Research article

Theorems of existence and uniqueness for pointwise-slant immersions in Kenmotsu space forms

  • Received: 07 January 2024 Revised: 29 April 2024 Accepted: 07 May 2024 Published: 21 May 2024
  • MSC : 53C15, 53C25, 53C42

  • The present paper aims to demonstrate the theorems of existence and uniqueness for pointwise slant immersions in Kenmotsu space forms. Some substantial results are given in this direction. Also, we offer non-trivial examples of pointwise slant submanifolds of an almost contact- metric manifold.

    Citation: Noura Alhouiti. Theorems of existence and uniqueness for pointwise-slant immersions in Kenmotsu space forms[J]. AIMS Mathematics, 2024, 9(7): 17489-17503. doi: 10.3934/math.2024850

    Related Papers:

    [1] Noura Alhouiti . Existence and uniqueness theorems for pointwise-slant immersions in Sasakian space forms. AIMS Mathematics, 2023, 8(8): 17470-17483. doi: 10.3934/math.2023892
    [2] Rajesh Kumar, Sameh Shenawy, Lalnunenga Colney, Nasser Bin Turki . Certain results on tangent bundle endowed with generalized Tanaka Webster connection (GTWC) on Kenmotsu manifolds. AIMS Mathematics, 2024, 9(11): 30364-30383. doi: 10.3934/math.20241465
    [3] Ibrahim Al-Dayel, Mohammad Shuaib . Conformal bi-slant submersion from Kenmotsu manifolds. AIMS Mathematics, 2023, 8(12): 30269-30286. doi: 10.3934/math.20231546
    [4] Yanlin Li, Dipen Ganguly, Santu Dey, Arindam Bhattacharyya . Conformal η-Ricci solitons within the framework of indefinite Kenmotsu manifolds. AIMS Mathematics, 2022, 7(4): 5408-5430. doi: 10.3934/math.2022300
    [5] Ali H. Alkhaldi, Meraj Ali Khan, Shyamal Kumar Hui, Pradip Mandal . Ricci curvature of semi-slant warped product submanifolds in generalized complex space forms. AIMS Mathematics, 2022, 7(4): 7069-7092. doi: 10.3934/math.2022394
    [6] Ali H. Alkhaldi, Akram Ali, Jae Won Lee . The Lawson-Simons' theorem on warped product submanifolds with geometric information. AIMS Mathematics, 2021, 6(6): 5886-5895. doi: 10.3934/math.2021348
    [7] Tanumoy Pal, Ibrahim Al-Dayel, Meraj Ali Khan, Biswabismita Bag, Shyamal Kumar Hui, Foued Aloui . Generalized warped product submanifolds of Lorentzian concircular structure manifolds. AIMS Mathematics, 2024, 9(7): 17997-18012. doi: 10.3934/math.2024877
    [8] Abdul Haseeb, Fatemah Mofarreh, Sudhakar Kumar Chaubey, Rajendra Prasad . A study of -Ricci–Yamabe solitons on LP-Kenmotsu manifolds. AIMS Mathematics, 2024, 9(8): 22532-22546. doi: 10.3934/math.20241096
    [9] Meraj Ali Khan, Ali H. Alkhaldi, Mohd. Aquib . Estimation of eigenvalues for the α-Laplace operator on pseudo-slant submanifolds of generalized Sasakian space forms. AIMS Mathematics, 2022, 7(9): 16054-16066. doi: 10.3934/math.2022879
    [10] Fatemah Mofarreh, S. K. Srivastava, Anuj Kumar, Akram Ali . Geometric inequalities of PR-warped product submanifold in para-Kenmotsu manifold. AIMS Mathematics, 2022, 7(10): 19481-19509. doi: 10.3934/math.20221069
  • The present paper aims to demonstrate the theorems of existence and uniqueness for pointwise slant immersions in Kenmotsu space forms. Some substantial results are given in this direction. Also, we offer non-trivial examples of pointwise slant submanifolds of an almost contact- metric manifold.



    B.-Y Chen originally explored the idea of slant submanifolds in [9,10], expanding upon the ideas of real and holomorphic submanifolds [12]. Additionally, A. Lotta [22] defined and examined the slant submanifolds in almost contact metric manifolds, and he established certain properties of such submanifolds. After that, this topic was researched in a number of structures on Riemannian manifolds (see [3,6,7,13,19]).

    From this viewpoint, the theory of existence and uniqueness for slant immersions emerged in complex space forms [14,15], in Sasakian space forms [5], in cosymplectic space forms [20], and in Kenmotsu space forms [23].

    Otherwise, F. Etayo [17] introduced the concept of pointwise slant submanifolds, also known as quasi-slant submanifolds, as a generalization of slant submanifolds. Afterwards, pointwise slant submanifolds of almost Hermitian manifolds were studied by Chen and Garay [11]. Subsequently, many geometries investigated this concept (see [18,24,25,26,27]).

    In an analogous manner, [1,2] presented the existence and uniqueness theorems for pointwise slant immersions in complex space forms and in Sasakian space forms, respectively.

    In the framework of previous papers, in this paper, we study these theorems in Kenmotsu space forms.

    The structure of the paper is as follows: In Section 2, we review some fundamental definitions and formulas that will come in handy later. Next, we review some results for the pointwise-slant submanifold of an almost contact-metric manifold, and we offer a general example of such a submanifold in Section 3. Establishing the existence and uniqueness theorems for pointwise-slant immersions into Kenmotsu space forms is the focus of Section 4.

    A smooth manifold ˜N of dimension (2r+1) is said to be an almost contact metric manifold if it equipped with the almost contact metric structure (ψ,ξ,η,g), which included a (1,1) tensor field ψ, a vector field ξ, a 1form η, and a Riemannian metric g on ˜N, which satisfies the following conditions: [4]

    ψ2U=U+η(U)ξ,ψξ=0,η(ψU)=0,η(ξ)=1, (2.1)

    and

    g(ψU,ψV)=g(U,V)η(U)η(V),g(U,ξ)=η(U), (2.2)

    for all U,VΩ(T˜N2r+1), where Ω(T˜N2r+1) denotes the Lie algebra of smooth vector fields on ˜N2r+1.

    Definition 2.1. [21] An almost contact metric manifold ˜N2r+1 is said to be a Kenmotsu manifold if

    (˜Uψ)V=g(ψU,V)ξη(V)ψU, (2.3)

    and

    ˜Uξ=Uη(U)ξ, (2.4)

    for any U,VΩ(T˜N2r+1), where ˜ denotes the Levi-Civita connection on ˜N2r+1 with respect to the Riemannian metric g.

    The following formula is known to provide the covariant derivative of the tensor field ψ:

    (˜Uψ)V=˜UψVψ˜UV, (2.5)

    for all U,VΩ(T˜N2r+1).

    The Kenmotsu manifold ˜N2r+1 with the constant ψ-sectional curvature k is referred to as a Kenmotsu space form and is represented by ˜N2r+1(k) when the curvature tensor ˜R is given by:

    ˜R(U,V)W=k34{g(V,W)Ug(U,W)V}+k+14{η(U)η(W)Vη(V)η(W)U+η(V)g(U,W)ξη(U)g(V,W)ξ+g(ψV,W)ψUg(ψU,W)ψV+2g(U,ψV)ψW}, (2.6)

    for any U,V,WΩ(T˜N2r+1) [21].

    With the same Riemannian metric g induced on an almost contact metric manifold ˜N2r+1, let N be a submanifold of dimension (s+1) in ˜N2r+1. The tangent bundle of N is represented by TN, and the set of all vector fields normal to N is denoted by TN. The Riemannian connection ˜ of ˜N2r+1 induces the connections and on TN and TN of N, respectively, governed by the Gauss and Weingarten formulas as follows:

    ˜UV=UV+α(U,V), (2.7)
    ˜Uζ=AζU+Uζ, (2.8)

    for any U,VΩ(TN) and ζΩ(TN), where α and Aζ are the second fundamental form of N and the shape operator corresponding to ζ, respectively. Their relationship is based on

    g(α(U,V),ζ)=g(AζU,V). (2.9)

    For the second fundamental form α, the covariant derivative ¯α is given by

    (¯Uα)(V,W)=Uα(V,W)α(UV,W)α(V,UW). (2.10)

    The curvature tensors of the connections and on N are denoted by R and R. Then, the Gauss, Ricci, and Codazzi equations are provided, respectively, by Chen in [8] as follows:

    ˜R(U,V;W,X)=R(U,V;W,X)+g(α(U,W),α(V,X))g(α(U,X),α(V,W)), (2.11)
    ˜R(U,V;ζ,ω)=R(U,V;ζ,ω)g([Aζ,Aω]U,V), (2.12)

    and

    (˜R(U,V)W)=(¯Uα)(V,W)(¯Vα)(U,W), (2.13)

    for any U,V,W,XΩ(TN) and ζ,ωΩ(TN), where (˜R(U,V)W) denotes the normal component of ˜R(U,V)W.

    Let us now decompose ψU for any tangent vector UΩ(TN) into tangent and normal parts as follows:

    ψU=TU+NU. (2.14)

    In a similar vein, we decompose ψζ for any normal vector ζΩ(TN) into tangent and normal parts as follows:

    ψζ=tζ+nζ. (2.15)

    The covariant derivatives of tensor fields in (2.14) are characterized by:

    (UT)V=UTVT(UV), (2.16)
    (UN)V=UNVN(UV). (2.17)

    Immediately, from (2.3), (2.4), (2.7) and (2.8), we obtain

    (UT)V=ANVU+tα(U,V)+g(TU,V)ξη(V)TU, (2.18)
    (UN)V=nα(U,V)α(U,TV)η(V)NU, (2.19)

    for any U,VΩ(TN).

    We revisit certain findings regarding pointwise slant submanifolds of an almost contact metric manifold ˜N in this section.

    For a submanifold N of an almost contact metric manifold ˜N, the angle θ(U) between ψU and TpN for a non-zero vector UTpN and for each point pN is known as the Wirtinger angle, and N is called a pointwise θ-slant submanifold of ˜N if θ(U) is independent of the selection of UTpN. In this instance, θ(U) is called the slant function of the pointwise θ-slant submanifold N. If θ is globally constant, a pointwise θ-slant submanifold N of ˜N is referred to as slant. It is also referred to as an invariant(resp., anti-invariant) if θ=0 (resp., θ=π2), and it is called a proper pointwise slant whenever θ0,π2 and θ are not constant on N ([9,10]).

    Now, we provide non-trivial examples of pointwise slant submanifolds of an almost contact metric manifold.

    Example 3.1. Let R7 be the Euclidean 7-space with the usual cartesian coordinates (xi,yj,z), 1i,j3. We define the structure (ψ,ξ,η,g) on R7 as follows:

    ψ(xi)=yi,ψ(yj)=xj,ψ(z)=0,

    with ξ=z, η=dz and the usual Euclidean metric tensor g=3i,j=1(dx2i+dy2j)+dz2 on R7. For any vector field U=λixi+μjyj+νz in TR7, we have

    η(U)=dz(λixi+μjyj+νz)=ν=g(U,ξ)=g(λixi+μjyj+νz,z),
    ψU=λiyi+μjxj,η(ψU)=0,
    ψU2=λixiμjyj=U+νz=U+η(U)ξ,
    g(U,U)=g(λixi+μjyj+νz,λixi+μjyj+νz)=λ2i+μ2j+ν2,

    and

    g(ψU,ψU)=g(λiyi+μjxj,λiyi+μjxj)=λ2i+μ2j.

    Thus,

    g(ψU,ψU)=g(U,U)η2(U).

    Hence, the defined structure (ψ,ξ,η,g) is an almost contact metric structure on R7.

    Consider a submanifold N of R7 given by the following immersion:

    f(p,q,z)=(pcosq,qcosp,p2+q22,psinq,qsinp,p2q22,z),

    for any p,q non vanishing real valued functions. Thus, the tangent space of N is generated by the following vectors:

    V1=cosqx1qsinpx2+px3+sinqy1+qcospy2+py3,V2=psinqx1+cospx2+qx3+pcosqy1+sinpy2qy3,V3=z.

    Then, we have

    ψV1=cosqy1+qsinpy2py3+sinqx1+qcospx2+px3,ψV2=psinqy1cospy2qy3+pcosqx1+sinpx2qx3,ψV3=0.

    By simple calculation, we infer that N is a 3-dimensional proper pointwise slant submanifold of R7 such that the vector field ξ is tangent to N with slant function θ=cos1(pq(1+2p)2p2+q2+12q2+p2+1), as p,q\, (pq) are non-vanishing real valued functions on N.

    Example 3.2. Let R11 be the Euclidean 11-space with the usual cartesian coordinates (xi,yj,z),\, \, \, 1i,j5 and the same almost contact metric structure (ψ,ξ,η,g) as mentioned in the previous example. Given a submanifold N of R11, which is defined by the following immersion:

    f(p,q,z)=(p+q,p,eq,sinp,cosq,pq,q,ep,cosp,sinq,z),

    where p,q are non-vanishing real-valued functions. The tangent space of N is spanned by the following vectors:

    V1=x1x2+cospx4+y1+epy3sinpy4,V2=x1+eqx3sinqx5y1+y2+cosqy5,V3=z.

    Then, the slant function is provided by θ=cos1(3+ep+q4+e2p4+e2q). Hence, N is a 3-dimensional proper pointwise slant submanifold of R11.

    For a pointwise θ-slant submanifold N of an almost contact metric manifold ˜N, we remember the following significant results from [27].

    Theorem 3.1. Let N be a submanifold of an almost contact metric manifold ˜N, such that the vector field ξ is tangent to N. Then, N is a pointwise θ-slant submanifold of ˜N if and only if

    T2U=cos2θ(Uη(U)ξ), (3.1)

    for any UΩ(TN), where θ is the slant function on N.

    Corollary 3.1. Let N be a pointwise θ-slant submanifold of ˜N with ξ tangent to N. Then, we have

    g(TU,TV)=cos2θ(g(U,V)η(U)η(V)), (3.2)
    g(NU,NV)=sin2θ(g(U,V)η(U)η(V)), (3.3)

    for any U,VΩ(TN).

    In addition, there is another relation achieved in the pointwise θ-slant submanifold N of ˜N given by:

    (a)tNU=sin2θ(Uη(U)ξ)(b)nNU=NTU, (3.4)

    for any UΩ(TN).

    From now on, suppose that N is a pointwise θ-slant submanifold in Kenmotsu space of form ˜N2r+1(k) with ξΩ(TN). Therefore, we can obtain the orthogonal direct decomposition TN=Dξ if we denote the orthogonal distribution to ξ in TN by D.

    For each UΩ(TN), for simplicity, we set

    U=(cscθ)NU, (3.5)

    where θ0 be a slant function. Let σ be a symmetric bilinear TN-valued form on N defined as follows:

    σ(U,V)=tα(U,V), (3.6)

    for any U,VΩ(TN). In particular, using (2.4) and (2.7), the above expression reduces to

    σ(U,ξ)=0. (3.7)

    Then, from (2.14) and (3.5) in (3.6), we find

    ψσ(U,V)=Tσ(U,V)+(sinθ)σ(U,V). (3.8)

    In view of (2.15) and (3.6), we receive that

    ψα(U,V)=σ(U,V)+δ(U,V),

    where δ is a symmetric bilinear D-valued form on N, and it is defined as δ(U,V)=nα(U,V). Operating the almost contact structure ψ on the above equation with (2.1), (2.15) and (3.8), we observe that

    α(U,V)=Tσ(U,V)+(sinθ)σ(U,V)+tδ(U,V)+nδ(U,V).

    Comparing the tangential and the normal parts in the above expression, we obtain

    Tσ(U,V)=tδ(U,V),

    and

    α(U,V)=(sinθ)σ(U,V)nδ(U,V).

    Making use of (3.1), (3.4) and (3.5), we find

    δ(U,V)=(cscθ)Tσ(U,V),

    and

    α(U,V)=(cscθ)σ(U,V), (3.9)

    In view of (2.14) and (3.5), the above relation becomes

    α(U,V)=(csc2θ)(Tσ(U,V)ψσ(U,V)). (3.10)

    On the other hand, taking the inner product of (2.18) with WΩ(TN) and using (2.2), (2.9) and (3.6), we obtain

    g((UT)V,W)=g(σ(U,W),NV)+g(σ(U,V),W)+η(W)g(TU,V)η(V)g(TU,W).

    Then, from (2.14) and (2.15), we get

    g((UT)V,W)=g(σ(U,V),W)g(σ(U,W),V)+η(W)g(TU,V)η(V)g(TU,W),

    for any U,V,WΩ(TN). Now, we want to derive the equation of Gauss and Codazzi for a (s+1) dimensional pointwise θ-slant submanifold N in Kenmotsu space form ˜N2r+1(k). First, by (2.6), (2.11) and (2.14), we find

    R(U,V;W,X)g(α(U,X),α(V,W))+g(α(U,W),α(V,X))=k34{g(U,X)g(V,W)g(U,W)g(V,X)}+k+14{η(U)η(W)g(V,X)η(V)η(W)g(U,X)+η(V)η(X)g(U,W)η(U)η(X)g(V,W)+g(TU,X)g(TV,W)g(TU,W)g(TV,X)+2g(U,TV)g(TW,X)}.

    But, from (3.3) and (3.9), we conclude that

    R(U,V;W,X)=csc2θ{g(σ(U,X),σ(V,W))g(σ(U,W),σ(V,X))}+k34{g(U,X)g(V,W)g(U,W)g(V,X)}+k+14{η(U)η(W)g(V,X)η(V)η(W)g(U,X)+η(V)η(X)g(U,W)η(U)η(X)g(V,W)+g(TU,X)g(TV,W)g(TU,W)g(TV,X)+2g(U,TV)g(TW,X)},

    for any U,V,W,XΩ(TN), which is the Gauss equation of N in ˜N2r+1(k).

    Second, for the Codazzi equation, we take the normal parts of (2.6), and we get

    (˜R(U,V)W)=k+14{g(TV,W)NUg(TU,W)NV+2g(U,TV)NW}. (3.11)

    Moreover, from (3.5) and (3.9), we have

    U(α(V,W))=(csc2θ)UNσ(Y,Z)+2(csc2θcotθ)U(θ)Fσ(V,W),

    which implies that

    U(α(V,W))=(csc2θ)[nα(U,σ(V,W))+α(X,Tσ(Y,Z))N((Uσ)(V,W))+2(cotθ)U(θ)Nσ(V,W)], (3.12)

    by using (2.17) and (2.19). Also, using (3.5) and (3.9), we derive

    α(UV,W)=(csc2θ)Nσ(UV,W), (3.13)

    and

    α(V,UW)=(csc2θ)Nσ(V,UW). (3.14)

    Applying the Eqs (3.12)–(3.14) to (2.10), we find

    (¯Uα)(V,W)=(csc2θ)[nα(U,σ(V,W))+α(U,Tσ(V,W))N((Uσ)(V,W))+2(cotθ)U(θ)Nσ(V,W)].

    But, by (3.4), (3.5) and (3.9), the previous expression takes the form

    (¯Uα)(V,W)=(csc2θ)[(csc2θ)NTσ(U,σ(V,W))+(csc2θ)Nσ(U,Tσ(V,W))+N((Uσ)(V,W))2(cotθ)U(θ)Nσ(V,W)]. (3.15)

    Replacing U by V in the above relation, we derive

    (¯Vα)(U,W)=(csc2θ)[(csc2θ)NTσ(V,σ(U,W))+(csc2θ)Nσ(V,Tσ(U,W))+N((Vσ)(U,W))2(cotθ)V(θ)Nσ(U,W)]. (3.16)

    Hence, substituting the Eqs (3.11), (3.15) and (3.16) in the Codazzi equation, we arrive at

    (Uσ)(V,W)2(cotθ)U(θ)σ(V,W)+(csc2θ){Tσ(U,σ(V,W))+σ(U,Tσ(V,W))}+k+14(sin2θ){g(U,TV)(Wη(W)ξ)+g(U,TW)(Vη(V)ξ))}=(Vσ)(U,W)2(cotθ)V(θ)σ(U,W)+(csc2θ){Tσ(Y,σ(U,W))+σ(Y,Tσ(U,W))}+k+14(sin2θ){ g(V,TU)(Wη(W)ξ)+g(V,TW)(Uη(U)ξ)},

    for any U,V,WΩ(TN).

    The previous equations lead to the following existence and uniqueness theorems for pointwise θ-slant immersion into a Kenmotsu space form.

    Theorem 4.1. (Existence) Let N be a (s+1)-dimensional Riemannian manifold that is simply connected and has a metric tensor g attached to it. Assuming k to be constant, let us consider an endomorphism T of the tangent bundle TNs+1, a unit global vector field ξ, a dual 1-form η of ξ, a symmetric bilinear TNs+1-valued form σ on Ns+1, and a differential real valued function θ defined on Ns+1, where 0<θπ2, such that the following relationships hold:

    T2U=(cos2θ)(Uη(U)ξ), (4.1)
    g(TU,V)=g(U,TY), (4.2)
    T(ξ)=0,g(σ(U,V),ξ)=0,Uξ=Uη(X)ξ, (4.3)
    σ(U,ξ)=0, (4.4)
    g((UT)Y,Z)=g(σ(U,V),W)g(σ(U,W),V)+η(W)g(TU,V)+η(V)g(U,TW), (4.5)
    R(U,V;W,X)=csc2θ{g(σ(U,X),σ(V,W))g(σ(U,W),σ(V,X))}+k34{g(U,X)g(V,W)g(U,W)g(V,X)}+k+14{η(U)η(W)g(V,X)η(V)η(W)g(U,X)+η(V)η(X)g(U,W)η(U)η(X)g(V,W)+g(TU,X)g(TV,W)g(TU,W)g(TV,X)+2g(U,TV)g(TW,X)}, (4.6)

    and

    (Uσ)(V,W)2(cotθ)U(θ)σ(V,W)+(csc2θ){Tσ(U,σ(V,W))+σ(U,Tσ(V,W))}+k+14(sin2θ){g(U,TV)(Wη(W)ξ)+g(U,TW)(Vη(V)ξ))}=(Vσ)(U,W)2(cotθ)V(θ)σ(U,W)+(csc2θ){Tσ(Y,σ(U,W))+σ(Y,Tσ(U,W))}+k+14(sin2θ){ g(V,TU)(Wη(W)ξ)+g(V,TW)(Uη(U)ξ)}, (4.7)

    with every U,V,W,XΩ(TNs+1). Then there exists a pointwise θ-slant isometric immersion of Ns+1 into a Kenmotsu space form ˜N2r+1(k), and the second fundamental form α of Ns+1 is given by the relation

    α(U,V)=(csc2θ)(Tσ(U,V)ψσ(U,V)). (4.8)

    Proof. We assume that Ns+1,k,T,ξ,η,σ and θ verify the relations mentioned above. Let us assume a Whitney sum of TNs+1D. For each UΩ(TNs+1) and WΩ(D) we identify (U,0) by U, (0,W) by W, and ˊξ=(ξ,0) with ξ.

    Represent the product metric on TNs+1D by ˊg. Thus, if we put ˊη as the dual 1-form of ˊξ, then ˊη(U,W)=η(U), for any UΩ(TNs+1) and WΩ(D).

    The endomorphism ˊψ on TNs+1D is defined by

    ˊψ(U,0)=(TU,(sinθ)(Uη(U)ξ)),ˊψ(0,W)=((sinθ)W,TW), (4.9)

    for any UΩ(TNs+1) and WΩ(D). Therefore, it is immediately to clear that ˊψ2(U,0)=(U,0)+ˊη(U,0)ˊξ and ˊψ2(0,W)=(0,W), which gives ˊψ2(U,W)=(U,W)+ˊη(U,W)ˊξ for any UΩ(TNs+1) and WΩ(D). So, (4.1), (4.2) and (4.9) imply that (ˊϕ,ˊη,ˊξ,ˊg) is an almost contact metric structure on TNs+1D.

    Now, we can define a (D)-valued symmetric bilinear form α on TNs+1, an endomorphism A on TNs+1, and a metric connection of the vector bundle (D) over Ns+1 by the following relations:

    α(U,V)=(cscθ)σ(U,V), (4.10)
    AWU=(cscθ){(UT)Wσ(U,W)g(TU,W)ξ}, (4.11)
    UW=(UWη(UW)ξ)(cotθ)U(θ)W+(csc2θ){(Tσ(U,W))+σ(U,TW)}, (4.12)

    for U,VΩ(TNs+1) and WΩ(D).

    Let ˊ be the canonical connection on TNs+1D as inferred from Eqs (4.9)–(4.12). After that, by using (4.1), (4.3), (4.4) and (4.9), we derive

    (ˊ(U,0)ˊψ)(V,0)=ˊg(ˊψ(U,0),(V,0))ˊξˊη(V,0)ˊψ(U,0),(ˊ(U,0)ˊψ)(0,W)=0,

    for any U,VΩ(TNs+1) and WΩ(D).

    Let R be the curvature tensor correlated with the connection on (D) given by

    R(U,V)Z=UVWVUW[U,V]W,

    for every U,VΩ(TNs+1) and WΩ(D).

    Hence, by using (2.16), (4.2), (4.3), (4.7) and (4.12) with direct arithmetic, we obtain

    R(U,V)W=(csc2θ)[V(θ)U(θ)]W+{R(U,V)Wη(R(U,V)W)ξ}+k+14{T[g(V,TW)Ug(U,TW)V2g(U,TV)W]+[g(V,T2W)(Uη(U)ξ)g(U,T2W)(Vη(V)ξ)2g(U,TV)TW]}+csc2θ{(UT)σ(V,W)(VT)σ(U,W)η(U(Tσ(V,W)))ξ+η(V(Tσ(U,W)))ξσ(U,(VT)W)+σ(V,UT)W)η(U(σ(V,TW)))ξ+η(V(σ(U,TW)))ξ}+{η(U)η(VW)ξη(V)η(UW)ξη(VW)U+η(UW)V}. (4.13)

    Furthermore, (4.3), (4.5), (4.10) and (4.11) imply

    g([AW,AX]U,V)=csc2θ{g((UT)X,(VT)W)g((UT)W,(VT)X)+g((UT)W,σ(V,X))+g((VT)X,σ(U,W))g((UT)X,σ(V,W))g((VT)W,σ(U,X))+g(σ(U,X),σ(V,W))g(σ(U,W),σ(V,X))+g(TU,Z)g(TV,W)g(TU,W)g(TV,X))η((VT)W)g(TU,X)η((UT)X)g(TV,W)+η((VT)X)g(TU,W)+η((UT)W)g(TV,X)}. (4.14)

    By (4.2), we get

    g(σ(V,W),TX)+g(Tσ(V,W),X)=0.

    For any UΩ(TNs+1), if we take the covariant derivative of the above expression with respect to U and use (4.2), we obtain

    g(σ(V,W),(UT)X)+g((UT)σ(V,W),X)=0.

    Additionally, from (4.5), we observe that

    g((UT)W,(VT)X)=g((UT)W,σ(V,X))g(σ(V,(UT)W),X)+η((UT)W)g(TV,X)+η(X)g(V,T((UT)W)).

    Thus, using a straightforward computation and the above relations in (4.13) and (4.14), we obtain that

    g(R(U,V)W,X)g([AW,AX]U,V)=k+14[(sin2θ){g(U,X)g(V,W)g(U,W)g(V,X)}2g(U,TV)g(TW,X)]+(csc2θ)[V(θ)U(θ)] g(W,X),

    for any U,V,W,XΩ(TNs+1). We note that (Ns+1,A,) satisfies the equation of Ricci for a pointwise θ-slant submanifold Ns+1 of dimension (s+1) in the Kenmotsu space form ˜N2r+1(k) based on the equation above with (2.6), (4.1) and (4.2). (Ns+1,α) satisfies the equations of Gauss and Codazzi, respectively, for a pointwise θ-slant submanifold Ns+1 of ˜N2r+1(k), according to (4.6) and (4.7). Therefore, we have a vector bundle TNs+1D over Ns+1 equipped with the product metric ˊg, the second fundamental form α, the shape operator A, and the connections and ˊ satisfy the structure equations of a pointwise θ-slant submanifold Ns+1 of ˜N2r+1(k). Thus, we find that there is a pintwise θ-slant isometric immersion from Ns+1 into ˜N2r+1(k), whose second fundamental form α is given by the relation (4.8) by applying Theorem 1 of [16].

    The necessary conditions to look into the pointwise θ-slant immersion uniqueness property are provided by the following result:

    Theorem 4.2. (Uniqueness Theorem) Consider the two pointwise θ-slant isometric immersions x1,x2:Ns+1N2r+1(k) from the connected Riemannian manifold Ns+1 to a Kenmotsu space form ˜N2r+1(k) with the slant function θ (0<θπ2). Let α1 and α2 represent the second fundamental forms of x1 and x2, respectively. Let us assume that there is a vector field ˊξ on Ns+1 such that xip(ˊξp)=ξxi(p), for any point pN and i=1,2. Allow us to

    g(α1(U,V),ψx1W)=g(α2(U,V),ψx2W), (4.15)

    with every U,V,WΩ(TNs+1). Additionally, we take it for granted that at least one of the subsequent prerequisites is met:

    (i) θ=π2.

    (ii) There exists a point p in N such that T1=T2.

    (iii) k1.

    Then T1=T2, and there exists an isometry γ of ˜N2r+1(k) such that x1=γ(x2).

    Proof. By taking ˊξ in the orthonormal frame tangent to N, the proof of this theorem is similar to the uniqueness theorem in complex space forms (see [1,14]).

    In this paper, we established the theorems of existence and uniqueness for pointwise slant immersions in Kenmotsu space forms. Firstly, we reviewed the definition of pointwise slant submanifold of an almost contact-metric manifold and we provided non-trivial examples of such submanifold. Then, we proved the Gauss and Codazzi equations of the pointwise slant submanifold in Kenmotsu space form which leads to prove the existence and uniqueness theorems.

    The author declares he has not used Artificial Intelligence (AI) tools in the creation of this article.

    The author declares no conflict of interest.



    [1] A. Alghanemi, N. Alhouiti, B. Y. Chen, S. Uddin, Existence and uniqueness theorems for pointwise slant immersions in complex space forms, Filomat, 35 (2021), 3127–3138. http://dx.doi.org/10.2298/FIL2109127A doi: 10.2298/FIL2109127A
    [2] N. Alhouiti, Existence and uniqueness theorems for pointwise-slant immersions in Sasakian space forms, AIMS Math., 8 (2023), 17470–17483. http://dx.doi.org/10.3934/math.2023892 doi: 10.3934/math.2023892
    [3] M. Atceken, S. K. Hui, Slant and pseudo-slant submanifolds in (LCS)n-manifolds, Czech. Math. J., 63 (2013), 177–190. https://doi.org/10.1007/s10587-013-0012-6 doi: 10.1007/s10587-013-0012-6
    [4] D. E. Blair, Contact manifolds in Riemannian geometry, Berlin: Springer-Verlag, 1976. http://dx.doi.org/10.1007/BFb0079307
    [5] J. L. Cabreizo, A. Carriazo, L. M. Fernandez, M. Fernandez, Existence and uniqueness theorem for slant immersions in Sasakian space forms, Publ. Math. Debrecen, 58 (2001), 559–574.
    [6] J. L. Cabreizo, A. Carriazo, L. M. Fernandez, M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasgow. Math. J., 42 (2000), 125–138. http://dx.doi.org/10.1017/S0017089500010156 doi: 10.1017/S0017089500010156
    [7] A. Carriazo, New developments in slant submanifolds theory, New Delhi: Narosa Publishing House, 2002.
    [8] B. Y. Chen, Geometry of submanifolds, New York: Dover Publication, 1973.
    [9] B. Y. Chen, Slant immersions, B. Aust. Math. Soc., 41 (1990), 135–147. http://dx.doi.org/10.1017/S0004972700017925
    [10] B. Y. Chen, Geometry of slant submanifolds, arXiv Preprint, 1990.
    [11] B. Y. Chen, O. J. Garary, Pointwise slant submanifolds in almost Hermitian manifolds, Turk. J. Math., 36 (2012), 630–640. http://dx.doi.org/10.3906/mat-1101-34 doi: 10.3906/mat-1101-34
    [12] B. Y. Chen, K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc., 193 (1974), 257–266. http://dx.doi.org/10.2307/1996914 doi: 10.2307/1996914
    [13] B. Y. Chen, Y. Tazawa, Slant submanifolds of complex projective and complex hyperbolic spaces, Glasgow. Math. J., 42 (2000), 439–454. http://dx.doi.org/10.1017/S0017089500030111 doi: 10.1017/S0017089500030111
    [14] B. Y. Chen, L.Vranken, Existence and uniqueness theorem for slant immersions and its applications, Results Math., 31 (1997), 28–39. http://dx.doi.org/10.1007/BF03322149 doi: 10.1007/BF03322149
    [15] B. Y. Chen, L. Vranken, Addendum to: Existence and uniqueness theorem for slant immersions and its applications, Results Math., 39 (2001), 18–22. http://dx.doi.org/10.1007/BF03322673 doi: 10.1007/BF03322673
    [16] J. H. Eschenburg, R. Tribuzy, Existence and uniqueness of maps into affine homogeneous spaces, Rend. Semin. Mat. U. Pad., 89 (1993), 11–18.
    [17] F. Etayo, On quasi-slant submanifolds of an almost Hermitian manifold, Publ. Math. Debrecen, 53 (1998), 217–223.
    [18] M. Gulbahar, E. Kilic, S. S. Celik, Special proper pointwise slant surfaces of a locally product Riemannian manifold, Turk. J. Math., 39 (2015), 884–899. http://dx.doi.org/10.3906/mat-1412-44 doi: 10.3906/mat-1412-44
    [19] R. S. Gupta, S. M. K. Haider, M. H. Shahid, Slant submanifolds of a Kenmotsu manifold, Radovi Matematticki, 12 (2004), 205–214.
    [20] R. Gupta, S. M. K. Haider, A. Sharfuddin, Existence and uniqueness theorem for slant immersion in cosymplectic space forms, Publ. Math. Debrecen, 67 (2005), 169–188.
    [21] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku. Math. J., 24 (1972), 93–103. http://dx.doi.org/10.2748/tmj/1178241594 doi: 10.2748/tmj/1178241594
    [22] A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Roumanie, 39 (1996), 183–198.
    [23] P. K. Pandey, R. S. Gupta, Existence and uniqueness theorem for slant immersions in Kenmotsu space forms, Turk. J. Math., 33 (2009), 409–425. http://dx.doi.org/10.3906/mat-0804-23 doi: 10.3906/mat-0804-23
    [24] K. S. Park, Pointwise slant and pointwise semi-slant submanifolds in almost contact metric manifolds, arXiv Preprint, 2014.
    [25] K. S. Park, Pointwise almost h-semi-slant submanifolds, Int. J. Math., 26 (2015), 1550099. http://dx.doi.org/10.1142/S0129167X15500998 doi: 10.1142/S0129167X15500998
    [26] B. Sahin, Warped product pointwise semi-slant submanifolds of Kähler manifolds, Port. Math., 70 (2013), 251–268. http://dx.doi.org/10.4171/PM/1934 doi: 10.4171/PM/1934
    [27] S. Uddin, A. Al-Khalidi, Pointwise slant submanifolds and their warped product in Sasakian manifolds, Filomat, 32 (2018), 4131–4142. http://dx.doi.org/10.2298/FIL1812131U doi: 10.2298/FIL1812131U
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(694) PDF downloads(22) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog