Processing math: 100%
Research article

Conformal bi-slant submersion from Kenmotsu manifolds

  • Received: 22 August 2023 Revised: 20 October 2023 Accepted: 30 October 2023 Published: 07 November 2023
  • MSC : 53D10, 53C435

  • The prospect of conformal bi-slant submersions from a Kenmotsu manifold is discussed in the present article, taking into account that the Reeb vector field ξ is vertical. We looked at the integrability of distributions as well as the geometry of distribution leaves since the concept of bi-slant submersion ensures the presence of slant distributions. Finally, the idea of pluriharmonicity is also described in the paper, along with a supporting example for our research.

    Citation: Ibrahim Al-Dayel, Mohammad Shuaib. Conformal bi-slant submersion from Kenmotsu manifolds[J]. AIMS Mathematics, 2023, 8(12): 30269-30286. doi: 10.3934/math.20231546

    Related Papers:

    [1] Ibrahim Al-Dayel, Mohammad Shuaib, Sharief Deshmukh, Tanveer Fatima . $ \phi $-pluriharmonicity in quasi bi-slant conformal $ \xi^\perp $-submersions: a comprehensive study. AIMS Mathematics, 2023, 8(9): 21746-21768. doi: 10.3934/math.20231109
    [2] Md Aquib, Ibrahim Al-Dayal, Mohd Iqbal, Meraj Ali Khan . Geometric inequalities and equality conditions for slant submersions in Kenmotsu space forms. AIMS Mathematics, 2025, 10(4): 8873-8890. doi: 10.3934/math.2025406
    [3] Richa Agarwal, Fatemah Mofarreh, Sarvesh Kumar Yadav, Shahid Ali, Abdul Haseeb . On Riemannian warped-twisted product submersions. AIMS Mathematics, 2024, 9(2): 2925-2937. doi: 10.3934/math.2024144
    [4] Yanlin Li, Dipen Ganguly, Santu Dey, Arindam Bhattacharyya . Conformal $ \eta $-Ricci solitons within the framework of indefinite Kenmotsu manifolds. AIMS Mathematics, 2022, 7(4): 5408-5430. doi: 10.3934/math.2022300
    [5] Noura Alhouiti . Theorems of existence and uniqueness for pointwise-slant immersions in Kenmotsu space forms. AIMS Mathematics, 2024, 9(7): 17489-17503. doi: 10.3934/math.2024850
    [6] Muqeem Ahmad, Mobin Ahmad, Fatemah Mofarreh . Bi-slant lightlike submanifolds of golden semi-Riemannian manifolds. AIMS Mathematics, 2023, 8(8): 19526-19545. doi: 10.3934/math.2023996
    [7] Rajesh Kumar, Sameh Shenawy, Lalnunenga Colney, Nasser Bin Turki . Certain results on tangent bundle endowed with generalized Tanaka Webster connection (GTWC) on Kenmotsu manifolds. AIMS Mathematics, 2024, 9(11): 30364-30383. doi: 10.3934/math.20241465
    [8] Abdul Haseeb, Fatemah Mofarreh, Sudhakar Kumar Chaubey, Rajendra Prasad . A study of $ * $-Ricci–Yamabe solitons on $ LP $-Kenmotsu manifolds. AIMS Mathematics, 2024, 9(8): 22532-22546. doi: 10.3934/math.20241096
    [9] Yanlin Li, Shahroud Azami . Generalized $ * $-Ricci soliton on Kenmotsu manifolds. AIMS Mathematics, 2025, 10(3): 7144-7153. doi: 10.3934/math.2025326
    [10] Meraj Ali Khan, Ali H. Alkhaldi, Mohd. Aquib . Estimation of eigenvalues for the $ \alpha $-Laplace operator on pseudo-slant submanifolds of generalized Sasakian space forms. AIMS Mathematics, 2022, 7(9): 16054-16066. doi: 10.3934/math.2022879
  • The prospect of conformal bi-slant submersions from a Kenmotsu manifold is discussed in the present article, taking into account that the Reeb vector field ξ is vertical. We looked at the integrability of distributions as well as the geometry of distribution leaves since the concept of bi-slant submersion ensures the presence of slant distributions. Finally, the idea of pluriharmonicity is also described in the paper, along with a supporting example for our research.



    ACM: Almost contact metric; CBSS: Conformal bi-slant submersion; RM: Riemannian manifold; KM: Kenmotsu manifold

    O'Neill [26] and Gray [16] were the ones who first proposed and developed the concept of submersions and immersions. For Riemannian manifolds, they discovered certain Riemannian equations by studying the geometrical characteristics. Submersions theory is an important topic in differential geometry that discusses the properties between differentiable structures. Riemannian submersions is the subject of study throughout both mathematics and physics since it has numerous applications, most notably in the Kaluza-Klein theory and Yang-Mills theory (see [10,20,24,40]). Watson [39] investigated the Riemannian submersions from almost Hermitian manifolds onto Riemannian manifolds in the year 1976. Later, Şahin [32] studied geometric characteristics and Riemannian submersions geometry. Using an almost Hermitian manifold, he defined anti-invariant Riemannian submersions onto Riemannian manifolds. "He demonstrates that, under the almost complex structure of the total manifold, their vertical distribution is anti-invariant." Many authors looked into and expanded on this research by studying anti-invariant submersions [3,32], semi-invariant submersions [33], slant submersions [13,34] and semi-slant submersions [19,27], among other topics. Tastan et al. [37] defined and investigated hemi-slant submersions from almost Hermitian manifolds as a generalization case of semi-invariant and semi-slant submersions.

    From almost Hermitian to almost contact metric manifolds, Chinea [11] expanded the notion of Riemannian submersions. He examined base space, total and fibre space from an intrinsic geometric perspective point. Prasad et al. extended the concept of hemi-slant submersions a step further, by defining quasi-bi-slant submersions from an almost contact metric manifold [28,29]. The results he obtained for submersions were interesting and he also discovered some decomposition theorems.

    Fuglede [14] and Ishihara [21] introduced the concept of conformal submersion as a generalization of Riemannian submersions and talked about some of their geometric characteristics. If the positive function λ=1, which is dilation, then the conformal submersions become Riemannian submersions. Gudmundsson and Wood [18] investigated conformal holomorphic submersion as a generalization of holomorphic submersion. They were able to obtain the necessary and sufficient conditions for harmonic morphisms of conformal holomorphic submersions. Later on, conformal anti-invariant submersions, [2,30], conformal semi-invariant submersions [4], conformal slant submersions [6] and conformal semi-slant submersions [5] were studied and defined by Akyol and Şahin. A number of researchers have recently explored the geometry of conformal hemi-slant submersions [1,23,35], conformal bi-slant submersions [7] and quasi bi-slant conformal submersions [8] and they have discussed some decomposition theorems. Additionally, they expanded the idea of pluriharmonicity from almost Hermitian manifolds to almost contact metric manifolds. The present paper is a complement of [7]. In [7], ξ is horizontal and in the present paper it is vertical.

    In this paper, we investigate conformal bi-slant submersions from a Kenmotsu manifold onto a Riemannian manifold with vertical vector field ξ. The structure of the paper is as follows. Section 2 introduces almost contact metric manifolds, precisely the Kenmotsu manifolds with the properties required for this study. Section 3 includes a definition of conformal bi-slant submersion as well as some noteworthy discoveries. Section 4, details the conditions needed for distribution integrability as well as the total geodesicness of its leaves. This section also discusses how a total space Kenmotsu manifold becomes a locally twisted product manifold. Finally, at the end of the study, the concept of ϕ-pluriharmonicity is addressed.

    We start off by providing a few definitions and findings that will be quite helpful for our research and will aid in exploring the central idea of the research paper.

    Let (ˉO1,g1) and (ˉO2,g2) be Riemannian manifolds, where dim(ˉO1)=m, dim(ˉO2)=n and m>n. A Riemannian submersion J: ˉO1ˉO2 is a surjective map of ˉO1 onto ˉO2 satisfying the following axioms:

    (i) J has maximal rank.

    (ii) The differential J preserves the lenghts of horizontal vectors.

    For each qˉO2, J1(q) is an (mn) dimensional submanifold of ¯O1. The submanifolds J1(q),qˉO2 are called fibers. A vector field on ˉO1 is called vertical if it is always tangent to fibers. A vector field on ˉO1 is called horizontal if it is always orthogonal to fibers. A vector field X on ˉO1 is called basic if X is horizontal and J- related to a vector field X on ˉO2, i.e., JXp=XJ(p), for all pˉO1. Note that we denote the projection morphisms on the distributions kerJ and (kerJ) by V and H, respectively.

    Definition 2.1. [9] Let J be a Riemannian submersion from an ACM manifold (ˉO1,ϕ,ξ,η,g1) onto a RM (ˉO2,g2). Then J is called a horizontally conformal submersion, if there is a positive function λ such that

    g1(U1,V1)=1λ2g2(JU1,JV1) (2.1)

    for any U1,V1Γ(kerJ). It is obvious that every Riemannian submersions is a particularly horizontally conformal submersion with λ=1. This λ is usually called the dilation function.

    The formulae of (1,2) tensor fields T and A are

    T(L1,L2)=TL1L2=HVL1VL2+VVL1HL2, (2.2)
    A(L1,L2)=AL1L2=VHL1HL2+HHL1VL2 (2.3)

    for all vector fields L1,L2Γ(T¯O1) [15].

    It is obvious that a Riemannian submersion J: ¯O1¯O2 has totally geodesic fibers if and only if T vanishes identically. Taking account the fact from (2.2) and (2.3) we may have

    ¯W1¯Z1=T¯W1¯Z1+ˉ¯W1¯Z1,   (2.4)
    ¯W1¯X1=T¯W1¯X1+H¯W1¯X1,  (2.5)
    ¯X1¯W1=A¯X1¯W1+V¯X1¯W1, (2.6)
    ¯X1¯Y1=H¯X1¯Y1+A¯X1¯Y1   (2.7)

    for all ¯W1,¯Z1Γ(kerJ) and ¯X1,¯Y1Γ(kerJ) where

    ˉ¯W1¯Z1=V¯W1¯Z1.

    Then we can easily see that TˉZ and AˉW are skew-symmetric, i.e.,

    g(AˉWF1,F2)=g(F1,AˉWF2),g(TˉZF1,F2)=g(F1,TˉZF2) (2.8)

    for all F1,F2Γ(Tp¯O1).

    Here, we recall the proposition as follows:

    Proposition 2.1. [17] Let J: ¯O1¯O2 be horizontally conformal submersion with dilation λ and ˉZ,ˉWΓ(kerJ), then

    AˉWˉZ=12{V[ˉW,ˉZ]λ2g1(ˉW,ˉZ)gradv1λ2}. (2.9)

    Then the second fundamental form of J is given by

    (J)(ˉW,ˉZ)=JˉWJˉZJˉWˉZ. (2.10)

    A map is said to be totally geodesic if (J)(ˉW,ˉZ)=0 for all ˉW,ˉZΓ(Tp¯O1), where Levi-Civita and pullback connections are and J [38].

    Lemma 2.1. Let J: ¯O1¯O2 be a horizontal conformal submersion. Then, we have

    (i) (J)(¯W1,¯Z1)=¯W1(lnλ)J(¯Z1)+¯Z1(lnλ)J(¯W1)g1(¯W1,¯Z1)J(gradlnλ),

    (ii) (J)(¯U1,¯V1)=J(T¯U1¯V1),

    (iii) (J)(¯W1,¯U1)=J(ˉJ¯W1¯U1)=J(A¯W1¯U1)

    for any ¯W1,¯Z1Γ(kerJ) and ¯U1,¯V1Γ(kerJ) [9].

    Let M be a differentiable manifold of dimension n, is said to be having an almost contact structure (ϕ,ξ,η) if, it carries a tensor field ϕ, vector field ξ and 1-form η on M satisfying

    ϕ2=I+ηξ,ϕξ=0,ηϕ=0,η(ξ)=1, (2.11)

    where, I is identity tensor. The almost contact structure (ϕ,ξ,η) is said to be normal if N+dηξ=0, where N is the Nijenhuis tensor of ϕ. Suppose that a Riemannian metric tensor g is given in M and satisfies the condition

    g(ϕˉW,ϕˉZ)=g(ˉW,ˉZ)η(ˉW)η(¯VZ),η(ˉW)=g(ˉW,ξ) (2.12)

    for all ˉZ,ˉWΓ(TM). Then (ϕ,ξ,η,g)-structure is called an ACM structure, Tanno [36] determined connected ACM manifolds with the largest automorphism groups. The sectional curvature of a plane section containing ξ for such a manifold is constant c. The characterizing equations of these manifolds are

    (ˉWϕ)ˉZ=g(ϕˉW,ˉZ)ξη(ˉZ)ϕˉW. (2.13)

    These spaces are referred to as Kenmotsu manifolds, since Kenmotsu investigated some of these manifolds' basic differential geometric features [22]. On a KM, we can deduce that

    ˉWξ=ϕ2ˉW=ˉWη(ˉW)ξ (2.14)

    and the covariant derivative of ϕ is defined by

    (ˉWϕ)ˉZ=ˉWϕˉZϕˉWˉZ (2.15)

    for any ˉW,ˉZΓ(TM).

    Definition 2.2. Suppose D is a k-dimensional smooth distribution on ˉO1. Then an immersed submanifold i: ˉO2ˉO2 is called an integral manifold for D if for every xˉO2, the image of diˉO2: TpˉO2TpˉO1 is Dp. We say the distribution Dp is integrable if through each point of ˉO1 there exists an integral manifold of D.

    Further, a distribution D is involutive if it satisfies the Frobenius condition such that if X,YΓ(TˉO1) belongs to D, so [X,Y]D. Frobenius theorem states that an involutive distribution is integrable.

    Definition 2.3. Let ˉO1 be n-dimensional smooth manifold. A foliation F of ˉO1 is a decomposition of ˉO1 into a union of disjoint connected submanifolds ˉO1=LFL called the leaves of the foliation, such that for each mˉO1, there is a neighborhood U of ˉO1 and a smooth submersion fU: URk with f1U(x) a leaf of F|U the restriction of the foliation to U, for each xRk.

    Definition 2.4. Let ˉO1 be a Riemannian manifold, and let F be a foliation on ˉO1. F is totally geodesic if each leaf L is a totally geodesic submanifold of ˉO1; that is, any geodesic tangent to L at some point must lie within L.

    Definition 3.1. Let (¯O1,ϕ,ξ,η,g1) be an ACM manifold and (¯O2,g2) be a RM. A conformal submersion J is said to be a CBSS with vertical ξ if Dθ1 and Dθ2 are slant distributions with slant angel θ1 and θ2 such that kerJ=Dθ1Dθ2<ξ>, where <ξ> is a 1-dimensional distribution spanned by ξ and J is called proper if θ1,θ20,π2.

    If n1,n20,0<θ1<π2 and 0<θ2<π2, then, J is said to be a proper CBSS with vertical ξ, where n1,n2 are the dimensions of Dθ1 and Dθ2 respectively.

    In this part, we provide a non-trivial example to support our research.

    Example 3.1. Let (xi,yi,z) be Cartesian coordinates on R2n+1 for i=1,2,3,,n. An ACM structure (ϕ,ξ,η,g) is defined as follows:

    ϕ(a1x1+a2x2++anxn+b1y1+b2y2+.+bnyn+cz)=(b1x1b2x2bnxn+a1y1+a2y2++anyn),

    where ξ=z and ai,bi,c are C- real valued functions in R2n+1. Let η=dz,g is Euclidean metric and

    {x1,x2,.,xn,y1,y2,,yn,z}

    is orthonormal base field of vectors on R2n+1. Then, it can be easily seen that (ϕ,ξ,η,gR2n+1) is a Kenmotsu structure on R2n+1.

    Define a conformal submersion J: R9R4 such that

    (x1,,x4,y1,,y4,z)(x1,(cosθ1)x2+(sinθ1)x4,(cosθ2)y1+(sinθ2)y3,y2),

    where (x1,,x4,y1,,y4,z) are natural coordinates of R9 and (R9,gR9) is a KM with above defined structure and λ=π5. Then it follows that

    (kerJ)={Y=x1,cosθ1x2+sinθ1x4,cosθ2y1+sinθ2y3,y2},
    (kerJ)={ˉW1=x3,ˉW2=sinθ2y1+cosθ2y3,ˉW3=y4,ˉW4=sinθ1x2cosθ1x4,ˉW5=z},
    Dθ1={ˉW1=x3,ˉW2=sinθ2y1+cosθ2y3,ˉW5=z}

    and

    Dθ2={ˉW3=y4,ˉW4=sinθ1x2cosθ1x4}.

    Thus, J is a CBSS with vertical ξ and slant angle θ1 and θ2 with λ=π5.

    Suppose that J is a CBSS with vertical ξ from KM (¯O1,ϕ,ξ,η,g1) onto a RM (¯O2,g2), then for any ˉUkerJ

    ˉU=KˉU+LˉU+η(ˉU)ξ, (3.1)

    where KˉUΓ(Dθ1) and LˉUΓ(Dθ2).

    Also, for ˉUΓ(kerJ)

    ϕˉU=ψˉU+ζˉU, (3.2)

    where ψˉUΓ(kerJ) and ζˉUΓ(kerJ). For any ˉXΓ(kerJ), we have

    ϕˉX=tˉX+fˉX, (3.3)

    where tˉXΓ(kerJ) and fˉXΓ(kerJ).

    The horizontal distribution (kerJ) is decomposed as

    (kerJ)=ζDθ1ζDθ2μ, (3.4)

    such that μ is the complementary distribution to ζDθ1ζDθ2 in Γ(kerJ).

    Given that J: ¯O1¯O2 is a CBSS with vertical ξ, let's present some insightful findings that will be used throughout the work.

    Theorem 3.1. Let J: (¯O1,ϕ,ξ,η,g1)(¯O2,g2) be a CBSS with vertical ξ from ACM manifold onto a RM with slant angles θ1 and θ2. Then we have

    (i) ψ2ˉU=(cos2θi)ˉU,

    (ii) g1(ψˉU,ψˉV)=cos2θig1(ˉU,ˉV),

    (iii) g1(ζˉU,ζˉV)=sin2θig1(ˉU,ˉV)

    for any vector fields ˉU,ˉVΓ(Dθi), where i=1,2.

    Due to similarities with the proof of [12, Theorem 3.4], we omit the proof of the aforementioned result.

    Lemma 3.1. Let (¯O1,ϕ,ξ,η,g1) be a KM and (¯O2,g2) be a RM. If J: ¯O1¯O2 is a CBSS with vertical ξ, then we have

    ζtˉX+f2ˉX=ˉX,ψtˉX+tfˉX=0,ˉU+η(ˉU)ξ=ψ2ˉU+tζˉU,ζψˉU+fζˉU=0

    for any ˉUΓ(kerJ*) and ˉXΓ(kerJ).

    Proof. Equations (2.14), (3.2) and (3.3) are used to obtain outcomes from simple calculations.

    Let (¯O2,g2) is a RM and that (¯O1,ϕ,ξ,η,g1) is a KM. Now, let us check how the Kenmotsu structure on ¯O1 affects the tensor fields T and A of a BSCSJ: (¯O1,ϕ,ξ,η,g1)(¯O2,g2)

    Lemma 3.2. If J: ¯O1¯O2 is a CBSS with vertical ξ where (¯O1,ϕ,ξ,η,g1) be a KM and (¯O2,g2) be a RM, then we have

    (i) AˉXtˉY+HˉXfˉY=fHˉXˉY+ζAˉXˉY,

    (ii) VˉXtˉY+AˉXfˉY=tHˉXˉY+ψAˉXˉYg1(ϕˉX,ˉY)ξ,

    (iii) VˉXψˉV+AˉXζˉV=tAˉXˉV+ψVˉXˉV+g1(ϕˉX,ˉV)ξη(ˉV)tˉX,

    (iv) AˉXψˉV+HˉXζˉV=fAˉXˉV+ζVˉXˉVη(ˉV)fˉX,

    (v) VˉVtˉX+TˉVfˉX=ψTˉVfˉX+tHˉVˉX+g1(ϕˉX,ˉV)ξ,

    (vi) TˉVtˉX+HˉVfˉX=ζTˉVˉX+fHˉVˉX,

    (vii) VˉUψˉV+TˉUζˉV+η(ˉV)ψˉU=tTˉUˉV+ψVˉUˉV+g1(ϕˉU,ˉV)ξ,

    (viii) TˉUψˉV+HˉUζˉV+η(ˉV)ζˉU=fTˉUˉV+ζVˉUˉV

    for any ˉU,ˉVΓ(kerJ) and ˉX,ˉYΓ(kerJ*).

    Proof. By some simple steps of calculation with using (2.7), (2.15) and (3.3), (i) and (ii) are easily obtained. In the same manner, from Eqs (2.4)–(2.6), (2.15), (3.2) and (3.3), we will get the desired results.

    We will now go through some fundamental findings that can be used to investigate the conformal bi-slant submersions J: ¯O1¯O2 geometry. Define the following in this regard:

    (a)(ˉUψ)ˉV=VˉUψˉVψVˉUˉV,

    (b)(ˉUζ)ˉV=HˉUζˉVζVˉUˉV,

    (c)(ˉXt)ˉY=VˉXtˉYtHˉXˉY,

    (d)(ˉXf)ˉY=HˉXfˉYfHˉXˉY

    for all ˉU,ˉVΓ(kerJ) and ˉX,ˉYΓ(kerJ).

    Lemma 3.3. Let (¯O1,ϕ,ξ,η,g1) be a KM and (¯O2,g2) be a RM. If J: ¯O1¯O2 is a CBSS with vertical ξ, then we have

    (i) (ˉUψ)ˉV=tTˉUˉVTˉUζˉV+g1(ϕˉU,ˉV)ξη(ˉV)ψˉU,

    (ii) (ˉUζ)ˉV=fTˉUˉVTˉUψˉVη(ˉV)ζˉU,

    (iii) (ˉXt)ˉY=ψAˉXˉYAˉXfˉY,

    (iv) (ˉXf)ˉY=ζAˉXˉYAˉXtˉY

    for any ˉU,ˉVΓ(kerJ*) and ˉX,ˉYΓ(kerJ*).

    Proof. By taking account the fact from (2.4)–(2.7), (2.13), (i), (ii) part from Lemma 3.2 and from part (a)(d), it is easy to get the proof of the lemma.

    It is given that is the Levi-Civita connection of Kenmotsu manifolds ¯O1. Let us suppose that the tenors ψ and ζ are parallel, we can write

    tTˉUˉV=TˉUζˉVg1(ϕˉU,ˉV)ξ+η(ˉV)ψˉU,fTˉUˉV=TˉUψˉV+η(ˉV)ζˉU

    for any ˉX,ˉYΓ(T¯O1).

    We will talk about the geometry of distribution leaves and integrability conditions in this section. We begin with the prerequisites that must be met in order for the slant distributions to be integrable.

    Theorem 4.1. Let J: (¯O1,ϕ,ξ,η,g1)(¯O2,g2) be a proper CBSS with vertical ξ with slant angles θ1 and θ2, where (¯O1,ϕ,ξ,η,g1) is a KM and (¯O2,g2) is a RM. Then the distribution Dθ1 is integrable if and only if

    λ2g2((J)(ˉU1,ζˉV1),JζˉU2)g1(ϕ¯U1ϕ¯V1,¯U2)η(ψ¯U1)g1(ϕ¯U1ϕ¯V1,ψ¯V1ψ¯U1)η(¯U2)=λ2{(g2(JˉU1JζˉV1JˉV1JζˉU1),JζˉU2)}+g1(TˉV1ζψˉU1TˉU1ζψˉV1,ˉU2)+g1(TˉU1ζˉV1TˉV1ζˉU1,ψˉU2)+λ2g2((J)(ˉV1,ζˉU1),JζˉU2)

    for any ˉU1,ˉV1Γ(Dθ1) and ˉU2Γ(Dθ2).

    Proof. For any ˉU1,ˉV1Γ(Dθ1) and ˉU2Γ(Dθ2) and on using (2.12), (2.13) and from (3.2), we have

    g1([ˉU1,ˉV1],ˉU2)=g1(ˉV1ψ2ˉU1,ˉU2)g1(ˉU1ψ2ˉV1,ˉU2)g1(ˉU1ζψˉV1,ˉU2)    +g1(ˉV1ζψˉU1,ˉU2)+g1(ˉU1ζˉV1,ϕˉU2)g1(ˉV1ζˉU1,ϕˉU2).

    Considering Theorem 3.1, we have

    sin2θ1g1([ˉU1,ˉV1],ˉU2)=g1(ˉU1ζψˉV1,ˉU2)+g1(ˉV1ζψˉU1,ˉU2)+g1(ˉU1ζˉV1,ϕˉU2)g1(ˉV1ζˉU1,ϕˉU2)+g1(ϕˉUϕˉV,ψˉVψˉU)η(¯U2)+g1(ϕˉUϕˉV,¯U2)η(ψˉU).

    By using (2.5), we have

    sin2θ1g1([ˉU1,ˉV1],ˉU2)=g1(TˉV1ζψˉU1TˉU1ζψˉV1,ˉU2)g1(TˉU1ζˉV1TˉV1ζˉU1,ψˉU2)    +g1(HˉU1ζˉV1HˉV1ζˉU1,ζˉU2)+g1(ϕˉUϕˉV,ψˉVψˉU)η(¯U2)    +g1(ϕˉUϕˉV,¯U2)η(ψˉU).

    Now considering Lemma 2.1 and (2.10), we have

    sin2θ1g1([ˉU1,ˉV1],ˉU2)=λ2g2((JˉU1JζˉV1JˉV1JζˉU1),JζˉU2)}+g1(TˉV1ζψˉU1TˉU1ζψˉV1,ˉU2)g1(TˉU1ζˉV1TˉV1ζˉU1,ψˉU2)λ2g2((J)(ˉU1,ζˉV1),JζˉU2)+λ2g2((J)(ˉV1,ζˉU1),JζˉU2)+g1(ϕˉUϕˉV,¯U2)η(ψˉU)+g1(ϕˉUϕˉV,ψˉVψˉU)η(¯U2).

    Studying distribution leaves will be significant since they are crucial to the geometry of conformal bi-slant submersions from the Kenmotsu manifold. In order to do this, we are determining the circumstances in which distributions define total geodesic foliation on M.

    Theorem 4.2. Let J: (ˉO1,ϕ,ξ,η,g1)(¯O2,g2) be a CBSS with vertical ξ from a KM onto a RM ¯O2. Then Dθ1 is not totally geodesic on ˉO1.

    Proof. For any vector field ˉU,ˉVΓ(Dθ) with the fact that ˉV and ξ are orthogonal, we have

    g1(ˉUˉV,ξ)=g1(ˉV,ˉUξ).

    By considering the (2.14), we get

    g1(ˉUˉV,ξ)=g1(ˉU,ˉV).

    Since,

    ˉU,ˉVΓ(Dθ1),g1(ˉU,ˉV)0,

    that is g1(ˉUˉV,ξ)0. Hence, the distribution is not defines totally geodesic foliation on ˉO1.

    Since the Reeb vector field ξ is assumed to be vertical, the slant distribution Dθ1 does not define total geodesic foliation. In order to deal with this issue, the geometry of the leaves of the slant distribution Dθ1<ξ> is being examined here.

    Theorem 4.3. Let (ˉO1,ϕ,ξ,η,g1) be a KM and (¯O2,g2) be a RM such that J is a CBSS with vertical ξ from M onto ¯O2. Then the distribution Dθ1<ξ> defines totally geodesic foliation on ˉO1 if and only if

    λ2g2((J)(ˉU1,ζˉV1),JζˉU2)=g1(TˉU1ζˉV1,ψˉU2)g1(TˉU1ζψˉV1,ˉU2)    +λ2g2(JˉU1JζˉV1,JζˉU2) (4.1)

    and

    λ2g2(JˉXJζˉU1,JζˉV1)+g1(AˉXζˉU1,ψˉV1)=sin2θg1([ˉU1,ˉX],ˉV1)+g1(AˉXζψˉU1,ˉV1)+g1(gradlnλ,ˉX)g1(ζˉU1,ζˉV1)+g1(gradlnλ,ζˉU1)g1(ˉX,ζˉV1)g1(gradlnλ,ζˉV1)g1(ˉX,ζˉU1) (4.2)

    for any ˉU1,ˉV1Γ(Dθ1<ξ>),ˉU2Γ(Dθ2) and ˉXΓ(kerJ).

    Proof. For any ˉU1,ˉV1Γ(Dθ1<ξ>) and ˉU2Γ(Dθ2) with using (2.12), (2.13) and (3.2), we have

    g1(ˉU1ˉV1,ˉU2)=g1(ˉU1ζˉV1,ϕˉU2)g1(ˉU1ζψˉV1,ˉU2)g1(ˉU1ψ2ˉV1,ˉU2).

    From Theorem 3.1, we can write

    sin2θ1g1(ˉU1ˉV1,ˉU2)=g1(ˉU1ζψˉV1,ˉU2)+g1(ˉU1ζˉV1,ϕˉU2).

    On using (2.5), we have

    sin2θ1g1(ˉU1ˉV1,ˉU2)=g1(TˉU1ζˉV1,ψˉU2)g1(TˉU1ζψˉV1,ˉU2)+g1(HˉU1ζˉV1,ζˉU2).

    Considering (2.10) and Lemma 2.1, we obtain

    sin2θ1g1(ˉU1ˉV1,ˉU2)=g1(TˉU1ζˉV1,ψˉU2)g1(TˉU1ζψˉV1,ˉU2)λ2g2((J)(ˉU1,ζˉV1),JζˉU2)    +λ2g2(ˉU1JζˉV1,JζˉU2),

    this proves first part of theorem.

    On the other hand, ˉU1,ˉV1Γ(Dθ1) and ˉXΓ(kerJ) with using (2.12), (2.13) and (3.2), we can write

    g1(ˉU1ˉV1,ˉX)=g1([ˉU1,ˉX],ˉV1)+g1(ϕˉXψˉU1,ˉV1)g1(ˉXζˉU1,ϕˉV1).

    Considering Theorem 3.1, we obtained

    sin2θ1g1(ˉU1ˉV1,ˉX)=g1([ˉU1,ˉV1],ˉX)+g1(ˉXζψˉU1,ˉV1)g1(ˉXζˉU1,ϕˉV1).

    On using (2.7), we have

    sin2θ1g1(ˉU1ˉV1,ˉX)=sin2θ1g1([ˉU1,ˉX],ˉV1)+g1(AˉXζψˉU1,ˉV1)g1(AˉXζˉU1,ψˉV1)λ2g2(JˉXζˉU1,JζˉU1).

    Using Lemma 2.1, we yields

    sin2θ1g1(ˉU1ˉV1,ˉX)=sin2θ1g1([ˉU1,ˉX],ˉV1)+g1(AˉXζψˉU1,ˉV1)λ2g2(JˉXJζˉU1,JζˉV1)+g1(gradlnλ,ˉX)g1(ζˉU1,ζˉV1)+g1(gradlnλ,ζˉU1)g1(ˉX,ζˉV1)g1(gradlnλ,ζˉV1)g1(ˉX,ζˉU1)g1(AˉXζˉU1,ψˉV1).

    This completes the proof of the Theorem.

    It is obvious that the Theorems 4.1–4.3 hold for distribution Dθ2. Now, we look at certain circumstances that allow horizontal and vertical distributions to be totally geodesic. We commence by giving the findings for vertical distribution.

    Theorem 4.4. Let (¯O1,ϕ,ξ,η,g1) be a KM and (¯O2,g2) be a RM such that J is a CBSS with vertical ξ from ¯O1 onto ¯O2. Then vertical distribution (kerJ) defines totally geodesic foliation on ¯O1 if and only if

    λ2g2(JˉX1JζˉU1,JζˉV1)=(cos2θ2cos2θ1)g1(ˉX1LˉU1,ˉV1)+g1(AψˉV1,ζˉU1)g1(AˉX1ˉV1,ζψˉU1)+g1(gradlnλ,ˉX1)g1(ζˉU1,ζˉV1)+g1(gradlnλ,ζˉU1)g1(ˉX1,ζˉV1)g1(gradlnλ,ζˉV1)g1(ˉX1,ζˉU1)sin2θ1g1([ˉU1,ˉX1],ˉV1)g1(ϕˉX,ψˉU)η(ˉV)+g1(ϕˉX,ˉV)η(ψˉU) (4.3)

    for ˉU1,ˉV1Γ(kerJ) and ˉX1Γ(kerJ).

    Proof. On taking ˉU1,ˉV1Γ(kerJ) and ˉX1Γ(kerJ) with using (2.12), (2.13) and (3.2), we have

    g1(ˉU1ˉV1,ˉX1)=g1([ˉU1,ˉX1],ˉV1)+g1(ˉX1ϕψˉU1,ˉV1)g1(ˉX1ζˉU1,ϕˉV1).

    On using decomposition (3.1) and Theorem 3.1, we get

    g1(ˉU1ˉV1,ˉX1)=g1([ˉU1,ˉX1],ˉV1)cos2θ1g1(ˉX1KˉU1,ˉV1)cos2θ2g1(ˉX1LˉU1,ˉV1)+g1(ˉX1ζψˉU1,ˉV1)g1(ˉX1ζˉU1,ψˉV1)g1(ˉX1ζˉU1,ζˉV1)g1(ϕˉX,ψˉU)η(ˉV)+g1(ϕˉX,ˉV)η(ψˉU).

    On using (2.7), we can write

    sin2θ1g1(ˉU1ˉV1,ˉX1)=(cos2θ2cos2θ1)g1(ˉX1LˉU1,ˉV1)sin2θ1g([ˉU1,ˉX1],ˉV1)+g1(AˉX1ψˉV1,ζˉU1)g1(AˉX1ˉV1,ζψˉU1)g1(HˉX1ζˉU1,ζˉV1)g1(ϕˉX,ψˉU)η(ˉV)+g1(ϕˉX,ˉV)η(ψˉU).

    Using (2.10), we get

    sin2θ1g1(ˉU1ˉV1,ˉX1)=(cos2θ2cos2θ1)g1(ˉX1LˉU1,ˉV1)+g1(AˉX1ψˉV1,ζˉU1)g1(AˉX1ˉV1,ζψˉU1)+λ2g2((J)(ˉX1,ζˉU1),JζˉV1)λ2g2(JˉX1JζˉU1,JζˉV1)sin2θ1g1([ˉU1,ˉX1],ˉV1)g1(ϕˉX,ψˉU)η(ˉV)+g1(ϕˉX,ˉV)η(ψˉU).

    Considering Lemma 2.1, we have

    sin2θ1g1(ˉU1ˉV1,ˉX1)=(cos2θ2cos2θ1)g1(ˉX1LˉU1,ˉV1)+g1(AˉX1ψˉV1,ζˉU1)g1(AˉX1ˉV1,ζψˉU1)+g1(gradlnλ,ˉX1)g1(ζˉU1,ζˉV1)+g1(gradlnλ,ζˉU1)g1(ˉX1,ζˉV1)g1(gradlnλ,ζˉV1)g1(ˉX1,ζˉU1)λ2g2(JˉX1JζˉU1,JζˉV1)sin2θ1g1([ˉU1,ˉX1],ˉV1)g1(ϕˉX,ψˉU)η(ˉV)+g1(ϕˉX,ˉV)η(ψˉU).

    This completes the proof of the Theorem.

    Similarly, we examined the totally geodesic prerequisite for horizontal distributions.

    Theorem 4.5. Let (¯O1,ϕ,ξ,η,g1) be a KM and (¯O2,g2) be a RM such that J is a CBSS with vertical ξ from ¯O1 onto ¯O2. Then horizontal distribution (kerJ) is totally geodesic if and only if

    λ2g2(JˉX1JζˉU1,JfˉX2)=g1(AˉX1ζˉU1,tˉX2)η(ˉX2)g1(ϕˉX1,ˉU1)+g1(gradlnλ,ˉX1)g1(ζˉU1,fˉX2)+g1(gradlnλ,ζˉU1)g1(ˉX1,fˉX2)g1(gradlnλ,fˉX2)g1(ˉX1,ζˉU1)g1(gradlnλ,ˉX1)g1(ζψˉU1,ˉX2)g1(gradlnλ,ζψˉU1)g1(ˉX1,fˉX2)+g1(gradlnλ,ˉX2)g1(ˉX1,ζψˉU1)+λ2g2(JˉX1JζψˉU1,JˉX2) (4.4)

    for any ˉX1,ˉX2Γ(kerJ),ˉU1Γ(KerJ).

    Proof. For any ˉX1,ˉX2Γ(kerJ) and ˉU1Γ(kerJ) with using (2.12), (2.13) and (3.2), we have

    g1(ˉX1ˉX2,ˉU1)=g1(ˉX1ϕψˉU1,ˉX2)g1(ˉX1ζˉU1,ϕˉX2)η(ˉU1)g1(ˉX1,ˉX2).

    By using Theorem 3.1, we can write

    sin2θ1g1(ˉX1ˉX2,ˉU1)=g1(ˉX1ζψˉU1,ˉX2)g1(ˉX1ζˉU1,ϕˉX2)η(ˉU1)g1(ˉX1,ˉX2)+η(ψˉU1)g1(ϕˉX1,ˉX2).

    From (2.7), we get

    sin2θ1g1(ˉX1ˉX2,ˉU1)=g1(AˉX1ζˉU1,tˉX2)λ2g2(JˉX1ζˉU1,JfˉX2)+λ2g2(JˉX1ζψˉU1,JˉX2)η(ˉU1)g1(ˉX1,ˉX2)+η(ψˉU1)g1(ϕˉX1,ˉX2).

    Considering Lemma 2.1, we have

    sin2θ1g1(ˉX1ˉX2,ˉU1)=g1(AˉX1ζˉU1,tˉX2)η(ˉU1)g1(ˉX1,ˉX2)+η(ψˉU1)g1(ϕˉX1,ˉX2)λ2g2(JˉX1JζˉU1,JfˉX2)+g1(gradlnλ,ˉX1)g1(ζˉU1,fˉX2)+g1(gradlnλ,ζˉU1)g1(ˉX1,fˉX2)g1(gradlnλ,fˉX2)g1(ˉX1,ζˉU1)g1(gradlnλ,ˉX1)g1(ζψˉU1,ˉX2)g1(gradlnλ,ζψˉU1)g1(ˉX1,fˉX2)+g1(gradlnλ,ˉX2)g1(ˉX1,ζψˉU1)+λ2g2(JˉX1JζψˉU1,JˉX2).

    It is now fascinating to investigate if the whole space ¯O1 can become a locally twisted product manifold under specific circumstances. We find some criteria that make total space ¯O1 a locally twisted product manifold in the following result. Here, we give the definition of the twisted product manifold defined by Ponge [31]. Let gB be a Riemannian metric tensor on the manifold B=ˉO1×ˉO2 and assume that the canonical foliations DˉO1 and DˉO2 intersect perpendicularly everywhere. The gB is a metric tensor of

    (i) a twisted product if and only if DˉO1 is totally geodesic foliation and DˉO2 is totally umbilical foliation,

    (ii) a usually product of Riemannian manifolds if and only if DˉO1 and DˉO2 are totally geodesic foliations,

    (iii) a warped product if and only if DˉO1 is totally geodesic foliation and DˉO2 is a spheric foliation, i.e., it is umbilical and its mean curvature vector field is parallel.

    Theorem 4.6. Let J be a CBSS with vertical ξ from a KM (¯O1,ϕ,ξ,η,g1) onto a RM (¯O2,g2). Then ¯O1 is a locally twisted product manifold of the form ¯O1(kerJ)×λ¯O1(kerJ) if and only if

    1λ2g2(JϕˉWJϕˉV,JϕfˉX)=g1(ϕˉV,ϕˉW)g1(gradlnλ,JϕfˉV)g1(ˉVϕˉW,tˉX) (4.5)

    and

    g1(ˉX,ˉY)H=tAˉXtˉYtˉX(lnλ)fˉY+t(gradlnλ)g1(ˉX,fˉY)+ϕJ(JˉXJfˉY)+g1(ˉX,ˉY)ξ, (4.6)

    where H is mean curvature vector and for any ˉV,ˉWΓ(kerJ) and ˉX,ˉYΓ(kerJ).

    Proof. For any ˉV,ˉWΓ(kerJ) and ˉX,ˉYΓ(kerJ), we have

    g1(ˉVˉW,ˉX)=g1(HˉVϕˉW,fˉX)+g1(TˉVϕˉW,tˉX).

    Since is torsion free, [ˉV,ϕˉW]Γ(kerJ), we have

    g1(ˉVˉW,ˉX)=g1(ˉVϕˉW,tˉX)+g1(ϕˉWϕˉV,ϕfˉX).

    Since J is CBSS with vertical ξ, by using Lemma 2.1 and from the fact that g1(fˉX,ϕˉV)=0 for ˉX(kerJ) and ˉV(kerJ), we have

    g1(ˉVˉW,ˉX)=g1(ˉVϕˉW,tˉX)+1λ2g2(JϕˉWJϕˉV,J(ϕfˉX))    g1(ϕˉV,ϕˉW)g1(gradlnλ,J(ϕfˉV)).

    It follows that ¯O1(kerJ) is totally geodesic if and only if the (4.5) holds good. Now, for ˉX,ˉYΓ(kerJ),ˉVΓ(kerJ), we have

    g1(ˉXˉY,ˉV)=g1(AˉXtˉY+VˉXtˉY,ϕˉV)+g1(AˉXfˉY+HˉXfˉY,ϕˉV)+g1(ˉX,ˉY)η(ˉV).

    From above equation, we get

    g1(ˉXˉY,ˉV)=g1(AˉXtˉY,ϕˉV)+g1(HˉXfˉY,ϕˉV)+g1(ˉX,ˉY)η(ˉV).

    Since J is a CBSS with vertical ξ, from (2.4) and on using Lemma 2.1, we get

    g1(ˉXˉY,ˉV)=g1(AˉXtˉY,ϕˉV)1λ2g2(gradlnλ,ˉX)1λ2g2(JfˉY,JϕˉV)    1λ2g2(gradlnλ,fˉY)1λ2g2(JˉX,JϕˉV)    +1λ2g2(ˉX,fˉY)1λ2g2(Jgradlnλ,JϕˉV)    +1λ2g2(JˉXJfˉY,JϕˉV)+g1(ˉX,ˉY)η(ˉV).

    Moreover using the fact that g1(fˉX,ϕˉV)=0, for ˉXΓ(kerJ),ˉVΓ(kerJ), we arrived at

    g1(ˉXˉY,ˉV)=g1(AˉXtˉY,ϕˉV)+1λ2g2(JˉXJfˉY,JϕˉV)1λ2g2(gradlnλ,fˉY)1λ2g2(JˉX,JϕˉV)+1λ2g2(ˉX,fˉY)1λ2g2(Jgradlnλ,JϕˉV)+g1(ˉX,ˉY)η(ˉV).

    With the last equation, we can say that ¯O1(kerJ) is totally umbilical if and only if the (4.6) satisfied. This proves the theorem completely.

    Now, we recall the concept of J-pluriharmonicity which is defined by Ohnita [25] and extend the notion from a almost Hermitian manifold to ACM manifold.

    Let J be a CBSS with vertical ξ from KM (¯O1,ϕ,ξ,η,g1) onto a RM (¯O2,g2) with slant angles θ1 and θ2. Then conformal bi-slant is ϕ-pluriharmonic, Dθi-ϕ-pluriharmonic, kerJ-ϕ-pluriharmonic, (kerJ)-ϕ-pluriharmonic and ((kerJ)kerJ)-ϕ-pluriharmonic if

    (J)(ˉW,ˉZ)+(J)(ϕˉW,ϕˉZ)=0 (5.1)

    for any ˉW,ˉZΓ(Dθi), for any ˉW,ˉZΓ(kerJ), for any ˉW,ˉZΓ(kerJ) and for any ˉWΓ(kerJ),ˉZΓ(kerJ).

    Theorem 5.1. Let J be a CBSS with vertical ξ from KM (¯O1,ϕ,ξ,η,g1) onto a RM (¯O2,g2) with slant angles θ1 and θ2. Suppose that J is Dθ1-ϕ-pluriharmonic. Then Dθ1 defines totally geodesic foliation ¯O1 if and only if

    J(ζTψˉUζψˉV+fHψˉUζψˉV)J(AζˉUψˉV+HψˉUζˉV)=cos2θ1J(fTψˉUˉV+ζVψˉUˉV)+JψˉUJϕˉVζˉU(lnλ)JζˉVζˉV(lnλ)JζˉU+g1(ζˉU,ζˉV)J(gradlnλ)

    for any ˉU,ˉVΓ(Dθ1).

    Proof. For any ˉU,ˉVΓ(Dθ1) and since, J is Dθ1-ϕ-pluriharmonic, then by using (2.3) and (2.4), we have

    0=(J)(ˉU,ˉV)+(J)(ϕˉU,ϕˉV),J(ˉUˉV)=J(ϕˉUϕˉV)+JϕˉUJ(ϕˉV)=J(AζˉUψˉV+VζˉUψˉV+TψˉUζˉV+HψˉUζˉV)+J(ϕψˉUϕψˉV+(J)(ζˉU,ζˉV)JζˉUJζˉV+JϕˉUJϕˉV.

    By using (2.10), (3.1) with Theorem 3.1, the above equation finally takes the form

    J(ˉUV)=cos2θ1J(tTψˉUˉV+fTψˉUˉV+ψVψˉUˉV+ζVψˉUˉV)+JϕˉUJϕˉV+J(ψTψˉUζψˉV+ζTψˉUζψˉV+tHψˉUζψˉV+fHψˉUζψˉV)J(AζˉUψˉV+VζˉUψˉV+TψˉUζˉV+HψˉUζˉV)JζˉUJζˉV+ζˉU(lnλ)JζˉV+ζˉV(lnλ)JζˉUg1(ζˉU,ζˉV)J(gradlnλ)

    from which we get the desired result.

    Theorem 5.2. Let J be a CBSS with vertical ξ from KM (¯O1,ϕ,ξ,η,g1) onto a RM (¯O2,g2) with slant angles θ1 and θ2. Suppose that J is Dθ2-ϕ-pluriharmonic. Then Dθ2 defines totally geodesic foliation ¯O1 if and only if

    J(ζTψˉZζψˉW+fHψˉZζψˉW)J(AζˉZψˉW+HψˉZζˉW)=cos2θ2J(fTψˉZˉW+ζˉWψˉZˉW)+JψˉZJϕˉWζˉZ(lnλ)JζˉWζˉW(lnλ)JζˉZ+g1(ζˉZ,ζˉW)J(gradlnλ)

    for any ˉZ,ˉWΓ(Dθ2).

    Proof. Due to the similarity of proof of above result to Theorem 5.1, we omit it.

    Theorem 5.3. Let J be a CBSS with vertical ξ from KM (¯O1,ϕ,ξ,η,g1) onto a RM (¯O2,g2) with slant angles θ1 and θ2. Suppose that J is ((kerJ)kerJ)-ϕ-pluriharmonic. Then the horizontal distribution (kerJ) defines totally geodesic foliation on ¯O1 if and only if

    cos2θ1J{fTtˉXKˉU+ζVtˉXKˉU+fACˉXKˉU+ζVCˉXKˉU}+cos2θ2J{fTtˉXLˉU+ζVtˉXLˉU+fAfˉXLU+ζVfˉXLU+η(ψU)fˉX}=J{ζTtˉXζψKˉU+fHtˉXζψKˉU+ζTtˉXζψLˉU+fHtˉXζψLˉU}+J{ζAfˉXζψKˉU+ζAfˉXζψLˉUHtˉXζˉU}+JϕˉXJζˉUfˉX(lnλ)JζψKˉUζψKˉU(lnλ)JfˉX+g1(fˉX,ζψKˉU)J(gradlnλ)fˉX(lnλ)JζψLˉUζψLˉU(lnλ)JfˉX+g1(fˉX,ζψLˉU)J(gradlnλ)+J(ˉXˉU)+JϕˉXJζˉU+JfˉXJζψKˉU+JfˉXJζψLˉU

    for any ˉXΓ(kerJ) and ˉUΓ(kerJ)

    Proof. For any ˉXΓ(kerJ) and ˉUΓ(kerJ), since J is ((kerJ)kerJ)-ϕ-pluriharmonic, then by using (2.4), (2.10) and (3.1), we get

    J(fˉXζˉU)=J(tˉXψˉU+tˉXζˉU+fˉXψˉU)+J(ˉXˉU)+JϕˉXJζˉU.

    By using (2.1), we have

    J(fˉXζˉU)=J(TtˉXζˉU+HtˉXζˉU)+J(ˉXˉU)+JϕˉXJζˉU +J{ϕtˉXϕψˉUη(tˉXψˉU)ξη(ψˉU)tˉX+η(ψˉU)η(tˉX)ξ} +J{ϕfˉXϕψˉUη(fˉXψˉU)ξη(ψˉU)fˉX+η(ψˉU)η(fˉX)ξ}.

    Now on using decomposition (2.8), Theorem 3.1 with (2.10), we may yields

    J(fˉXζˉU)=J{cos2θ1ϕtˉXKˉUcos2θ2ϕtˉXLˉU+η(ψˉU)fˉX}+J{ϕtˉXζψKˉU+ϕtˉXζψLˉU+ϕfˉXζψKˉU+ϕfˉXζψLˉU}+J{cos2θ1ϕfˉXKˉUcos2θ2ϕfˉXLˉU}J(HtˉXζˉU)+J(ˉXˉU)+JϕˉXJζˉU.

    From (2.4)–(2.7) and after simple calculation, we may write

    J(fˉXζˉU)=cos2θ1J{fTtˉXKˉU+ζVtˉXKˉU+fAfˉXKˉU+ζVfˉXKˉU}cos2θ2J{fTtˉXLˉU+ζVtˉXLˉU+fAfˉXLˉU+ζVfˉXLˉU+η(ψˉU)fˉX}+J{ζTtˉXζψKˉU+fHtˉXζψKˉU+ζTtˉXζψLˉU+fHtˉXζψLˉU}+J{ζAfˉXζψKˉU+ζAfˉXζψLˉUHtˉXζˉU}+JϕˉXJζˉU+J(fHfˉXζψKˉU+fHfˉXζψKˉU)+J(ˉXˉU).

    On using the conformality of J with (2.4) and from Lemma 2.1, we finally have

    J(fˉXζˉU)=cos2θ1J{fTtˉXKˉU+ζVtˉXKˉU+fACˉXKˉU+ζVCˉXKˉU}cos2θ2J{fTtˉXLˉU+ζVtˉXLˉU+fAfˉXLU+ζVfˉXLU+η(ψU)fˉX}+J{ζTtˉXζψKˉU+fHtˉXζψKˉU+ζTtˉXζψLˉU+fHtˉXζψLˉU}+J{ζAfˉXζψKˉU+ζAfˉXζψLˉUHtˉXζˉU}+JϕˉXJζˉUfˉX(lnλ)JζψKˉUζψKˉU(lnλ)JfˉX+g1(fˉX,ζψKˉU)J(gradlnλ)fˉX(lnλ)JζψLˉUζψLˉU(lnλ)JfˉX+g1(fˉX,ζψLˉU)J(gradlnλ)+J(ˉXˉU)+JϕˉXJζˉU+JfˉXJζψKˉU+JfˉXJζψLˉU,

    which completes the proof of theorem.

    Now, we are giving some definitions of integrablity and totally geodesic of leaves of distributions.

    Definition 5.1. Suppose D is a k-dimensional smooth distribution on M. Then An immersed submanifold i: NM is called an integral manifold for D if for every xN, the image of diN: TpNTpM is Dp. We say the distribution Dp is integrable if through each point of M there exists an integral manifold of D.

    Further, a distribution D is involutive if it satisfies the Frobenius condition such that if X,YΓ(TM) belongs to D, so [X,Y]D. Frobenius theorem states that an involutive distribution is integrable.

    Definition 5.2. Let M be n-dimensional smooth manifold. A foliation F of M is a decomposition of M into a union of disjoint connected submanifolds M=LFL called the leaves of the foliation, such that for each mM, there is a neighborhood U of M and a smooth submersion fU: URk with f1U(x) a leaf of F|U the restriction of the foliation to U, for each xRk.

    Definition 5.3. Let M be a Riemannian manifold, and let F be a foliation on M. F is totally geodesic if each leaf L is a totally geodesic submanifold of M; that is, any geodesic tangent to L at some point must lie within L.

    The properties of submersions between Riemannian manifolds have emerged as an interesting area of study in contact as well as complex geometry. The geometry of conformal bi-slant submersion, whose base manifold is a Kenmotsu manifold, was examined in this study. We suppose that the Reeb vector field ξ is vertical and establishes the condition of integrability of slant distributions because the Reeb vector field ξ plays a crucial role in the geometry of leaves of the distributions. Additionally, the total geodesics of the leaves of distributions were determined. Furthermore, the idea of pluriharmonicity from the Kenmotsu manifold was explored.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RP23003).

    The authors have no conflicts of interest.



    [1] M. A. Akyol, Y. Gündüzalp, Hemi-slant submersions from almost product Riemannian manifolds, Gulf J. Math., 4 (2016), 15–27. http://doi.org/10.56947/gjom.v4i3.70 doi: 10.56947/gjom.v4i3.70
    [2] M. A. Akyol, B. Şahin, Conformal anti-invariant submersion from almost Hermitian manifolds, Turk. J. Math., 40 (2016), 38–42. https://doi.org/10.3906/mat-1408-20 doi: 10.3906/mat-1408-20
    [3] M. A. Akyol, B. Şahin, Conformal anti-invariant submersions from almost Hermitian manifolds, Turk. J. Math., 40 (2016), 43–70. http://doi.org/10.3906/mat-1408-20 doi: 10.3906/mat-1408-20
    [4] M. A. Akyol, B. Şahin, Conformal semi-invariant submersions, Commun. Contemp. Math., 19 (2017), 1650011. http://doi.org/10.1142/S0219199716500115 doi: 10.1142/S0219199716500115
    [5] M. A. Akyol, Conformal semi-slant submersions, Int. J. Geom. Methods Mod. Phys., 14 (2017), 1750114. http://doi.org/10.1142/S0219887817501146 doi: 10.1142/S0219887817501146
    [6] M. A. Akyol, B. Şahin, Conformal slant submersions, Hacettepe J. Math. Stat., 48 (2019), 28–44. http://doi.org/10.15672/HJMS.2017.506
    [7] I. Al-Dayel, T. Fatima, S. Deshmukh, M. Shuaib, A note on conformal bi-slant submersion from Kenmotsu manifold, J. Geom. Phys., 190 (2023) 104864. http://doi.org/10.1016/j.geomphys.2023.104864
    [8] I. Al-Dayel, M. Shuaib, S. Deshmukh, T. Fatima, ϕ-pluriharmonicity in quasi bi-slant conformal ξ-submersions: a comprehensive study, AIMS Math., 8 (2023), 21746–21768. http://doi.org/10.3934/math.20231109 doi: 10.3934/math.20231109
    [9] P. Baird, J. C. Wood, Harmonic morphisms between Riemannian manifolds, Oxford University Press, 2003.
    [10] J. P. Bourguignon, H. B. Lawson, Stability and isolation phenomena for Yang-Mills fields, Commun. Math. Phys., 79 (1981), 189–230. http://doi.org/10.1007/BF01942061 doi: 10.1007/BF01942061
    [11] D. Chinea, Almost contact metric submersions, Rend. Circ. Mat. Palerm., 34 (1985), 89–104. http://doi.org/10.1007/BF02844887 doi: 10.1007/BF02844887
    [12] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasg. Math. J., 42 (2000), 125–138. http://doi.org/10.1017/S0017089500010156 doi: 10.1017/S0017089500010156
    [13] I. K. Erken, C. Murathan, On slant Riemannian submersions for cosymplectic manifolds, Bull. Korean Math. Soc., 51 (2014), 1749–1771. http://doi.org/10.4134/BKMS.2014.51.6.1749 doi: 10.4134/BKMS.2014.51.6.1749
    [14] B. Fuglede, Harmonic morphisms between Riemannian manifolds, Ann. I'institut Fourier, 28 (1978), 107–144. http://doi.org/10.5802/aif.691 doi: 10.5802/aif.691
    [15] M. Falcitelli, S. Ianus, A. M. Pastore, Riemannian submersions and related topics, World Scientific, 2004.
    [16] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 16 (1967), 715–737.
    [17] S. Gudmundsson, The geometry of harmonic morphisms, Ph. D. thesis, University of Leeds, 1992.
    [18] S. Gudmundsson, J. C. Wood, Harmonic morphisms between almost Hermitian manifolds, Boll. Un. Mat. Ital., 11 (1997), 185–197.
    [19] Y. Gunduzalp, Semi-slant submersions from almost product Riemannian manifolds, Demonstr. Math., 49 (2016), 345–356. http://doi.org/10.1515/dema-2016-0029 doi: 10.1515/dema-2016-0029
    [20] S. Ianus, M. Visinescu, Kaluza-Klein theory with scalar fields and generalised Hopf manifolds, Class. Quantum Grav., 4 (1987), 1317–1325. http://doi.org/10.1088/0264-9381/4/5/026 doi: 10.1088/0264-9381/4/5/026
    [21] T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ., 19 (1979), 215–229. http://doi.org/10.1215/kjm/1250522428 doi: 10.1215/kjm/1250522428
    [22] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93–103. http://doi.org/10.2748/tmj/1178241594 doi: 10.2748/tmj/1178241594
    [23] S. Kumar, S. Kumar, S. Pandey, R. Prasad, Conformal hemi-slant submersions from almost Hermitian manifolds, Commun. Korean Math. Soc., 35 (2020), 999–1018 https://doi.org/10.4134/CKMS.c190448 doi: 10.4134/CKMS.c190448
    [24] M. T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys., 41 (2000), 6918–6929. http://doi.org/10.1063/1.1290381 doi: 10.1063/1.1290381
    [25] Y. Ohnita, On pluriharmonicity of stable harmonic maps, J. London Math. Soc., 2 (1987), 563–568. http://doi.org/10.1112/jlms/s2-35.3.563 doi: 10.1112/jlms/s2-35.3.563
    [26] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J., 13 (1966), 459–469. http://doi.org/10.1307/mmj/1028999604 doi: 10.1307/mmj/1028999604
    [27] K. S. Park, R. Prasad, Semi-slant submersions, Bull. Korean Math. Soc., 50 (2013), 951–962. http://doi.org/10.4134/BKMS.2012.49.2.329
    [28] R. Prasad, S. S. Shukla, S. Kumar, On quasi bi-slant submersions, Mediterr. J. Math., 16 (2019), 155. https://doi.org/10.1007/s00009-019-1434-7 doi: 10.1007/s00009-019-1434-7
    [29] R. Prasad, M. A. Akyol, P. K. Singh, S. Kumar, On quasi bi-slant submersions from Kenmotsu manifolds onto any Riemannian manifolds, J. Math. Ext., 16 (2022), 1–25. https://doi.org/10.30495/JME.2022.1588 doi: 10.30495/JME.2022.1588
    [30] R. Prasad, S. Kumar, Conformal anti-invariant submersions from nearly Kaehler manifolds, Palest. J. Math., 8 (2019), 237–247.
    [31] R. Ponge, H. Reckziegel, Twisted products in pseudo-Riemannian geometry, Geom. Dedicata, 48 (1993), 15–25. https://doi.org/10.1007/BF01265674 doi: 10.1007/BF01265674
    [32] B. Şahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Central Eur. J. Math., 3 (2010), 437–447. https://doi.org/10.2478/s11533-010-0023-6 doi: 10.2478/s11533-010-0023-6
    [33] B. Şahin, Semi-invariant Riemannian submersions from almost Hermitian manifolds, Canad. Math. Bull., 56 (2013), 173–183. https://doi.org/10.4153/CMB-2011-144-8 doi: 10.4153/CMB-2011-144-8
    [34] B. Şahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie, 1 (2011) 93–105.
    [35] M. Shuaib, T. Fatima, A note on conformal hemi-slant submersions, Afr. Mat., 34 (2023), 4. https://doi.org/10.1007/s13370-022-01036-2 doi: 10.1007/s13370-022-01036-2
    [36] S. Tanno, The automorphism groups of almost contact metric manfolds, Tohoku Math. J., 21 (1969), 21–38.
    [37] H. M. Taştan, B. Şahin, Ş. Yanan, Hemi-slant submersions, Mediterr. J. Math., 13 (2016), 2171–2184. https://doi.org/10.1007/s00009-015-0602-7
    [38] H. Urakawa, Calculus of variations and harmonic maps, American Mathematical Society, 2013.
    [39] B. Watson, Almost Hermitian submersions, J. Differ. Geom., 11 (1976), 147–165. https://doi.org/10.4310/jdg/1214433303
    [40] B. Watson, G, G'-Riemannian submersions and nonlinear gauge field equations of general relativity, Global Anal., 57 (1983), 324–349.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(993) PDF downloads(71) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog