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agents organized into multi-group populations. It includes male replacement strategies and a learning 

process to balance intensification and diversification. Multiple decision-making parameters manage 

trade-offs between potential solutions. Experimental results on real-time MOP problems, including 

discrete and continuous optimization, demonstrate the algorithm’s effectiveness with a 0.9% 

convergence rate, outperforming the MEDA/D algorithm’s 0.98%. This novel approach shows promise 

for addressing MOP complexities in practical applications. 
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1. Introduction 

The optimization algorithm demonstrates its greater assistance in solving real-world problems. A 

significant set of optimization algorithms, such as the evolutionary algorithm (EA), physical algorithm, 

bio-inspired algorithm and swarm intelligence (SI), have been highlighted by the Nature-inspired 

optimization algorithms. These algorithms exhibit their efficacy in addressing a vast class of real-world 

issues [1,2]. A variety of nature-inspired optimization algorithms such as Ageist Spider Monkey 

Algorithm (ASMO) [3], Spider Monkey Algorithm (SMO) [4], Monkey Algorithm (MA) [5], Cuckoo 

Search (CO) [6], Bat Algorithm [7], Firefly Algorithm (FA) [8], Particle Swarm Optimization (PSO) 

[9], Artificial Bee Colony (ABC) [10], Ant Colony Optimization (ACO) [11], Differential Evolution 

(DE) [12], Genetic Algorithm (GA) [13], etc. uses the simple local search based learning procedure to 

address the complex problem. The improved African Vultures Optimization Algorithm (AVOA) with 

Quantum Rotation Gate (QRG) and Association Strategy (AS) mechanisms enhances diversity and 

avoids local optima, showing promise for large-scale problems compared to other optimization 

algorithms [14]. The study in [15] enhances the Cuckoo Search Optimization (CSO) algorithm by 

integrating Genetic Algorithms (GA) to address CSO’s convergence issues, improving community 

detection in complex networks. The review highlights in [16,17] their impact on accelerating 

convergence and explores their applications in various fields. The Spider Monkey algorithm (SMA) 

[18], inspired by slime mold behavior, is a novel meta-heuristic approach with adaptive weights and 

strong exploration exploitation capabilities. 

Multi-objective optimization (MOP) is the process of finding an optimum solution to an 

optimization problem with many competing objectives. [19–22]. The Multi-group population-based 

algorithms have been verified to be significant in investigating and exploring the search space. 

Community detection in complex networks aims to locate nodes clustered together with strong internal 

links but weak external connections. Various Harris Hawk Optimization (HHO) algorithm methods 

can address challenges in social network community detection by balancing exploitation and 

exploration [23]. The operations, such as the number of sub-populations, communication and strategy 

among the sub-populations, are having serious impacts by utilizing the multi-group populations [23,24]. 

First, the quantity of sub-populations contributes to the diverse occupation of the entire search space. 

In reality, a limited number of sub-populations leads to local optima, whereas a larger number of sub-

populations wastes computational resources and delays convergence [25]. The subsequent essential 

factor is the sub-population communication management procedure, including interaction frequency 

and strategy [26–28]. The interaction rate specifies the number of individuals who are part of a sub-

population that must interact with individuals of other sub-populations, and the rule of communication 

is subject to the replacement of individuals with individuals of other sub-populations. 

The majority of optimization algorithms encounter adaptive search operation to maintain diversity 

in the population. However, the algorithm’s reliance on multiple populations illustrates its effectiveness 

in preserving a diverse population. However, it also depends on consideration of the sub-population’s 

communication strategy. The [29] introduces the MAMH method, which combines metaheuristic 

algorithms within a multi-agent system to address complex high-dimensional problems, enhancing 

population diversity and convergence rates. The constraints of the existing literature inspire us to 

formulate the well-balanced exploration and exploitation strategy to solve the multi-objective 

optimization problem. Java-macaque monkeys are widespread primitives in South-Asian countries and 

exhibit dominant properties that suit well for directing real-world problems via the exploration and 
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exploitation phases. 

The proposed optimization algorithm that leverages the behavioral patterns observed in Java 

macaque monkeys is used to enhance the search operation’s balance [30]. These macaques exhibit 

intricate social behaviors, which we have successfully modeled. Our algorithm incorporates elements 

such as cooperation among groups, competition among search agents, a selection strategy based on 

social hierarchy, breeding, male rehabilitation and learning. To address the complexity of multi-

objective problems, our algorithm utilizes a multi-group population approach, ensuring diversity 

among the generated solutions. The algorithm employs a mating process that takes into account the 

dominance hierarchy, allowing it to explore complex search spaces effectively. In resolving 

communication and adaptive search issues, our algorithm draws inspiration from the male replacement 

mechanism observed in Java macaque monkeys. The exploitation phase of our proposed algorithm is 

achieved through a learning process. To maintain an elite solution within the population, our Java 

macaque optimization algorithm employs a multi-leader mechanism, utilizing the alpha male and 

female of each group. This multileader strategy facilitates the transition from exploration to 

exploitation, driven by a selection strategy based on social hierarchy.  

The major contribution of this work is highlighted below: 

• Develop and implement the Multi-objective Java Macaque Algorithm, a nature-inspired 

optimization approach, to address the complexities of multi-objective optimization problems. 

• Investigate the effectiveness of the proposed algorithm in handling local optima and imbalanced 

selection strategies by analyzing its performance on real-time optimization problems in both multi-

objective discrete and continuous optimization scenarios. 

• Evaluate the unique selection strategy based on a social hierarchy process, male replacement 

strategies and learning processes incorporated in the algorithm to strike a well-balanced trade-off 

between intensification and diversification within the search boundary. 

• To assess the impact of multiple decision-making parameters introduced in the algorithm to 

manage trade-offs among various potential solutions, aiming for enhanced convergence rates and 

diversified outcomes in comparison to existing algorithms. 

Furthermore, section 2 of this paper deliberates relevant information on MOP, and section 3 

briefly discuss the behavior of java macaque monkeys towards MOP. Then, in section 4, the model of 

java macaque algorithms of multi-objective problems are briefly discussed. In section 5, the 

experimentation of discrete optimization is illustrated in detail, whereas section 6 provides a concise 

demonstration over the continuous problems. Finally, section 7 provides the paper’s conclusion. 

2. Related works 

The real-world optimization problems require the optimal fine tuning between two or more 

contradictory objectives. Then, the problem of multi-objective optimization is represented as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝐹(�⃖� ) = [𝑓1(�⃖� ), . . . , 𝑓𝑚(�⃖� )]𝑇      (2.1) 

𝑠. 𝑡    �⃖� ∈ 𝕏 

In the MOP, let us consider the following notation and description: 𝐹(�⃖� )  signifies the objective 

function of a solution in relation to the multi-objective optimization issue. 𝕏 denotes the decision 

space, which encompasses the possible solutions or decision variables. 𝐹: 𝕏 → ℝ𝑚orℤ𝑚: 𝑙𝑏𝑖
 ⃖   ≤ 𝜑𝑖 ⃖  ≤

𝑢𝑏𝑖
 ⃖     , ∀𝑖 = 1,2, . . , 𝑚 represents the set of 𝑚 real numbered objective functions. 
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Let the dominance between the two solutions 𝜑 and 𝜑∗ described as, 

(𝑓𝑖(𝜑
∗ ⃖   )) ≤ (𝑓𝑖(�⃖� )), ∀𝑖∈𝐼       (2.2) 

𝑠. 𝑡    𝜑∗, 𝜑 ∈ 𝕏, 𝐼 = {1,2, . . . , 𝑚}     (2.3) 

and there is at least one 𝑖 ∈ 𝐼 such that,  

(𝑓𝑖(𝜑
∗ ⃖   )) < (𝑓𝑖(�⃖� ))       (2.4) 

When 𝜑∗ ⃖    is dominated by �⃖� , the fitness value of each individual must be ≥ one objective to 

another objective. Conflicting objectives are a common feature of multi-objective optimization 

problems, and simultaneously achieving all objectives results in the best solution. In particular, one 

solution might outperform another on one objective but not on another. As a result, both solutions are 

considered dominant. 

In MOP, the primary indention is not to determine a single optimal solution, but to explore and 

present the trade-off between conflicting objectives. The Pareto front consists of all the solutions that 

do not simultaneously dominate any other solution in terms of all the objectives. The Pareto optimal 

solution is denoted as: 

𝑃∗: = {𝜑 ∈ 𝕏|¬∃𝜑′ ∈ 𝕏, (𝐹(𝜑′ ⃖   )) ⪯ (𝐹(�⃖� ))}    (2.5) 

The traditional method used by evolutionary algorithms (EA) to select the dominant solution is 

random selection. However, this approach faces significant challenges due to the proportional increase 

in objectives. Moreover, a large portion of the population is occupied by dominated solutions, thus 

circuitously limits the search space for yielding new and novel solutions [31,32]. 

In order to address these challenges, diversity preservation has emerged as a crucial aspect of EA 

for multi-objective optimization problems (MOP) [33,34]. The exploration process acts a key role in 

locating the optimal solution, which generated the distributed solution over the problem space. Various 

techniques have been proposed for conserving biodiversity, including dominance-based methods [35], 

indicator-based methods [36] and decomposition-based methods [37]. However, these techniques often 

come with the drawback of increased computational complexity. 

Among the popular techniques for maintaining genetic diversity in the population are domination-

based approaches like NSGA II [38] and decomposition-based approaches like MOEA/D [39]. 

However, the MOEA/D-generated approximation set of Pareto fronts can become complex due to the 

fronts’ sensitive geometries. Tchebychef (TCH), Penalty-based Boundary Intersection (PBI) and 

Weighted Sum (WS) methods are prevalent decay techniques for handling multi-objective problems. 

Several techniques, such as Constrained Decomposition Approach with Grids [40], reference 

vector guided evolutionary algorithm [41], NSGA III utilizing reference point [42] and Decomposition 

based reference points [36,43] have been introduced in the literature to address this issue. However, 

the majority of evolutionary algorithms struggle to reconcile exploration and exploitation. The Java 

macaque algorithm, on the other hand, has been extensively investigated and shown to efficiently 

maintain this equilibrium. 

The optimization algorithm demonstrates its greater assistance in solving real-world problems. A 

significant set of optimization algorithms, such as the evolutionary algorithm (EA), physical algorithm, 
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bio-inspired algorithm and swarm intelligence (SI) have been highlighted by the Nature-inspired 

optimization algorithms. These algorithms exhibit their efficacy in addressing a vast class of real-world 

issues [1,2].  

Recent researchers [36,43,42,40] in multi-objective optimizations (MOP) have proposed a 

technique that utilizes ideal and nadir points to subdivide each objective and enhance the performance 

of the search process. 

In Figure 1, the ideal point, denoted as 𝑍𝑖𝑑𝑒𝑎𝑙, and the nadir point, denoted as 𝑍𝑛𝑎𝑑𝑖𝑟, on the 

objective vector are represented as:  

𝑍𝑖𝑑𝑒𝑎𝑙 = 𝑚𝑖𝑛{𝑓𝑖(�⃖� )},    ∀�⃖� ∈ 𝕏, 𝑖 = 1,2, . . , 𝑚   (2.6) 

𝑍𝑛𝑎𝑑𝑖𝑟 = 𝑚𝑎𝑥{𝑓𝑖(�⃖� )},    ∀�⃖� ∈ 𝑃𝑆, 𝑖 = 1,2, . . , 𝑚  (2.7) 

 

Figure 1. Ideal, Nadir and Utopian Points [11]. 

Hence, the search space is divided into multiple sub-spaces using reference points. In a two-

objective optimization problem, for illustration, there would be 10 reference points used for 

decomposition. The Pareto fronts prevailed using the TCH decomposition approach for both the 

convention and scaled objective functions are shown in Figure 2. However, when dealing with the 

inseparable scaled objective function, it is evident from the figure that the existing TCH decomposition 

approach fails to explore the entire search space effectively. In particular, when f2 function is scaled 

five times associated with f1 function, the TCH-based decomposition approach is impotent to 

adequately delve into the search limit. To address this issue, the grid-based decomposition technique, 

as depicted in Figure 3, is employed. Therefore, in order to maintain the quality of Pareto fronts, the 

JMA also needs to incorporate this significant technique. 



30249 

AIMS Mathematics  Volume 8, Issue 12, 30244–30268. 

 

Figure 2. Standard and scaled objective of TCH decomposition [43]. 

 

Figure 3. Standard and scaled objective of Grid based decomposition Approach [40]. 

3. Multi-objective JMA approach 

The Java Macaque method effectively tackles the optimization problem illustrated in [30] using 

the social and biological behavior of Java macaques. Further, the java macaque algorithm shows the 

dominance in solving the optimization problem by ensuring a diverse population and consistently 

generating high-quality solutions. We may utilize Java monkey tactics to tackle multi-objective 

optimization issues by analyzing their behavior, which entails a careful balance of intensification and 

diversification. As a result, Java monkey behavior may be used as a paradigm for handling 

multiobjective optimization issues, allowing us to adopt their effective strategy of balancing 

intensification and diversity into our problem-solving strategies. 

In the context described, each individual in an optimization problem with various decision 

variables of vector space 𝑛 represented as follows: 
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�⃖� = {𝜑1, 𝜑2, … , 𝜑𝑛},    �⃖� ∈ 𝕏       (3.1) 

Thus, the �⃖�   is a vector with 𝑛  decision parameters in the problem space 𝕏 . Each decision 

variable 𝜑 can take on real values ℝ𝑚 or integer values ℤ𝑚. 

The initial population is rendered by selecting a set of female and male solution from every group 

as follows: 

𝑃𝑂𝑃 = {𝜑1 ⃖   , 𝜑2 ⃖   , . . . , 𝜑𝑁𝑂𝐼 ⃖        } = {𝐺𝑖}𝑖=1,2,...,𝑔 = {𝑀𝑗}𝑗=1,2,...,𝑀𝑠𝑖𝑧𝑒
∪ {𝐹𝑘}𝑘=1,2,...,𝐹𝑠𝑖𝑧𝑒

  (3.2) 

Here, 𝑃𝑂𝑃 represents the population, 𝜑𝑖 ⃖   represents an individual, 𝐺𝑖 represents group 𝑖 and 

𝑀𝑠𝑖𝑧𝑒 and 𝐹𝑠𝑖𝑧𝑒 represent the number of male and female individuals, respectively. The condition 

(𝐺𝑖 ⊃ 𝑀, 𝐹: 𝑀 ∉ 𝐹) ensures that each group contains both males and females. 

For each individual, the fitness value is determined by its performance over the problem space. 

The fitness value of a solution �⃖�  is computed using multiple objectives, as shown below: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝐹(�⃖� ) = [𝑓1(�⃖� ), . . . , 𝑓𝑚(�⃖� )]𝑇     (3.3) 

where, the fitness value is a vector containing 𝑚  objective, where the objective function 𝑓𝑖(�⃖� ) 

represents a different aspect of the problem. The problem restraint is denoted as �⃖� ∈ 𝕏, indicating that 

the individual �⃖�  must satisfy certain conditions specified by the problem’s feasible space 𝕏. 

The fitness function 𝐹(𝜑𝑗 ⃖   ) is assessed for all individual 𝜑𝑗 ⃖    in the male group {𝑀}𝑖 of group 

{𝐺𝑖}, and the alpha male 𝐴𝑀𝑖 is determined as the solution with the minimum fitness value among all 

males in the group. Similarly, the fitness function is measured for all individual 𝜑𝑗 ⃖    in the female group 

{𝐹}𝑖 of group {𝐺𝑖}, and the alpha female 𝐴𝐹𝑖 is determined as the solution with the minimum fitness 

value among all females in the group. Additionally, the global best solutions from the set of {𝐴𝐹} and 

{𝐴𝑀} are chose by taking the minimum fitness value among all alpha males and alpha females in the 

population (𝑃𝑂𝑃): 

[𝐺𝑀, 𝐺𝐹] = min{{𝐴𝑀}, {𝐴𝐹}}     (3.4) 

where, the global best solutions 𝐺𝑀 and 𝐺𝐹 among all individuals in the population 𝕏. Furthermore, 

male and female solutions within each group are divided into 𝐷𝑆 and 𝑁𝐷𝑆 based on their fitness 

values. The decomposition is performed as follows: 

𝜑∗ ⃖   , �⃖� ∈ {𝑀𝑖}, then = {
𝜑∗ ⃖   ∈ {𝑁𝐷𝑆}, 𝑖𝑓𝐹(𝜑∗ ⃖   ) < 𝐹(�⃖� )

𝜑∗ ⃖   ∈ {𝐷𝑆}, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
   (3.5) 

Further, the mechanism is opted for female population in the group. The process of mating is a 

crucial search mechanism employed by the JMA to explore the problem space denoted as 𝕏. Mating 

occurs between a male 𝜑𝑚 ⃖      and a female solution 𝜑𝑓 ⃖    , both of which belong to either the set {NDS} 

or {DS}. The objective of mating is to generate new offspring 𝜑𝑜𝑓𝑓 ⃖          according to the following 

equation: 

𝜑𝑜𝑓𝑓 ⃖        = Mating(𝜑𝑚 ⃖     , 𝜑𝑓 ⃖    )    s. t.    𝜑𝑚 ⃖     , 𝜑𝑓 ⃖   ∈ 𝐺𝑖    (3.6) 

For discrete optimization problems, the uniform crossover operator is employed. This operator 

was introduced by Syswerda in 1989 and has been widely used in the field [44,45]. On the other hand, 
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for continuous optimization problems, the simulated binary crossover operator is utilized. This 

operator was proposed by Deb and has since been utilized in various studies and algorithms [46,47,48]. 

After the learning process, the age of the Infant Female (IF) and Male (IM) is set to 0, indicating 

that they have completed their learning and are now ready to improve their fitness. When individuals 

in each group {𝐺𝑖} reach sexual maturity 𝕊, certain changes occur. The subadult male, referred to as 

the Stray Male, is compelled to impart the own group and seek another group within the same 

environment. The subadult female, on the other hand, remains in the original group. For the Stray Male, 

the adaptive search process involves finding a suitable group and establishing an optimal position 

within that group. Thus, the Stray Male denoted as 𝜑𝑠𝑚 ⃖       replaces the week solution from the non-

dominated set through a process called male replacement. The male replacement is defined as follows: 

M𝑎𝑙𝑒𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = {
𝑅𝐸𝑃𝐿𝐴𝐶𝐸(𝜑𝑠𝑚 ⃖       , 𝜑𝑚 ⃖     ), if𝐹(𝜑𝑠𝑚 ⃖       ) < 𝐹(𝜑𝑚 ⃖     )

𝜑𝑠𝑚 ⃖       ∈ {𝑆𝑀}, otherwise.
  (3.7) 

In the above equations, 𝐹(𝜑𝑠𝑚 ⃖       ) and 𝐹(𝜑𝑚 ⃖     ) represent the fitness values of the Stray Male and 

the non-dominated male, respectively. If the fitness of the Stray Male is lower than the non-dominated 

male, the non-dominated male is replaced by the Stray Male using the REPLACE operation. Otherwise, 

the Stray Male remains in the set {𝑆𝑀}. 

Algorithm 1: Population Sorting using Utopian-based Grid Approach. 

Input: {𝐺𝑖}: Group 𝑖 of the population,  𝐴𝑐𝑡𝑠𝑖𝑧𝑒: denotes the umber of solutions in Group 𝑖 

    𝑍𝑖𝑑𝑒𝑎𝑙, 𝑍𝑛𝑎𝑑𝑖𝑟, 𝑍𝑢𝑡𝑜𝑝𝑖𝑎𝑛: Ideal, nadir and Utopian points, 𝑚: Total objectives  

Output: {𝐺𝑖}, 𝑃𝑂𝑃  

BEGIN 

/* Determine the total of solutions in {𝑮𝒊} does not exceed the limit.*/ 

Redo 

if |𝐺𝑖| > 𝐴𝑐𝑡𝑠𝑖𝑧𝑒 then 

/* Processing the Grid Approach */ 

   𝑗 ← 1 

Redo 

            𝐼𝑗 ← (𝑍𝑗
𝑛𝑎𝑑𝑖𝑟 − 𝑍𝑗

𝑢𝑡𝑜𝑝𝑖𝑎𝑛
+ 2 × 𝜈)/ 𝑘  

Till 𝑗 ≤ 𝑚 

𝑗 ← 1    

Repeat    

𝑔𝑗(𝜑) ← (𝑓𝑗(𝜑) − 𝑍𝑗
𝑢𝑡𝑜𝑝𝑖𝑎𝑛

+ 𝜈)/𝐼𝑗    

Till 𝑗 ≤ 𝐴𝑐𝑡𝑠𝑖𝑧𝑒    

𝑗 ← 1    

Redo    

𝑍𝑖𝑑𝑒𝑎𝑙 ← min{𝑓𝑖(�⃖� )}    

𝑍𝑛𝑎𝑑𝑖𝑟 ← max{𝑓𝑖(�⃖� )}    
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𝑍𝑢𝑡𝑜𝑝𝑖𝑎𝑛 ← 𝑍𝑖𝑑𝑒𝑎𝑙 − 𝑐    

Till 𝑗 ≤ 𝑚    

𝑆(�⃖� ) ← (𝑠1(𝜑), . . . , 𝑠𝑚(𝜑))    

𝑗 ← 1    

Redo    

𝑆∗(�⃖� ) ← SortAscending(𝑆(�⃖� ))    

Till 𝑗 ≤ 𝑚    

𝑗 ← 1    

Redo    

{𝑁𝐺𝑖} ← LexicographicSort(𝑅(�⃖� ))    

Till 𝑗 ≤ 𝐴𝑐𝑡𝑠𝑖𝑧𝑒    

{𝐺𝑖} ← 𝑁𝐺𝑖(1: 𝑁)   

END   

Till 𝑖 ≤ 𝑔   

𝑃𝑂𝑃 ← {𝐺𝑖}𝑖=1,2,...,𝑔   

END  

It is important to note that 𝜑𝑠𝑚 ⃖        belongs to one of the groups {𝐺𝑖}𝑖=1,2,...𝑔, and 𝜑𝑚 ⃖      belongs to 

the set of non-dominated males {𝑁𝐷𝑆} . However, the group to which 𝜑𝑚 ⃖       belongs, denoted as 

{𝐺𝑗}𝑗=1,2,...𝑔, must be different from the group to which 𝜑𝑠𝑚 ⃖        belongs. 

Learning is an important aspect of JMA that aids in the search for the discrete problem referred 

to as below. 

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 = {𝑃𝑜𝑃, 𝔾, 𝛿, 𝐿(𝜑𝑘 ⃖    ), 𝐹(𝜑𝑘 ⃖    ), 𝕏}    (3.8) 

Here, PoP indicates the population, 𝔾 is the problem space, 𝛿 denotes the learning rate of an 

solutions (decreasing linearly from 1 to 0), 𝐿(𝜑𝑘 ⃖    ) represents learning process of an individuals. 

The learning process for an individual 𝜑𝑘 ⃖     in a discrete optimization problem is defined using 

four cases: 

−[𝑖, 𝑗] = sort[⌈𝑥 ∗ rand(𝛿, 2)⌉]      (3.9) 

In this equation, 𝑥 is a linearly decreasing value generated between the maximum value (max ←

𝕏) and 3. The values 𝑢 and 𝑣 are randomly selected. 

The four variants for the learning process are as follows:  

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔1(𝜑𝑘 , [𝑢, 𝑣]) = 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔(𝜑𝑘 , [𝑢, 𝑣])    (3.10) 

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔2(𝜑𝑘 , 𝑢, 𝑣) = 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔(𝜑𝑘, 𝑣: −1: 𝑢)    (3.11) 

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔3(𝜑𝑘 , 𝑢, 𝑣) = 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔(𝜑𝑘, [𝑢 + 1: 𝑣])   (3.12) 

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔4(𝜑𝑘 , 𝑢, 𝑣) = 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔(𝜑𝑘 , 𝑢, 𝑣)    (3.13) 

The best solution produced from these learning processes is denoted as 𝜑∗ and is replaced in the 

population PoP. Similarly, to solve the continuous optimization problem involves the following steps: 
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𝐿1
 ⃖   (𝜑𝐺𝑀 ⃖       , 𝜑𝑘 ⃖    ) = 𝜑𝐺𝑀 ⃖       − (2 ⋅ 𝛿 ⋅ 𝑟1 ⃖  − 𝛿)|2 ⋅ 𝑟2 ⃖  ⋅ 𝜑𝐺𝑀 ⃖       − 𝜑𝑘 ⃖    |  (3.14) 

𝜑𝑘 ⃖    =
𝐿1 ⃖   +𝐿2 ⃖   +𝐿3 ⃖   +𝐿4 ⃖   

4
          (3.15) 

In these equations, 𝜑𝐺𝑀 ⃖         represents the global best female, 𝜑𝐺𝐹 ⃖        represents the global best 

female, 𝜑𝐴𝑀 ⃖        represents the alpha male, 𝜑𝐴𝐹 ⃖       represents the alpha female and 𝑟1 ⃖   and 𝑟2 ⃖   are random 

vectors between 0 and 1. After performing the learning process, the individual 𝜑𝑘 ⃖     is modified and 

substituted in the population PoP. 

Population sorting using Utopian based Grid Process 

The JMA is a powerful approach utilized for tackling MOPs, aiming to achieve a balance between 

exploration (diversity) and exploitation (convergence) during the search process. The algorithm’s 

effectiveness relies on its mating and male replacement processes, which play pivotal roles in the 

search procedure. Moreover, the JMA incorporates a technique for preserving non-dominated solutions, 

known as the Pareto front, within the population. The optimization process removes solutions when 

the number of non-dominated solutions exceeds the population size to maintain a constant population 

size (i.e., |POP|>NOI).  

Maintaining a well-converged and diverse Pareto front in the succeeding generation poses a 

significant challenge in multi-objective optimization. To address this issue and preserve the population, 

the conventional lexicographic-based ranking technique has been enhanced by introducing idealistic 

points. The Utopian point is obtained by subtracting a small value from the ideal point (𝑍𝑖𝑑𝑒𝑎𝑙). This 

expansion of the search space in the bounded region is illustrated in Figure 4 and can be represented 

by the equation: 

𝑍𝑢𝑡𝑜𝑝𝑖𝑎𝑛 = 𝑍𝑖𝑑𝑒𝑎𝑙 − 𝑐    where c is a small constant  (3.16) 

 

Figure 4. Standard and scaled objective function based on Utopian Points based grid 

decomposition Approach. 
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The individual goal (𝑗) is then divided into 𝑘 portions between the nadir and Utopian ranges. 

In this case, 𝑘 denotes the sequence of objectives. The subdivision is calculated as follows: 

𝐼𝑗 =
(𝑍𝑗

𝑛𝑎𝑑𝑖𝑟−𝑍𝑗
𝑢𝑡𝑜𝑝𝑖𝑎𝑛

+2𝜈)

𝑘
        (3.17) 

where 𝜈 represents diminished positive value. The grid location (𝑔𝑗(𝜑)) of an individual 𝜑 along 

the jth objective is determined using the equation: 

𝑔𝑗(𝜑) =
(𝑓𝑗(𝜑)−𝑍𝑗

𝑢𝑡𝑜𝑝𝑖𝑎𝑛
+𝜈)

𝐼𝑗
       (3.18) 

The rank-based selection in JMA involves assigning ranks to individuals in the population. Each 

individual is assigned m ranks, and the rank vector is denoted as: 

𝑆(�⃖� ) = (𝑠1(𝜑), … , 𝑠𝑚(𝜑))       (3.19) 

The solutions of the population are then classified in ascending order as per rank vector: 

𝑆∗(�⃖� ) = 𝑆𝑜𝑟𝑡𝐴𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔(𝑆(�⃖� ))      (3.20) 

This ranking procedure serves the purpose of structuring the population and simplifying the 

retention of superior solutions throughout the optimization process. Ultimately, the population 

undergoes lexicographic sorting, enabling the selection of essential individuals for the succeeding 

generation. 

4. Proposed JMA for MOP 

In this work, a novel approach namely Java Macaque algorithm is introduced to address multi-

objective optimization problems by integrating exploration and exploitation strategies to achieve 

optimal search performance. The detailed procedure of Java Macaque algorithm is presented in ref. 

[30]. The algorithm initiates by generating an initial population, denoted as 𝑃𝑂𝑃, through random 

population seeding, where each individual �⃖�  is mapped 𝔾 to the 𝕏. The fitness function 𝐹(�⃖� ) is 

employed to evaluate individuals within each group. 

Subsequently, the population is divided into two groups: Alpha Males (𝐴𝑀) and Alpha Females 

(𝐴𝐹). The best male and female individuals, represented by 𝐺𝑀 and 𝐺𝐹, respectively, are selected 

based on their fitness values and categorized into 𝐷𝑆 and 𝑁𝐷𝑆 individuals. The mating process, a 

pivotal aspect of the algorithm, is then carried out according to the social hierarchy, where male and 

female individuals, 𝜑𝑚 and 𝜑𝑓, respectively, are chosen from either the 𝐷𝑆 and 𝑁𝐷𝑆 sets. 

The new solution resulting from mating are referred to as infant males (𝜑𝐼𝑀) or infant females 

(𝜑𝐼𝐹 ) depending on their gender. When a male offspring reaches the age of 1 (pull through one 

generation), it becomes a juvenile male (𝜑𝐽𝑀). Similarly, when a female offspring reaches the age of 

1, it becomes a juvenile female (𝜑𝐽𝐹). At the age of 4, the juvenile male reaches sexual maturity and 

gains the social status of Stray Male (𝜑𝑆𝑀). Likewise, a female offspring reaches sexual maturity at 

age 3 and becomes a subadult female (𝜑𝑆𝐹). The subadult female then matures into an adult female 

(𝜑𝐴𝐹), and it remains in the group for 5 generations. However, the 𝜑𝑆𝑀 or subadult male is enforced 

to vacate the natal group. The male replacement procedure is employed, allowing the stray male to 

explore the search space and replace the dominant male in the group. 
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The JMA’s learning strategy efficiently intensifies the search limit, enabling the identification of 

the global best solution for continuous optimizing issues. The individual’s learning rate, represented 

as 𝛿, linearly decreases from (0 ≤ 𝛿 ≤ 1). During the learning process, for an individual 𝜑𝑘 ⃖     with 

fitness value 𝐹(�⃖� ), a compromise between 𝜑𝑘 ⃖     and the global best individual 𝜑𝐺𝑀 ⃖        is computed with 

the aid of two arbitrary vectors ranging from 0 to 1. Similarly, the compromise between the individual 

and the global best female 𝐿2
 ⃖   (𝜑𝐺𝐹 ⃖      , 𝜑𝑘 ⃖    ) is determined. The same method is applied to calculate the 

compromise between the individual and the alpha male 𝐿3
 ⃖   (𝜑𝐴𝑀 ⃖       , 𝜑𝑘 ⃖    ), and similarly for 𝐿4

 ⃖   (𝜑𝐴𝐹 ⃖      , 𝜑𝑘 ⃖    )  

within the individual’s natal group. The individual then adjusts its position using Eq 3.8. Finally, a 

grid-based lexicographic sorting approach is employed as the primary process for maintaining a well-

distributed population in the multi-objective optimization algorithm. 

In summary, the Java Macaque algorithm is a multi-objective optimization approach that 

combines exploration and exploitation strategies. It utilizes social hierarchy, mating processes and a 

learning strategy to efficiently explore the search space and find global optimal solutions. The 

algorithm maintains a well-distributed population sorting using grid-based lexicographic approach. 

5. Analysis of experiments for a discrete multiobjective problem 

The proposed MOJMA is thoroughly investigated in this paper using the famous Traveling 

Salesman Problem (TSP) from TSPLIB. The investigation is carried out utilizing the existing test-bed 

stated in [49], in which the effectiveness of MOJMA is compared to that of MEDA/D. Following the 

standard procedure detailed by Karshenas and colleagues, 50 independent simulations are performed 

for each method, with a consistent population size of 250 and termination criterion set to 1000 

generations. The convergence metrics employed in the MEDA/D algorithm are adopted as 

performance measures to ascertain the significance of MOJMA’s proposed approach. Specifically, in 

MEDA/D, the parameter “alpha” governing the balance between a priori and learned information, is 

set to 3, while other parameters are determined based on existing literature. This meticulous evaluation 

provides valuable insights into MOJMA’s capabilities and highlights its potential as a promising 

alternative for solving discrete optimization issues such as TSP. 

5.1. Experimental results 

The experiments conducted in this study demonstrate the effectiveness of the proposed MOJMA 

when compared to the existing Multiobjective Evolutionary Algorithm based on Decomposition 

(MEDA/D). A random technique was used to generate the population’s initial set of individuals. The 

experimental results, as presented in Table 1, show that the MOJMA consistently outperforms 

MEDA/D according to various evaluation criteria. For instance, when considering the KroAB100 

instance, the MOJMA achieved a convergence rate of 0.999, whereas MEDA/D reached only 0.998. 

Similarly, in the case of the KroAD100 instance, the MOJMA maintained its superiority with a mean 

convergence value of 0.97, while MEDA/D obtained 0.999. 

In the KroBC100 instance, both MEDA/D and the proposed MOJMA produced identical results 

for the best and average convergence values. However, the MOJMA outperformed MEDA/D in terms 

of worst convergence. Conversely, in the KroBE100 instance, MEDA/D dominated the results with a 

best, worst and average convergence value of 0.997, 0.996 and 0.996, respectively. Although MEDA/D 

performed better in terms of best and average convergence values (0.998 for both), both methods 
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achieved the same worst convergence value. Specifically, Table MOPTSP reveals that the best, average 

and worst values for MEDA/D are 1, 1 and 0, respectively, while MOJMA achieved 1, 0.999 and 0.998 

for mean, worst and average values. Based on these observations, the results provide substantial evidence 

of the superiority of the MOJMA over the MEDA/D in terms of convergence performance. The outcome 

analysis for the best, average, and worst convergence is shown in Figures 5, 6, and 7 respectively. 

 

Figure 5. Outcome analysis in terms of Best Convergence. 

 

Figure 6. Outcome analysis in terms of average convergence. 

 

Figure 7. Outcome analysis in terms of Worst Convergence. 
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The MOJMA as a new approach and compares it with the existing Multiobjective Evolutionary 

Algorithm with Decomposition (MEDA/D). Convergence is identified as the main evaluation metric for 

measuring the effectiveness of both algorithms. The results are presented in illustrations and tables, 

demonstrating the superior performance of MOJMA in terms of optimal convergence values for certain 

instances like KroAC100, KroAE100 and KroBE100, while MEDA/D performs better in instances such 

as KroAB100, KroBD100 and KroCD100. For cases where MOJMA and MEDA/D achieve the same 

convergence values, the analysis suggests that the two algorithms are independent of each other. Moreover, 

we explore the average convergence of the population and reveal that MOJMA generally outperforms 

MEDA/D, except for specific instances like KroAE100, KroBE100 and KroDE100. Overall, the 

experimental results validate the effectiveness of MOJMA over MEDA/D, showcasing its superiority in 

terms of convergence metrics, for instance, achieving a maximum convergence of 0.999 for KroAB100 

compared to MEDA/D’s 0.998 and a mean convergence of 0.97 for KroAD100 while MEDA/D reaches 

only 0.999. The initial population generation used a random technique, and the proposed strategy 

demonstrates better performance across various evaluation criteria as depicted in Table 1. 

Table 1. Result for Multiobjective TSP. 

S.NO Instance Technique Best Mean Worst 

1 KroAB100 
MEDA/D 9.98E-01 9.90E-01 9.70E-01 

JMA 9.99E-01 9.98E-01 9.90E-01 

2 KroAC100 
MEDA/D 1.00E+00 9.99E-01 9.95E-01 

JMA 9.99E-01 9.99E-01 9.99E-01 

3 KroAD100 
MEDA/D 1.00E+00 1.00E+00 1.00E+00 

JMA 1.00E+00 1.00E+00 1.00E+00 

4 KroAE100 
MEDA/D 1.00E+00 9.99E-01 9.94E-01 

JMA 9.90E-01 9.70E-01 9.53E-01 

5 KroBC100 
MEDA/D 9.98E-01 9.95E-01 9.85E-01 

JMA 9.98E-01 9.95E-01 9.87E-01 

6 KroBD100 
MEDA/D 9.97E-01 9.96E-01 9.86E-01 

JMA 9.98E-01 9.97E-01 9.90E-01 

7 KroBE100 
MEDA/D 9.98E-01 9.98E-01 9.94E-01 

JMA 9.97E-01 9.96E-01 9.94E-01 

8 KroCD100 
MEDA/D 9.99E-01 9.97E-01 9.84E-01 

JMA 1.00E+00 9.98E-01 9.93E-01 

9 KroCE100 
MEDA/D 9.94E-01 9.92E-01 9.81E-01 

JMA 9.95E-01 9.93E-01 9.85E-01 

10 KroDE100 
MEDA/D 1.00E+00 1.00E+00 9.98E-01 

JMA 1.00E+00 9.99E-01 9.98E-01 

6. Experimentation and result analysis for multiobjective continuous problem 

Using a typical benchmark function, the proposed JMA was assessed for its potential in 

addressing multi-objective continuous optimization problems. The experimentation includes 

employing a set of ten benchmark functions taken from the [50] for the evaluation. The benchmark 
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functions were categorized into bi-objective and tri-objective problems. To assess the performance of 

the JMA, it was compared with several other algorithms: CDG (Constrained Decomposition Approach 

with Grids) [40], RVEA (Reference Vector Guided Evolutionary Algorithm) [41], NSGA III [42] and 

MOEA/D-DE TCH [29]. 

6.1. Parameter settings 

For the bi-objective benchmark functions, the primary population (NOI) was held to 300 

individuals. For the tri-objective benchmark functions, the primary population fixed to 600. The JMA 

and CDG employed a grid distribution with a value of 180 for bi-objectives and a value of 30 for tri-

objectives. Sub-problem sizes of 600 for two objectives and 1000 for three objectives were 

implemented in MOEA/D-DE TCH. The parameters for the neighbor selection probability (δ), 

crossover rate (CR), mutation probability (𝑝𝑚), distribution index (η) and differential weight (F) were 

adjusted to 0.9, 20, 1.0, 1/n (where n represents the number of variables) and 0.5, respectively. For 

JMA, RVEA and NSGA III, the simulated binary crossover was used with a distribution index (𝜂𝑐) set 

to 30. Each benchmark instance was tested with 30 independent runs, and the total number of function 

evaluations was set to 300,000 for each instance. 

6.2. Metrics for performance 

Final Generation Distance (GD): GD metric computes convergence calculates the average 

Euclidean distance between the individuals in the search space and the nearest true Pareto front (PF) 

approximation point. The GD formula is:  

𝐺𝐷 =
√∑𝑛

𝑖=1 𝑑𝑖
2

𝑛
 

where 𝑑𝑖 represents the distance between the individual 𝑥𝑖 and the nearest true PF point, and 𝑛 is 

the number of approximation PF points. 

Inverted Generation Distance (IGD): This metric assesses the diversity and convergence. It 

calculates the average minimal Euclidean distance between the true Pareto front (𝑃𝐹𝑡𝑟𝑢𝑒 ) and the 

dominant solutions in the approximation front (𝑃𝐹𝑘𝑛𝑜𝑤𝑛). The IGD formula is that Inverted Generation 

Distance measures both the convergence and diversity. The 𝑃𝐹𝑡𝑟𝑢𝑒 is the set of all solutions in true 

PF with uniform dispersion, and X is the collection of the approximation front’s most prominent 

solutions 𝑃𝐹𝑘𝑛𝑜𝑤𝑛:  

𝐺𝐷 =
∑𝑣∈𝑃𝐹𝑡𝑟𝑢𝑒

𝑑(𝑣, 𝑋)

|𝑃𝐹𝑡𝑟𝑢𝑒|
 

where 𝑑(𝑣, 𝑋) represents the minimal Euclidean distance among the true PF point 𝑣 and the points 

in 𝑋 (the dominant solutions in 𝑃𝐹𝑘𝑛𝑜𝑤𝑛). 

6.3. Result analyses 

After conducting the experimentation as described in the setup, the performance of the proposed 
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JMA algorithm was assessed using various performance metrics. The results for bi-objective 

benchmark functions UF1 to UF7 are presented in Tables 2 and 3, while Table 4 shows the results for 

tri-objective benchmark functions. The evaluation involved comparing JMA to other algorithms like 

RVEA, CDG, NSGA III and MOEA/D-DE TCH, with metrics including best, average and worst of 

GD and IGD are used for the comparison along with standard deviation. 

In general, JMA demonstrated superior performance compared to other algorithms for instances 

UF1 to UF4, with the best GD and IGD values. However, for instance UF2, it had the lowest standard 

deviation value for IGD. The efficacy of existing algorithms decreased for all instances, as indicated 

by the comments in Table 4. In terms of dominance over the search space, JMA outperformed other 

algorithms in most cases. For instance UF5, NSGA III and CDG had the highest IGD and GD values, 

respectively, while JMA dominated the remaining metrics. Similarly, for instance UF6, JMA achieved 

reduced values and its standard deviation for IGD was superior to other compared algorithms. However, 

RVEA performed better for UF6, and CDG took the lead for UF7. 

Table 2. Outcome of Bi-Objective Benchmark Function. 

S. No Instances Techniques 
IGD GD 

Best Mean SD Worst Best Mean SD Worst 

1 UF1 

JMA 0.00220 0.00229 0.00006 0.00243 0.00200 0.00207 0.00004 0.00216 

CDG 0.00235 0.00249 0.00008 0.00268 0.00191 0.00196 0.00003 0.00202 

RVEA 0.00298 0.00326 0.00014 0.00354 0.00249 0.00259 0.00006 0.00273 

MOEA/D-DE TCH 0.00698 0.00729 0.00018 0.00772 0.00625 0.00682 0.00027 0.00736 

NSGA 3 0.01398 0.01457 0.00028 0.01504 0.01296 0.01401 0.00050 0.01508 

2 UF2 

JMA 0.00439 0.00454 0.00008 0.00472 0.00376 0.00396 0.00013 0.00429 

CDG 0.00552 0.00566 0.00009 0.00586 0.00485 0.00516 0.00014 0.00549 

RVEA 0.00610 0.00638 0.00013 0.00660 0.00549 0.00579 0.00018 0.00622 

MOEA/D-DE TCH 0.00965 0.00989 0.00016 0.01024 0.00840 0.00911 0.00027 0.00970 

NSGA 3 0.01200 0.01241 0.00022 0.01283 0.01065 0.01125 0.00035 0.01215 

3 UF3 

JMA 0.01745 0.01830 0.00035 0.01878 0.01586 0.01658 0.00040 0.01751 

CDG 0.02050 0.02144 0.00044 0.02216 0.01760 0.01862 0.00054 0.01977 

RVEA 0.01786 0.01904 0.00040 0.01971 0.01791 0.01912 0.00062 0.02070 

MOEA/D-DE TCH 0.02119 0.02221 0.00048 0.02297 0.01952 0.02069 0.00062 0.02190 

NSGA 3 0.03912 0.04398 0.00222 0.04835 0.03588 0.04268 0.00449 0.05068 

4 UF4 

JMA 0.03143 0.03329 0.00064 0.03400 0.02891 0.03060 0.00139 0.03455 

CDG 0.03389 0.03586 0.00070 0.03683 0.03005 0.03289 0.00097 0.03456 

RVEA 0.03742 0.04041 0.00071 0.04101 0.03365 0.03682 0.00146 0.03977 

MOEA/D-DE TCH 0.03218 0.03398 0.00064 0.03454 0.03247 0.03377 0.00070 0.03495 

NSGA 3 0.08162 0.08662 0.00142 0.08751 0.06070 0.06523 0.00191 0.06902 
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Table 3. Outcome of Bi-Objective Benchmark Function. 

S. 

No 
Instances Techniques 

IGD GD 

Best Mean SD Worst Best Mean SD Worst 

5 UF5 

JMA 0.15818 0.19100 0.00872 0.19363 0.14392 0.15157 0.00417 0.15489 

CDG 0.16822 0.23180 0.03386 0.30217 0.14082 0.20252 0.04266 0.31026 

RVEA 0.14689 0.21856 0.02779 0.26984 0.14586 0.20253 0.04058 0.28208 

MOEA/D-

DE TCH 0.15702 0.20698 0.03319 0.28931 0.15592 0.23648 0.06664 0.44211 

NSGA 3 0.13599 0.23904 0.04769 0.32968 0.18719 0.27540 0.04874 0.38700 

5 UF6 

JMA 0.05205 0.06360 0.00337 0.06689 0.06227 0.06789 0.00297 0.07778 

CDG 0.05426 0.07145 0.01530 0.10996 0.08228 0.07859 0.01353 0.13724 

RVEA 0.02654 0.02878 0.00060 0.02908 0.04252 0.04511 0.00089 0.04601 

MOEA/D-

DE TCH 0.04087 0.04272 0.00038 0.04284 0.06722 0.07027 0.00137 0.07108 

NSGA 3 0.05442 0.05769 0.00061 0.05781 0.09939 0.10851 0.00478 0.12923 

7 UF7 

JMA 0.00395 0.00407 0.00005 0.00415 0.00302 0.00313 0.00006 0.00327 

CDG 0.00280 0.00292 0.00006 0.00308 0.00244 0.00256 0.00006 0.00270 

RVEA 0.00363 0.00376 0.00006 0.00387 0.00319 0.00332 0.00009 0.00350 

MOEA/D-

DE TCH 0.00422 0.00440 0.00008 0.00456 0.00390 0.00406 0.00011 0.00437 

NSGA 3 0.00465 0.00488 0.00009 0.00504 0.00423 0.00452 0.00014 0.00478 

6.3.1. Discussion based on Best value of IGD 

The IGD value serves as a vital evaluation criterion for assessing the optimal solution by striking 

a balance between convergence and diversity. The results in Figure 8 demonstrate that the JMA 

algorithm outperforms existing methods, as evidenced by its superior convergence curves for UF3. 

Additionally, Table 4 reveals that the JMA algorithm consistently surpasses CDG, RVEA, 

MOEA/DDE TCH and NSGA 3 across various instances of bi-objective benchmark functions. 

However, for instances UF6 and UF7 (as shown in Table 3), some other methods like RVEA, CGD 

and NSGA III display better performance than the JMA algorithm. Notably, MOEA/DDE TCH 

consistently exhibits inferior results. 

6.3.2. Discussion based on the Mean value of IGD 

The JMA algorithm demonstrated superior performance based on the Mean IGD values when 

compared to instances UF9 and UF10 from Table 4, as well as one instance from Table 3, and all 

examples are listed in Table 4. However, it is important to note that there were significant variations 

in the results when the suggested approach was applied to benchmark examples UF6, UF7 and UF8. 

For example, the RVEA algorithm assigned a value of 5.20E-02 to the UF8 instance, while the JMA 

algorithm showed values of 5.05E-02 and 2.19E-01 for the UF9 and UF10 instances, respectively. 

Furthermore, Table 1 provides an overview highlighting the overall superiority of the JMA algorithm 

over other methodologies. 
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Table 4. Outcome of Tri-Objective Benchmark Function. 

S. 

No 
Instances Techniques 

IGD GD 

Best Mean SD Worst Best Mean SD Worst 

8 UF8 

JMA 0.05478 0.05663 0.00080 0.05807 0.01305 0.01402 0.00042 0.01523 

CDG 0.05606 0.05786 0.00097 0.05963 0.01332 0.01400 0.00044 0.01493 

RVEA 0.05032 0.05197 0.00072 0.05338 0.01182 0.01246 0.00036 0.01319 

MOEA/D-

DE TCH 0.06482 0.06698 0.00110 0.07010 0.01661 0.01742 0.00042 0.01836 

NSGA 3 0.05522 0.05685 0.00084 0.05949 0.01337 0.01423 0.00043 0.01517 

9 UF9 

JMA 0.04800 0.05046 0.00115 0.05244 0.01622 0.01714 0.00050 0.01817 

CDG 0.05284 0.05533 0.00139 0.05840 0.01718 0.01816 0.00072 0.01983 

RVEA 0.05424 0.05622 0.00098 0.05856 0.01731 0.01809 0.00046 0.01916 

MOEA/D-

DE TCH 0.06028 0.06249 0.00132 0.06514 0.02115 0.02199 0.00056 0.02393 

NSGA 3 0.05359 0.05549 0.00116 0.05758 0.01906 0.02043 0.00070 0.02156 

10 UF10 

JMA 0.20933 0.21940 0.00439 0.22743 0.07279 0.07689 0.00353 0.08593 

CDG 0.25824 0.30991 0.03194 0.37105 0.10525 0.14693 0.02150 0.19296 

RVEA 0.20595 0.32023 0.00959 0.32466 0.09074 0.11699 0.00834 0.14632 

MOEA/D-

DE TCH 0.42850 0.56255 0.07129 0.76738 0.20086 0.32129 0.09060 0.65955 

NSGA 3 0.27315 0.30325 0.01123 0.31205 0.13413 0.14703 0.01130 0.17827 

6.3.3. Discussion based on Standard Deviation of IGD 

This metric impacts the evaluation of the multiobjective algorithm as it reflects the overall 

convergence of the population. The stability and superiority of the proposed Java Macaque Approach 

(JMA) over previous techniques are demonstrated in the results shown in reference Figure 12 based 

on the Standard Deviation value of the Inverted Generational Distance (IGD). To illustrate this, let us 

consider instances UF1 to UF4 from Table 4, which exhibit excellent values of 0.00006, 0.00008, 

0.00035 and 0.00064 for the JMA. Upon further examination, it was found that the JMA outperformed 

other algorithms, such as RVEA and MOEA/DDE, by dominating seven examples. However, these 

algorithms were dominant in the remaining instances. Therefore, the JMA demonstrates superior 

performance compared to existing algorithms, establishing its stability and effectiveness. 

6.3.4. Discussion based on the worst value of IGD 

Tables 2, 3 and 4 present an evaluation of the proposed mechanism based on the worst IGD value 

across the entire population. Among the evaluated methods, JMA demonstrates superior outcomes in 

seven cases. However, the methods RVEA and CGD yield IGD values of 2.91E-02, 3.08E-03 and 

5.34E-02 in three instances: UF6, UF7 and UF8. On the other hand, according to Table 1, it is evident 

that the suggested method excels in terms of worst individual as well. In summary, the results indicate 

the performance of both SOGA and the traditional genetic algorithm. 



30262 

AIMS Mathematics  Volume 8, Issue 12, 30244–30268. 

6.3.5. Discussion based on the best and worst values of GD 

The performance of the Java Macaque Algorithm (JMA) is compared to other existing algorithms 

in Figures 8 to 12. While the JMA achieves the best GD values in most cases, there are six instances 

(UF1 to UF4, UF9 and UF10) where it consistently has a higher value. The RVEA algorithm performs 

slightly better than JMA in UF6 and UF8, and the CGD algorithm dominates UF5 and UF7 with superior 

values. In terms of the worst GD value, except for UF8, JMA outperforms the other algorithms in the 

majority of occurrences as shown in Tables 4 and 6. Furthermore, RVEA outperforms CGD in two cases 

(UF6 and UF8), while CGD outperforms RVEA in only one case (UF7). Based on the results of the 

analysis, it can be concluded that the proposed JMA dominates both the best and worst GD values. 

 

Figure 8. Outcome of Instance UF3. 

 

Figure 9. Outcome of Instance UF4. 
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Figure 10. Outcome of Instance UF5. 

 

Figure 11. Outcome of Instance: UF6. 
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Figure 12. Outcome of Instance UF10. 

6.3.6. Discussion based on the mean and SD values of GD 

Figures 8 to 12 illustrate a comparison between the performance of the JMA algorithm and current 

methods. The mean value represents the difference between the converged population and the standard 

deviation. The JMA algorithm demonstrates superiority over the mean value of the GD method in 

seven examples: UF1 to UF3, UF5 and UF10. Additionally, the JMA algorithm dominates the SD value 

of GD in five cases: UF1 to UF3, UF5 and UF10. However, in cases like UF4 and UF7, CGD ranks 

higher, despite RVEA outperforming the other instances. 

7. Conclusion and Future Work 

The proposed MOJMA incorporates a Utopian-based lexicographic sorting approach to optimize 

the exploration and exploitation in multi-objective optimization problems. This method effectively 

maintains a well-distributed collection of Pareto fronts, resulting in superior performance compared to 

other methods such as the TSP and the benchmark functions from CEC09. Specifically, it outperforms 

the bi-objective problems UF1 to UF7 and the tri-objective problems UF8 to UF10. The performance 

of proposed JMA model is used to experiment on the multi-objective Travelling Salesman Problem. 

Additionally, the performance results of JMA on the multi-objective continuous optimization problem 

is noted. The proposed JMA algorithm demonstrates superior performance in optimizing multi-

objective problems. It outperforms the compared algorithms in both discrete and continuous multi-

objective optimization problems. The results validate the effectiveness of JMA in achieving better 

convergence and diversity. Further, the JMA will be optimized by incorporating the hyper parameter 
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tuning that suits the algorithm for more complex optimization. 

Use of AI tools declaration  

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this 

article. 

Acknowledgments 

This research is supported by Princess Nourah bint Abdulrahman University Researchers 

Supporting Project number (PNURSP2023R195) Princess Nourah bint Abdulrahman University, 

Riyadh, Saudi Arabia. 

Author contributions 

Conceptualization, D.K.; methodology, D.K.; validation, R.R. and M.R.; formal analysis, S.B.; 

writing—original draft preparation, D.K.; writing—review and editing, M.R. and N.M.; supervision, 

R.R. and M.R; funding acquisition, S.B. All authors have read and agreed to the published version of 

the manuscript. 

Conflict of interest 

The authors declare no conflicts of interest. 

References 

1. X. Yang, Nature-inspired metaheuristic algorithms, Luniver Press, second edition. 2010. 

2. D. Kumar, S. Kumar, R. Bansal, P. Singla, A survey to nature inspired soft computing, Int. J. Inf. 

Syst. Model., 8 (2017), 112–133. https://doi.org/10.4018/IJISMD.2017040107 

3. A. Sharma, A. Sharma, B. K. Panigrahi, D. Kiran, R. Kumar, Ageist spider monkey optimization 

algorithm, Swarm Evol. Comput., 28 (2016), 58–77. https://doi.org/10.1016/j.swevo.2016.01.002 

4. J. C. Bansal, H. Sharma, S. S. Jadon, M. Clerc, Spider monkey optimization algorithm for 

numerical optimization, Memetic Comput., 6 (2014): 31–47. https://doi.org/10.1007/s12293-013-

0128-0 

5. H. Sharma, G. Hazrati, J. C. Bansal, Spider monkey optimization algorithm, Evol. Swarm Intell. 

Algorithms, (2019), 43–59. 

6. C. A. G. Santos, P. K. M. M. Freire, S. K. Mishra, Cuckoo search via Lévy flights for optimization 

of a physically-based runoff-erosion model, J. Urban Environ. Eng., 6 (2012), 123–131. 

https://www.jstor.org/stable/26203380 

7. S. Yılmaz, E. U Kuc¸ uksille, A new modification approach on bat algorithm for solving 

optimization problems, Appl. Soft Comput., 28 (2015), 259–275. 

https://doi.org/10.1016/j.asoc.2014.11.029 

8. X. S. Yang, Firefly algorithm, Engineering optimization, 2010, 221–230. 

https://doi.org/10.4018/IJISMD.2017040107
https://doi.org/10.1016/j.swevo.2016.01.002
https://doi.org/10.1007/s12293-013-0128-0
https://doi.org/10.1007/s12293-013-0128-0
https://www.jstor.org/stable/26203380
https://doi.org/10.1016/j.asoc.2014.11.029


30266 

AIMS Mathematics  Volume 8, Issue 12, 30244–30268. 

9. J. Kennedy, Particle swarm optimization, In: Encyclopedia of machine learning, 760–766. 

Springer, 2011. 

10. D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: 

artificial bee colony (abc) algorithm, J. Global Optim., 39 (2007), 459–471. 

https://doi.org/10.1007/s10898-007-9149-x 

11. M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization, IEEE Comput. Intell. M., 1 (2006), 

28–39. https://doi.org/10.1109/MCI.2006.329691 

12. R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for global optimization 

over continuous spaces, J. Global Optim., 11 (1997), 341–359. https://doi.org/10.1007/s11042-

022-12409-x 

13. J. H. Holland, Adaptation in natural and artificial systems, Univ. Mich. Press. Ann Arbor, 1975. 

14. F. S. Gharehchopogh, T. Ibrikci, An improved african vultures optimization algorithm using 

different fitness functions for multi-level thresholding image segmentation, Multimed. Tools Appl., 

(2023), 1–47. https://doi.org/10.1007/s11042-023-16300-1 

15. S. T. Shishavan, F. S. Gharehchopogh, An improved cuckoo search optimization algorithm with 

genetic algorithm for community detection in complex networks, Multimed. Tools Appl., 81 

(2022), 25205–25231. 

16. F. S. Gharehchopogh, Quantum-inspired metaheuristic algorithms: comprehensive survey and 

classification, Artif. Intell. Rev., 56 (2023), 5479–5543, 2023. https://doi.org/10.1007/s10462-

022-10280-8 

17. A. Laith, M. Shehab, M. Alshinwan, S. Mirjalili, M. A. Elaziz, Ant lion optimizer: A 

comprehensive survey of its variants and applications, Arch. Comput. Method. Eng., 28 (2021), 

1397–1416. https://doi.org/10.1007/s11831-020-09420-6 

18. X. Yang, J. Zou, S. Yang, J. Zheng, Y. Liu, A fuzzy decision variables framework for large-scale 

multiobjective optimization, IEEE T. Evolut. Comput., 27 (2021), 445–459. 

https://doi.org/10.1109/TEVC.2021.3118593 

19. A. M. Basset, R. Mohamed, M. Abouhawwash, Balanced multi-objective optimization algorithm 

using improvement-based reference points approach, Swarm Evol. Comput., 60 (2021), 100791. 

https://doi.org/10.1016/j.swevo.2020.100791 

20. M. A. Basset, R. Mohamed, S. Mirjalili, A novel whale optimization algorithm integrated with 

nelder–mead simplex for multi-objective optimization problems, Knowledge-Based Syst., 212 

(2021), 106619. https://doi.org/10.1016/j.knosys.2020.106619 

21. B. Xu, G. Zhang, K. Li, B. Li, H. Chi, Y. Yao, et al., Reactive power optimization of a distribution 

network with high-penetration of wind and solar renewable energy and electric vehicles, Protect. 

Contr. Mod. Pow., 7 (2022), 51. https://doi.org/10.1016/j.ins.2022.05.123 

22. F. S. Gharehchopogh, An improved harris hawks optimization algorithm with multistrategy for 

community detection in social network, J. Bionic Eng., 20 (2023), 1175–1197. 

https://doi.org/10.1007/s42235-022-00303-z 

23. H. Ma, S. Shen, M. Yu, Z. Yang, M. Fei, H. Zhou, Multi-population techniques in nature inspired 

optimization algorithms: A comprehensive survey, Swarm Evol. Comput., 44 (2019), 365–387. 

https://doi.org/10.1016/j.swevo.2018.04.011 

24. Z. Li, V. Tam, L. K. Yeung, An adaptive multi-population optimization algorithm for global 

continuous optimization, IEEE Access, 9 (2021), 19960–19989. 

https://doi.org/10.1109/ACCESS.2021.3054636 

https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1007/s11042-022-12409-x
https://doi.org/10.1007/s11042-022-12409-x
https://doi.org/10.1007/s11042-023-16300-1
https://doi.org/10.1007/s10462-022-10280-8
https://doi.org/10.1007/s10462-022-10280-8
https://doi.org/10.1109/TEVC.2021.3118593
https://doi.org/10.1016/j.swevo.2020.100791
https://doi.org/10.1016/j.knosys.2020.106619
https://doi.org/10.1016/j.ins.2022.05.123
https://doi.org/10.1007/s42235-022-00303-z
https://doi.org/10.1016/j.swevo.2018.04.011
https://doi.org/10.1109/ACCESS.2021.3054636


30267 

AIMS Mathematics  Volume 8, Issue 12, 30244–30268. 

25. X. Peng, Z. Shi, Finding informative collaborators for cooperative co-evolutionary algorithms 

using a dynamic multi-population framework, In: 2016 IEEE Symposium Series on 

Computational Intelligence (SSCI), IEEE, 2016, 1–6. https://doi.org/10.1109/SSCI.2016.7849958 

26. K. Dinesh, R. Ramalingam, A. Dumka, R. Singh, I. Alsukayti, D. Anand, et al., An intelligent 

optimized route-discovery model for IoT-based VANETs, Processes, 9 (2021), 2171. 

https://doi.org/10.3390/pr9122171 

27. D. Saravanan, R. Rajakumar, M. Sreedevi, K. Dinesh, S. V. Sudha, D. K. Anguraj, et al., Multi-

objective swarm-based model for deploying virtual machines on cloud physical servers, Distrib. 

Parallel Dat., 41 (2023), 75–93. https://doi.org/10.1007/s10619-021-07341-2 

28. Y. Liu, Y. Shi, H. Chen, A. A. Heidari, W. Gui, M. Wang, et al., Chaos-assisted multi-population 

salp swarm algorithms: Framework and case studies, Expert Syst. Appl., 168 (2021), 114369. 

https://doi.org/10.1016/j.eswa.2020.114369 

29. H. Li, Q. Zhang, Multiobjective optimization problems with complicated pareto sets, moea/d and 

nsga-ii, IEEE T. Evol. Comput., 13 (2009), 284–302. https://doi.org/10.1109/TEVC.2008.925798 

30. D. Karunanidy, S. Ramalingam, A. Dumka, R. Singh, M. Rashid, A. Gehlot, et al., Jma: Nature-

inspired java macaque algorithm for optimization problem, Mathematics, 10 (2022), 688. 

https://doi.org/10.3390/math10050688 

31. K. Dinesh, J. Amudhavel, R. Rajakumar, P. Dhavachelvan, R. Subramanian, A novel self-

organisation model for improving the performance of permutation coded genetic algorithm, Int. 

J. Adv. Intell. Paradigms, 17 (2020), 299–322. https://doi.org/10.1504/IJAIP.2020.109512 

32. D. Kalyanmoy, D Saxena, Searching for pareto-optimal solutions through dimensionality 

reduction for certain large-dimensional multi-objective optimization problems, In: Proceedings of 

the world congress on computational intelligence, (2006), 3352–3360. 

33. B. Xu, D. Gong, Y. Zhang, S. Yang, L. Wang, Z. Fan, et al., Cooperative co-evolutionary algorithm 

for multi-objective optimization problems with changing decision variables, Inf. Sci., 607 (2022), 

278–296. 

34. H. Mohammadzadeh, F. S. Gharehchopogh, A multi-agent system based for solving high-

dimensional optimization problems: a case study on email spam detection, Int. J. Commun. Syst., 

34 (2021), 4670. https://doi.org/10.1002/dac.4670 

35. Y. Yuan, H. Xu, B. Wang, X. Yao, A new dominance relation-based evolutionary algorithm for 

many-objective optimization, IEEE T. Evol. Comput., 20 (2015), 16–37. 

https://doi.org/10.1109/TEVC.2015.2420112 

36. E. Zitzler, S. Kunzli, Indicator-based selection in multiobjective search, In: International 

Conference on Parallel Problem Solving from Nature, 832–842. Springer, 2004. 

https://doi.org/10.1007/978-3-540-30217-9_84 

37. Q. Zhang, H. Li, Moea/d: A multiobjective evolutionary algorithm based on decomposition, IEEE 

T. Evol. Comput., 11 (2007), 712–731. https://doi.org/10.1109/TEVC.2007.892759 

38. D. Kalyanmoy, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic 

algorithm: Nsga-ii, IEEE T. Evol. Comput., 6 (2002), 182–197. 

https://doi.org/10.1109/4235.996017 

39. A. Trivedi, D. Srinivasan, K. Sanyal, A. Ghosh, A survey of multiobjective evolutionary 

algorithms based on decomposition, IEEE T. Evol. Comput., 21 (2017), 440–462. 

https://doi.org/10.1109/TEVC.2016.2608507 

https://doi.org/10.1109/SSCI.2016.7849958
https://doi.org/10.3390/pr9122171
https://doi.org/10.1007/s10619-021-07341-2
https://doi.org/10.1016/j.eswa.2020.114369
https://doi.org/10.1109/TEVC.2008.925798
https://doi.org/10.3390/math10050688
https://doi.org/10.1504/IJAIP.2020.109512
https://doi.org/10.1002/dac.4670
https://doi.org/10.1109/TEVC.2015.2420112
https://doi.org/10.1007/978-3-540-30217-9_84
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/TEVC.2016.2608507


30268 

AIMS Mathematics  Volume 8, Issue 12, 30244–30268. 

40. X. Cai, Z. Mei, Z. Fan, Q. Zhang, A constrained decomposition approach with grids for 

evolutionary multiobjective optimization, IEEE T. Evol. Comput., 22 (2017), 564–577. 

https://doi.org/10.1109/TEVC.2017.2744674 

41. R. Cheng, Y. Jin, M. Olhofer, B. Sendhoff, A reference vector guided evolutionary algorithm for 

many-objective optimization, IEEE T. Evol. Comput., 20 (2016), 773–791. 

https://doi.org/10.1109/TEVC.2016.2519378 

42. K. Deb, K. Miettinen, S. Chaudhuri, Toward an estimation of nadir objective vector using a hybrid 

of evolutionary and local search approaches, IEEE T. Evol. Comput., 14 (2010), 821–841. 

https://doi.org/10.1109/TEVC.2010.2041667 

43. X. Ma, Q. Zhang, J. Yang, Z. Zhu, On tchebycheff decomposition approaches for multi-objective 

evolutionary optimization, IEEE T. Evol. Comput., 2017. 

https://doi.org/10.1109/TEVC.2017.2704118 

44. G. Syswerda, Uniform crossover in genetic algorithms. In: Proceedings of the third international 

conference on Genetic algorithms, Morgan Kaufmann Publishers, 3 (1989), 2–9. 

45. H. Ishibuchi, N. Akedo, Y. Nojima, Behavior of multiobjective evolutionary algorithms on many-

objective knapsack problems, IEEE T. Evol. Comput., 19 (2015), 264–283. 

https://doi.org/10.1109/TEVC.2014.2315442 

46. K. Deb, Multi-objective genetic algorithms: Problem difficulties and construction of test problems, 

Evol. Comput., 7 (1999), 205–230. https://doi.org/10.1162/evco.1999.7.3.205 

47. J. J. Durillo, A. J Nebro, jmetal: A java framework for multi-objective optimization, Adv. Eng. 

Soft., 42 (2011), 760–771. https://doi.org/10.1016/j.advengsoft.2011.05.014 

48. Q. Lin, J. Chen, Z. H. Zhan, W. N. Chen, C. A. C. Coello, Y. Yin, et al., A hybrid evolutionary 

immune algorithm for multiobjective optimization problems, IEEE T. Evol. Comput., 20 (2016), 

711–729. https://doi.org/10.1109/TEVC.2015.2512930 

49. H. Karshenas, R. Santana, C. Bielza, P. Larranaga, Multiobjective estimation of distribution 

algorithm based on joint modeling of objectives and variables, IEEE T. Evol. Comput., 18 (2014), 

519–542. https://doi.org/10.1109/TEVC.2013.2281524 

50. Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu, S. Tiwari, Multiobjective optimization test 

instances for the cec 2009 special session and competition, University of Essex, Colchester, UK 

and Nanyang technological University, Singapore, special session on performance assessment of 

multi-objective optimization algorithms, technical report, 264, 2008. 

© 2023 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

https://doi.org/10.1109/TEVC.2017.2744674
https://doi.org/10.1109/TEVC.2016.2519378
https://doi.org/10.1109/TEVC.2010.2041667
https://doi.org/10.1109/TEVC.2017.2704118
https://doi.org/10.1109/TEVC.2014.2315442
https://doi.org/10.1162/evco.1999.7.3.205
https://doi.org/10.1016/j.advengsoft.2011.05.014
https://doi.org/10.1109/TEVC.2015.2512930
https://doi.org/10.1109/TEVC.2013.2281524

