The prospect of conformal bi-slant submersions from a Kenmotsu manifold is discussed in the present article, taking into account that the Reeb vector field $ \xi $ is vertical. We looked at the integrability of distributions as well as the geometry of distribution leaves since the concept of bi-slant submersion ensures the presence of slant distributions. Finally, the idea of pluriharmonicity is also described in the paper, along with a supporting example for our research.
Citation: Ibrahim Al-Dayel, Mohammad Shuaib. Conformal bi-slant submersion from Kenmotsu manifolds[J]. AIMS Mathematics, 2023, 8(12): 30269-30286. doi: 10.3934/math.20231546
The prospect of conformal bi-slant submersions from a Kenmotsu manifold is discussed in the present article, taking into account that the Reeb vector field $ \xi $ is vertical. We looked at the integrability of distributions as well as the geometry of distribution leaves since the concept of bi-slant submersion ensures the presence of slant distributions. Finally, the idea of pluriharmonicity is also described in the paper, along with a supporting example for our research.
[1] | M. A. Akyol, Y. Gündüzalp, Hemi-slant submersions from almost product Riemannian manifolds, Gulf J. Math., 4 (2016), 15–27. http://doi.org/10.56947/gjom.v4i3.70 doi: 10.56947/gjom.v4i3.70 |
[2] | M. A. Akyol, B. Şahin, Conformal anti-invariant submersion from almost Hermitian manifolds, Turk. J. Math., 40 (2016), 38–42. https://doi.org/10.3906/mat-1408-20 doi: 10.3906/mat-1408-20 |
[3] | M. A. Akyol, B. Şahin, Conformal anti-invariant submersions from almost Hermitian manifolds, Turk. J. Math., 40 (2016), 43–70. http://doi.org/10.3906/mat-1408-20 doi: 10.3906/mat-1408-20 |
[4] | M. A. Akyol, B. Şahin, Conformal semi-invariant submersions, Commun. Contemp. Math., 19 (2017), 1650011. http://doi.org/10.1142/S0219199716500115 doi: 10.1142/S0219199716500115 |
[5] | M. A. Akyol, Conformal semi-slant submersions, Int. J. Geom. Methods Mod. Phys., 14 (2017), 1750114. http://doi.org/10.1142/S0219887817501146 doi: 10.1142/S0219887817501146 |
[6] | M. A. Akyol, B. Şahin, Conformal slant submersions, Hacettepe J. Math. Stat., 48 (2019), 28–44. http://doi.org/10.15672/HJMS.2017.506 |
[7] | I. Al-Dayel, T. Fatima, S. Deshmukh, M. Shuaib, A note on conformal bi-slant submersion from Kenmotsu manifold, J. Geom. Phys., 190 (2023) 104864. http://doi.org/10.1016/j.geomphys.2023.104864 |
[8] | I. Al-Dayel, M. Shuaib, S. Deshmukh, T. Fatima, $\phi$-pluriharmonicity in quasi bi-slant conformal $\xi^\perp$-submersions: a comprehensive study, AIMS Math., 8 (2023), 21746–21768. http://doi.org/10.3934/math.20231109 doi: 10.3934/math.20231109 |
[9] | P. Baird, J. C. Wood, Harmonic morphisms between Riemannian manifolds, Oxford University Press, 2003. |
[10] | J. P. Bourguignon, H. B. Lawson, Stability and isolation phenomena for Yang-Mills fields, Commun. Math. Phys., 79 (1981), 189–230. http://doi.org/10.1007/BF01942061 doi: 10.1007/BF01942061 |
[11] | D. Chinea, Almost contact metric submersions, Rend. Circ. Mat. Palerm., 34 (1985), 89–104. http://doi.org/10.1007/BF02844887 doi: 10.1007/BF02844887 |
[12] | J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasg. Math. J., 42 (2000), 125–138. http://doi.org/10.1017/S0017089500010156 doi: 10.1017/S0017089500010156 |
[13] | I. K. Erken, C. Murathan, On slant Riemannian submersions for cosymplectic manifolds, Bull. Korean Math. Soc., 51 (2014), 1749–1771. http://doi.org/10.4134/BKMS.2014.51.6.1749 doi: 10.4134/BKMS.2014.51.6.1749 |
[14] | B. Fuglede, Harmonic morphisms between Riemannian manifolds, Ann. I'institut Fourier, 28 (1978), 107–144. http://doi.org/10.5802/aif.691 doi: 10.5802/aif.691 |
[15] | M. Falcitelli, S. Ianus, A. M. Pastore, Riemannian submersions and related topics, World Scientific, 2004. |
[16] | A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 16 (1967), 715–737. |
[17] | S. Gudmundsson, The geometry of harmonic morphisms, Ph. D. thesis, University of Leeds, 1992. |
[18] | S. Gudmundsson, J. C. Wood, Harmonic morphisms between almost Hermitian manifolds, Boll. Un. Mat. Ital., 11 (1997), 185–197. |
[19] | Y. Gunduzalp, Semi-slant submersions from almost product Riemannian manifolds, Demonstr. Math., 49 (2016), 345–356. http://doi.org/10.1515/dema-2016-0029 doi: 10.1515/dema-2016-0029 |
[20] | S. Ianus, M. Visinescu, Kaluza-Klein theory with scalar fields and generalised Hopf manifolds, Class. Quantum Grav., 4 (1987), 1317–1325. http://doi.org/10.1088/0264-9381/4/5/026 doi: 10.1088/0264-9381/4/5/026 |
[21] | T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ., 19 (1979), 215–229. http://doi.org/10.1215/kjm/1250522428 doi: 10.1215/kjm/1250522428 |
[22] | K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93–103. http://doi.org/10.2748/tmj/1178241594 doi: 10.2748/tmj/1178241594 |
[23] | S. Kumar, S. Kumar, S. Pandey, R. Prasad, Conformal hemi-slant submersions from almost Hermitian manifolds, Commun. Korean Math. Soc., 35 (2020), 999–1018 https://doi.org/10.4134/CKMS.c190448 doi: 10.4134/CKMS.c190448 |
[24] | M. T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys., 41 (2000), 6918–6929. http://doi.org/10.1063/1.1290381 doi: 10.1063/1.1290381 |
[25] | Y. Ohnita, On pluriharmonicity of stable harmonic maps, J. London Math. Soc., 2 (1987), 563–568. http://doi.org/10.1112/jlms/s2-35.3.563 doi: 10.1112/jlms/s2-35.3.563 |
[26] | B. O'Neill, The fundamental equations of a submersion, Michigan Math. J., 13 (1966), 459–469. http://doi.org/10.1307/mmj/1028999604 doi: 10.1307/mmj/1028999604 |
[27] | K. S. Park, R. Prasad, Semi-slant submersions, Bull. Korean Math. Soc., 50 (2013), 951–962. http://doi.org/10.4134/BKMS.2012.49.2.329 |
[28] | R. Prasad, S. S. Shukla, S. Kumar, On quasi bi-slant submersions, Mediterr. J. Math., 16 (2019), 155. https://doi.org/10.1007/s00009-019-1434-7 doi: 10.1007/s00009-019-1434-7 |
[29] | R. Prasad, M. A. Akyol, P. K. Singh, S. Kumar, On quasi bi-slant submersions from Kenmotsu manifolds onto any Riemannian manifolds, J. Math. Ext., 16 (2022), 1–25. https://doi.org/10.30495/JME.2022.1588 doi: 10.30495/JME.2022.1588 |
[30] | R. Prasad, S. Kumar, Conformal anti-invariant submersions from nearly Kaehler manifolds, Palest. J. Math., 8 (2019), 237–247. |
[31] | R. Ponge, H. Reckziegel, Twisted products in pseudo-Riemannian geometry, Geom. Dedicata, 48 (1993), 15–25. https://doi.org/10.1007/BF01265674 doi: 10.1007/BF01265674 |
[32] | B. Şahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Central Eur. J. Math., 3 (2010), 437–447. https://doi.org/10.2478/s11533-010-0023-6 doi: 10.2478/s11533-010-0023-6 |
[33] | B. Şahin, Semi-invariant Riemannian submersions from almost Hermitian manifolds, Canad. Math. Bull., 56 (2013), 173–183. https://doi.org/10.4153/CMB-2011-144-8 doi: 10.4153/CMB-2011-144-8 |
[34] | B. Şahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie, 1 (2011) 93–105. |
[35] | M. Shuaib, T. Fatima, A note on conformal hemi-slant submersions, Afr. Mat., 34 (2023), 4. https://doi.org/10.1007/s13370-022-01036-2 doi: 10.1007/s13370-022-01036-2 |
[36] | S. Tanno, The automorphism groups of almost contact metric manfolds, Tohoku Math. J., 21 (1969), 21–38. |
[37] | H. M. Taştan, B. Şahin, Ş. Yanan, Hemi-slant submersions, Mediterr. J. Math., 13 (2016), 2171–2184. https://doi.org/10.1007/s00009-015-0602-7 |
[38] | H. Urakawa, Calculus of variations and harmonic maps, American Mathematical Society, 2013. |
[39] | B. Watson, Almost Hermitian submersions, J. Differ. Geom., 11 (1976), 147–165. https://doi.org/10.4310/jdg/1214433303 |
[40] | B. Watson, G, G'-Riemannian submersions and nonlinear gauge field equations of general relativity, Global Anal., 57 (1983), 324–349. |