Research article

MOJMA: A novel multi-objective optimization algorithm based Java Macaque Behavior Model

  • Received: 29 July 2023 Revised: 12 October 2023 Accepted: 17 October 2023 Published: 07 November 2023
  • MSC : 90C23, 90C29

  • We introduce the Multi-objective Java Macaque Algorithm for tackling complex multi-objective optimization (MOP) problems. Inspired by the natural behavior of Java Macaque monkeys, the algorithm employs a unique selection strategy based on social hierarchy, with multiple search agents organized into multi-group populations. It includes male replacement strategies and a learning process to balance intensification and diversification. Multiple decision-making parameters manage trade-offs between potential solutions. Experimental results on real-time MOP problems, including discrete and continuous optimization, demonstrate the algorithm's effectiveness with a 0.9% convergence rate, outperforming the MEDA/D algorithm's 0.98%. This novel approach shows promise for addressing MOP complexities in practical applications.

    Citation: Dinesh Karunanidy, Rajakumar Ramalingam, Shakila Basheer, Nandhini Mahadevan, Mamoon Rashid. MOJMA: A novel multi-objective optimization algorithm based Java Macaque Behavior Model[J]. AIMS Mathematics, 2023, 8(12): 30244-30268. doi: 10.3934/math.20231545

    Related Papers:

  • We introduce the Multi-objective Java Macaque Algorithm for tackling complex multi-objective optimization (MOP) problems. Inspired by the natural behavior of Java Macaque monkeys, the algorithm employs a unique selection strategy based on social hierarchy, with multiple search agents organized into multi-group populations. It includes male replacement strategies and a learning process to balance intensification and diversification. Multiple decision-making parameters manage trade-offs between potential solutions. Experimental results on real-time MOP problems, including discrete and continuous optimization, demonstrate the algorithm's effectiveness with a 0.9% convergence rate, outperforming the MEDA/D algorithm's 0.98%. This novel approach shows promise for addressing MOP complexities in practical applications.



    加载中


    [1] X. Yang, Nature-inspired metaheuristic algorithms, Luniver Press, second edition. 2010.
    [2] D. Kumar, S. Kumar, R. Bansal, P. Singla, A survey to nature inspired soft computing, Int. J. Inf. Syst. Model., 8 (2017), 112–133. https://doi.org/10.4018/IJISMD.2017040107 doi: 10.4018/IJISMD.2017040107
    [3] A. Sharma, A. Sharma, B. K. Panigrahi, D. Kiran, R. Kumar, Ageist spider monkey optimization algorithm, Swarm Evol. Comput., 28 (2016), 58–77. https://doi.org/10.1016/j.swevo.2016.01.002.
    [4] J. C. Bansal, H. Sharma, S. S. Jadon, M. Clerc, Spider monkey optimization algorithm for numerical optimization, Memetic Comput., 6 (2014): 31–47. https://doi.org/10.1007/s12293-013-0128-0.
    [5] H. Sharma, G. Hazrati, J. C. Bansal, Spider monkey optimization algorithm, Evol. Swarm Intell. Algorithms, (2019), 43–59.
    [6] C. A. G. Santos, P. K. M. M. Freire, S. K. Mishra, Cuckoo search via Lévy flights for optimization of a physically-based runoff-erosion model, J. Urban Environ. Eng., 6 (2012), 123–131. https://www.jstor.org/stable/26203380
    [7] S. Yılmaz, E. U Kuc¸ uksille, A new modification approach on bat algorithm for solving optimization problems, Appl. Soft Comput., 28 (2015), 259–275. https://doi.org/10.1016/j.asoc.2014.11.029.
    [8] X. S. Yang, Firefly algorithm, Engineering optimization, 2010,221–230.
    [9] J. Kennedy, Particle swarm optimization, In: Encyclopedia of machine learning, 760–766. Springer, 2011.
    [10] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm, J. Global Optim., 39 (2007), 459–471. https://doi.org/10.1007/s10898-007-9149-x doi: 10.1007/s10898-007-9149-x
    [11] M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization, IEEE Comput. Intell. M., 1 (2006), 28–39. https://doi.org/10.1109/MCI.2006.329691.
    [12] R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11 (1997), 341–359. https://doi.org/10.1007/s11042-022-12409-x doi: 10.1007/s11042-022-12409-x
    [13] J. H. Holland, Adaptation in natural and artificial systems, Univ. Mich. Press. Ann Arbor, 1975.
    [14] F. S. Gharehchopogh, T. Ibrikci, An improved african vultures optimization algorithm using different fitness functions for multi-level thresholding image segmentation, Multimed. Tools Appl., (2023), 1–47. https://doi.org/10.1007/s11042-023-16300-1.
    [15] S. T. Shishavan, F. S. Gharehchopogh, An improved cuckoo search optimization algorithm with genetic algorithm for community detection in complex networks, Multimed. Tools Appl., 81 (2022), 25205–25231.
    [16] F. S. Gharehchopogh, Quantum-inspired metaheuristic algorithms: comprehensive survey and classification, Artif. Intell. Rev., 56 (2023), 5479–5543, 2023. https://doi.org/10.1007/s10462-022-10280-8.
    [17] A. Laith, M. Shehab, M. Alshinwan, S. Mirjalili, M. A. Elaziz, Ant lion optimizer: A comprehensive survey of its variants and applications, Arch. Comput. Method. Eng., 28 (2021), 1397–1416. https://doi.org/10.1007/s11831-020-09420-6.
    [18] X. Yang, J. Zou, S. Yang, J. Zheng, Y. Liu, A fuzzy decision variables framework for large-scale multiobjective optimization, IEEE T. Evolut. Comput., 27 (2021), 445–459. https://doi.org/10.1109/TEVC.2021.3118593 doi: 10.1109/TEVC.2021.3118593
    [19] A. M. Basset, R. Mohamed, M. Abouhawwash, Balanced multi-objective optimization algorithm using improvement-based reference points approach, Swarm Evol. Comput., 60 (2021), 100791. https://doi.org/10.1016/j.swevo.2020.100791 doi: 10.1016/j.swevo.2020.100791
    [20] M. A. Basset, R. Mohamed, S. Mirjalili, A novel whale optimization algorithm integrated with nelder–mead simplex for multi-objective optimization problems, Knowledge-Based Syst., 212 (2021), 106619. https://doi.org/10.1016/j.knosys.2020.106619 doi: 10.1016/j.knosys.2020.106619
    [21] B. Xu, G. Zhang, K. Li, B. Li, H. Chi, Y. Yao, et al., Reactive power optimization of a distribution network with high-penetration of wind and solar renewable energy and electric vehicles, Protect. Contr. Mod. Pow., 7 (2022), 51. https://doi.org/10.1016/j.ins.2022.05.123.
    [22] F. S. Gharehchopogh, An improved harris hawks optimization algorithm with multistrategy for community detection in social network, J. Bionic Eng., 20 (2023), 1175–1197. https://doi.org/10.1007/s42235-022-00303-z doi: 10.1007/s42235-022-00303-z
    [23] H. Ma, S. Shen, M. Yu, Z. Yang, M. Fei, H. Zhou, Multi-population techniques in nature inspired optimization algorithms: A comprehensive survey, Swarm Evol. Comput., 44 (2019), 365–387. https://doi.org/10.1016/j.swevo.2018.04.011 doi: 10.1016/j.swevo.2018.04.011
    [24] Z. Li, V. Tam, L. K. Yeung, An adaptive multi-population optimization algorithm for global continuous optimization, IEEE Access, 9 (2021), 19960–19989. https://doi.org/10.1109/ACCESS.2021.3054636 doi: 10.1109/ACCESS.2021.3054636
    [25] X. Peng, Z. Shi, Finding informative collaborators for cooperative co-evolutionary algorithms using a dynamic multi-population framework, In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 2016, 1–6. https://doi.org/10.1109/SSCI.2016.7849958.
    [26] K. Dinesh, R. Ramalingam, A. Dumka, R. Singh, I. Alsukayti, D. Anand, et al., An intelligent optimized route-discovery model for IoT-based VANETs, Processes, 9 (2021), 2171. https://doi.org/10.3390/pr9122171.
    [27] D. Saravanan, R. Rajakumar, M. Sreedevi, K. Dinesh, S. V. Sudha, D. K. Anguraj, et al., Multi-objective swarm-based model for deploying virtual machines on cloud physical servers, Distrib. Parallel Dat., 41 (2023), 75–93. https://doi.org/10.1007/s10619-021-07341-2.
    [28] Y. Liu, Y. Shi, H. Chen, A. A. Heidari, W. Gui, M. Wang, et al., Chaos-assisted multi-population salp swarm algorithms: Framework and case studies, Expert Syst. Appl., 168 (2021), 114369. https://doi.org/10.1016/j.eswa.2020.114369.
    [29] H. Li, Q. Zhang, Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii, IEEE T. Evol. Comput., 13 (2009), 284–302. https://doi.org/10.1109/TEVC.2008.925798.
    [30] D. Karunanidy, S. Ramalingam, A. Dumka, R. Singh, M. Rashid, A. Gehlot, et al., Jma: Nature-inspired java macaque algorithm for optimization problem, Mathematics, 10 (2022), 688. https://doi.org/10.3390/math10050688.
    [31] K. Dinesh, J. Amudhavel, R. Rajakumar, P. Dhavachelvan, R. Subramanian, A novel self-organisation model for improving the performance of permutation coded genetic algorithm, Int. J. Adv. Intell. Paradigms, 17 (2020), 299–322. https://doi.org/10.1504/IJAIP.2020.109512 doi: 10.1504/IJAIP.2020.109512
    [32] D. Kalyanmoy, D Saxena, Searching for pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems, In: Proceedings of the world congress on computational intelligence, (2006), 3352–3360.
    [33] B. Xu, D. Gong, Y. Zhang, S. Yang, L. Wang, Z. Fan, et al., Cooperative co-evolutionary algorithm for multi-objective optimization problems with changing decision variables, Inf. Sci., 607 (2022), 278–296.
    [34] H. Mohammadzadeh, F. S. Gharehchopogh, A multi-agent system based for solving high-dimensional optimization problems: a case study on email spam detection, Int. J. Commun. Syst., 34 (2021), 4670. https://doi.org/10.1002/dac.4670 doi: 10.1002/dac.4670
    [35] Y. Yuan, H. Xu, B. Wang, X. Yao, A new dominance relation-based evolutionary algorithm for many-objective optimization, IEEE T. Evol. Comput., 20 (2015), 16–37. https://doi.org/10.1109/TEVC.2015.2420112 doi: 10.1109/TEVC.2015.2420112
    [36] E. Zitzler, S. Kunzli, Indicator-based selection in multiobjective search, In: International Conference on Parallel Problem Solving from Nature, 832–842. Springer, 2004. https://doi.org/10.1007/978-3-540-30217-9_84.
    [37] Q. Zhang, H. Li, Moea/d: A multiobjective evolutionary algorithm based on decomposition, IEEE T. Evol. Comput., 11 (2007), 712–731. https://doi.org/10.1109/TEVC.2007.892759 doi: 10.1109/TEVC.2007.892759
    [38] D. Kalyanmoy, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: Nsga-ii, IEEE T. Evol. Comput., 6 (2002), 182–197. https://doi.org/10.1109/4235.996017 doi: 10.1109/4235.996017
    [39] A. Trivedi, D. Srinivasan, K. Sanyal, A. Ghosh, A survey of multiobjective evolutionary algorithms based on decomposition, IEEE T. Evol. Comput., 21 (2017), 440–462. https://doi.org/10.1109/TEVC.2016.2608507 doi: 10.1109/TEVC.2016.2608507
    [40] X. Cai, Z. Mei, Z. Fan, Q. Zhang, A constrained decomposition approach with grids for evolutionary multiobjective optimization, IEEE T. Evol. Comput., 22 (2017), 564–577. https://doi.org/10.1109/TEVC.2017.2744674 doi: 10.1109/TEVC.2017.2744674
    [41] R. Cheng, Y. Jin, M. Olhofer, B. Sendhoff, A reference vector guided evolutionary algorithm for many-objective optimization, IEEE T. Evol. Comput., 20 (2016), 773–791. https://doi.org/10.1109/TEVC.2016.2519378.
    [42] K. Deb, K. Miettinen, S. Chaudhuri, Toward an estimation of nadir objective vector using a hybrid of evolutionary and local search approaches, IEEE T. Evol. Comput., 14 (2010), 821–841. https://doi.org/10.1109/TEVC.2010.2041667.
    [43] X. Ma, Q. Zhang, J. Yang, Z. Zhu, On tchebycheff decomposition approaches for multi-objective evolutionary optimization, IEEE T. Evol. Comput., 2017. https://doi.org/10.1109/TEVC.2017.2704118 doi: 10.1109/TEVC.2017.2704118
    [44] G. Syswerda, Uniform crossover in genetic algorithms. In: Proceedings of the third international conference on Genetic algorithms, Morgan Kaufmann Publishers, 3 (1989), 2–9.
    [45] H. Ishibuchi, N. Akedo, Y. Nojima, Behavior of multiobjective evolutionary algorithms on many-objective knapsack problems, IEEE T. Evol. Comput., 19 (2015), 264–283. https://doi.org/10.1109/TEVC.2014.2315442 doi: 10.1109/TEVC.2014.2315442
    [46] K. Deb, Multi-objective genetic algorithms: Problem difficulties and construction of test problems, Evol. Comput., 7 (1999), 205–230. https://doi.org/10.1162/evco.1999.7.3.205.
    [47] J. J. Durillo, A. J Nebro, jmetal: A java framework for multi-objective optimization, Adv. Eng. Soft., 42 (2011), 760–771. https://doi.org/10.1016/j.advengsoft.2011.05.014.
    [48] Q. Lin, J. Chen, Z. H. Zhan, W. N. Chen, C. A. C. Coello, Y. Yin, et al., A hybrid evolutionary immune algorithm for multiobjective optimization problems, IEEE T. Evol. Comput., 20 (2016), 711–729. https://doi.org/10.1109/TEVC.2015.2512930.
    [49] H. Karshenas, R. Santana, C. Bielza, P. Larranaga, Multiobjective estimation of distribution algorithm based on joint modeling of objectives and variables, IEEE T. Evol. Comput., 18 (2014), 519–542. https://doi.org/10.1109/TEVC.2013.2281524 doi: 10.1109/TEVC.2013.2281524
    [50] Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu, S. Tiwari, Multiobjective optimization test instances for the cec 2009 special session and competition, University of Essex, Colchester, UK and Nanyang technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, technical report, 264, 2008.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1077) PDF downloads(58) Cited by(0)

Article outline

Figures and Tables

Figures(12)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog