2, σ1 = 0.1, σ2 = 0.2, σ3 = 0.1 and σ4 = 0.1

Choose w1 = 2.5, w2 = 1.3, w3 = 0.8 and w4 = 0.5, by calculating we have w1a11−w2a21 = 0.7500 >
0, w2a22 − w1a12 − w3a32 = 0.3600 > 0, w3a33 − w2a23 − w4a43 = 0.8200 > 0 and m4a44 − m3a34 =

0.7600 > 0. Proposition 1 shows that 1+ a43
a44

N3 > 0. Thus, all four species in model (1.2) are persistent
in mean which is shown in Figure 1 below. Furthermore, h∗1 = 0.3250, h∗2 = 0.3914, h∗3 = 0.3264,
h∗4 = 0.1281 and D(4)

4 |hi=h∗i ,i=1,2,3,4 = 0.5201 > 0 are obtained by calculating, all leading principal minors
of A4 + (A−1

4 )T are positive, which shows that the A4 + (A−1
4 )T is positive semi-definite. Thus, the

condition of conclusion (A1) is satisfied, then the OHS: H∗ = (0.3250, 0.3914, 0.3264, 0.1281)T and
MESY= 0.4321 are gained, as Figure 1 shows below.
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Figure 1. The sample path for the solution and MESY illustrate that species xi(t) (i =
1, 2, 3, 4) is persistent in the mean and MESY exists. The brown line represent the solution
of the corresponding undisturbed system and the blue lines represent the solution of model
(1.2).

Example 2. In model (1.2) we take n = 4, r1 = 1.5, r2 = −0.5, r3 = −0.03, r4 = −0.01; γ1 = 0.15,
γ2 = 0.2, γ3 = 0.1 and γ4 = 0.05. The rest parameters in model (1.2) are shown in the following three
cases.

Case 2.1. a11 = 1.6, a12 = 0.2, a22 = 2, a21 = 2.5, a23 = 1, a32 = 2.5, a33 = 2.1, a34 = 0.2, a43 = 0.1,
a44 = 2, σ1 = 0.1, σ2 = 0.2, σ3 = 0.2 and σ4 = 0.1.

Case 2.2. a11 = 1.8, a12 = 0.2, a22 = 2, a21 = 1.5, a23 = 0.2, a32 = 1.5, a33 = 2.1, a34 = 0.8,
a43 = 1.1, a44 = 2.5, σ1 = 0.2, σ2 = 0.2, σ3 = 0.3 and σ4 = 0.1.

Case 2.3. a11 = 0.8, a12 = 0.2, a22 = 2, a21 = 1, a23 = 0.15, a32 = 1.5, a33 = 2, a34 = 0.1, a43 = 1,
a44 = 0.08, σ1 = 0.2, σ2 = 0.3, σ3 = 0.3 and σ4 = 0.1.

For Case 2.1, choose w1 = 2.5, w2 = 1.3, w3 = 0.8 and w4 = 1.4, then we have w1a11 − w2a21 =
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0.75 > 0, w2a22 − w1a12 − w3a32 = 0.10 > 0, w3a33 − w2a23 − w4a43 = 0.24 > 0 ºÍ m4a44 − m3a34 =

2.64 > 0. Furthermore, h∗1 = 0.3621, h∗2 = 0.4773, h∗3 = 0.4665, h∗4 = 0.0051 are gained by calculating.
Meanwhile, D(4)

4 |hi=h∗i ,i=1,2,3,4 = −0.1475 < 0. Thus the condition (B1) of (A2) is satisfied. Therefore,
the OHS do not exist. The numerical simulations are given in Figure 2.

For Case 2.2, choose w1 = 2.2, w2 = 1.1, w3 = 1.1 and w4 = 1.4, then we have w1a11 − w2a21 =

2.31 > 0, w2a22 − w1a12 − w3a32 = 0.11 > 0, w3a33 − w2a23 − w4a43 = 0.55 > 0 ºÍ m4a44 − m3a34 =

2.62 > 0. Furthermore, h∗1 = 0.9445 > 0, h∗2 = 0.2174 > 0, h∗3 = 0.0039 > 0 and h∗4 = −0.0124 < 0 are
obtained by calculating. Thus the condition (B2) of conclusion (A2) is satisfied. Therefore, the OHS
do not exist. The numerical simulations are given in Figure 3.

For Case 2.3, choose w1 = 2.8, w2 = 2, w3 = 2 and w4 = 2.8, then we have w1a11−w2a21 = 0.24 > 0,
w2a22 − w1a12 − w3a32 = 0.44 > 0, w3a33 − w2a23 − w4a43 = 0.90 > 0 ºÍ m4a44 − m3a34 = 0.024 > 0.
Furthermore, by calculating we obtain that the fourth leading principle minor of A4 + (A−1

4 )T is equal
to −6.2127 < 0, which means that A4 + (A−1

4 )T is negative semi-definite. Thus the condition (B3) is
satisfied. Therefore, the optimal harvesting strategy do not exist. The numerical simulations are given
in Figure 4.
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Figure 2. The sample path for the solution shows that species xi(t) (i = 1, 2, 3) is persistent
in the mean and x4 goes to extinction.
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Figure 3. The sample path for the solution shows that species xi(t) (i = 1, 2, 3) is persistent
in the mean and x4 goes to extinction.
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Figure 4. The sample path for the solution shows that species xi(t) (i = 1, 2, 3) is persistent
in the mean and x4 goes to extinction.
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6. Conclusions

In this paper, based on the effect of harvesting and Lévy noises, a stochastic marine n-species
system is investigated. On the basis of the research results in [23], we first establish the criterion for
the stability in distribution of model (1.2). Then, the criteria for existence and nonexistence of OHS
and the corresponding MESY are derived. This shows that the environmental noises affect the OHS
and MESY.

Compared with the existing results, our first contribution is to investigate the stochastic stability
and optimal harvesting problems for a stochastic marine n-species food chain model with Lévy noises
and white noises. Second, the criteria on the stability in distribution and optimal harvesting strategy
for stochastic n-species food chain model are established for the first time. Third, the noises intensity
can easily affect the dynamics and MESY of marine populations, and further lead to the imbalances of
marine ecology. Finally, we find that for better manage and protect marine resources, the establishment
of an optimal harvesting strategy should fully consider the impact of noise intensity.

There are still some remained problems that need to be followed up. For example, in Conjecture
1, we assume if w1a11 − w2a21 > 0, wiaii − wi−1ai−1i − wi+1ai+1i > 0 (i = 2, 3, · · · , n − 1), wnann −

wn−1an−1n > 0, then 1 + ann−1
ann

Nn−1 > 0, how to prove is an open problem. Second, marine population
are easily affected by climate change, consider marine population model with regime switching is
necessary. Finally, more complex and realistic stochastic system with nonlinear functional response,
delays and Allee effect need to be investigated. These issues may be investigated in the future.
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