Research article

Mathematical modeling for anaerobic digestion under the influence of leachate recirculation

  • Received: 26 August 2023 Revised: 24 October 2023 Accepted: 03 November 2023 Published: 08 November 2023
  • MSC : 34D23, 34K13, 34K20, 37B25, 49K40, 92D30

  • In this paper, we proposed and studied a simple five-dimensional mathematical model that describes the second and third stages of the anaerobic degradation process under the influence of leachate recirculation. The state variables are the concentration of insoluble substrate, soluble substrate, produced hydrogen, acetogenic bacteria and hydrogenotrophic-methanogenic bacteria. The growth rates of used bacteria will be of general nonlinear form. The stability of the steady states will be studied by reducing the model to a 3D system. According to the operating parameters of the bioreactor described by the added insoluble substrate, soluble substrate and hydrogen input concentrations and the dilution rate, we proved that the model can admit multiple equilibrium points and we gave the necessary and sufficient assumptions for their existence, their uniqueness and their stability. In particular, the uniform persistence of the system was satisfied under some natural assumptions on the growth rates. Then, a question was answered related to the management of renewable resources where the goal of was to propose an optimal strategy of leachate recirculation to reduce the organic matter (either soluble or insoluble) and keep a limitation of the costs of the recirculation operation during the process. The findings of this work were validated by an intensive numerical investigation.

    Citation: Miled El Hajji. Mathematical modeling for anaerobic digestion under the influence of leachate recirculation[J]. AIMS Mathematics, 2023, 8(12): 30287-30312. doi: 10.3934/math.20231547

    Related Papers:

  • In this paper, we proposed and studied a simple five-dimensional mathematical model that describes the second and third stages of the anaerobic degradation process under the influence of leachate recirculation. The state variables are the concentration of insoluble substrate, soluble substrate, produced hydrogen, acetogenic bacteria and hydrogenotrophic-methanogenic bacteria. The growth rates of used bacteria will be of general nonlinear form. The stability of the steady states will be studied by reducing the model to a 3D system. According to the operating parameters of the bioreactor described by the added insoluble substrate, soluble substrate and hydrogen input concentrations and the dilution rate, we proved that the model can admit multiple equilibrium points and we gave the necessary and sufficient assumptions for their existence, their uniqueness and their stability. In particular, the uniform persistence of the system was satisfied under some natural assumptions on the growth rates. Then, a question was answered related to the management of renewable resources where the goal of was to propose an optimal strategy of leachate recirculation to reduce the organic matter (either soluble or insoluble) and keep a limitation of the costs of the recirculation operation during the process. The findings of this work were validated by an intensive numerical investigation.



    加载中


    [1] N. A. F. Zamrisham, A. M. Wahab, A. Zainal, D. Karadag, D. Bhutada, S. Suhartini, et al., State of the art in anaerobic treatment of landfill leachate: A review on integrated system, additive substances, and machine learning application, Water, 15 (2023), 1303. https://doi.org/10.3390/w15071303 doi: 10.3390/w15071303
    [2] K. Waszkielis, I. Bialobrzewski, K. Bulkowska, Application of anaerobic digestion model No.1 for simulating fermentation of maize silage, pig manure, cattle manure and digestate in the full-scale biogas plant, Fuel, 317 (2022), 123491. https://doi.org/10.1016/j.fuel.2022.123491 doi: 10.1016/j.fuel.2022.123491
    [3] S. Kusch, H. Oechsner, T. Jungbluth, Effect of various leachate recirculation strategies on batch anaerobic digestion of solid substrates, Int. J. Environ. Waste Manag., 9 (2012), 69–88. https://doi.org/10.1504/IJEWM.2012.044161 doi: 10.1504/IJEWM.2012.044161
    [4] P. J. He, X. Qu, L. M. Shao, G. J. Li, D. J. Lee, Leachate pretreatment for enhancing organic matter conversion in landfill bioreactor, J. Hazard. Mater., 142 (2007), 288–296. https://doi.org/10.1016/j.jhazmat.2006.08.017 doi: 10.1016/j.jhazmat.2006.08.017
    [5] D. R. Reinhart, B. A. Al-Yousfi, The impact of leachate recirculation on municipal solid waste landfill operating characteristics, Waste Manag. Res., 14 (1996), 337–346. https://doi.org/10.1006/wmre.1996.0035 doi: 10.1006/wmre.1996.0035
    [6] H. Benbelkacem, R. Bayard, A. Abdelhay, Y. Zhang, R. Gourdon, Effect of leachate injection modes on municipal solid waste degradation in anaerobic bioreactor, Bioresource Technol., 101 (2010), 5206–5212. https://doi.org/10.1016/j.biortech.2010.02.049 doi: 10.1016/j.biortech.2010.02.049
    [7] L. Liu, H. Xiong, J. Ma, S. Ge, X. Yu, G. Zeng, Leachate recirculation for enhancing methane generation within field site in China, J. Chem., 2018, (2018), 9056561. https://doi.org/10.1155/2018/9056561 doi: 10.1155/2018/9056561
    [8] L. Luo, S. Xu, J. Liang, J. Zhao, J. W. C. Wong, Mechanistic study of the effect of leachate recirculation ratios on the carboxylic acid productions during a two-phase food waste anaerobic digestion, Chem. Eng. J., 453 (2023), 139800. https://doi.org/10.1016/j.cej.2022.139800 doi: 10.1016/j.cej.2022.139800
    [9] IWA Task Group for Mathematical Modelling of Anaerobic Digestion Processes, Anaerobic digestion No.1 (ADM1), London, UK: IWA publishing, 2005. https://doi.org/10.2166/9781780403052
    [10] D. J. Batstone, J. Keller, I. Angelidaki, S. V. Kalyuzhnyi, S. G. Pavlostathis, A. Rozzi, et al., The IWA anaerobic digestion model No 1 (ADM1), Water Sci. Technol., 45 (2002), 65–73. https://doi.org/10.2166/wst.2002.0292 doi: 10.2166/wst.2002.0292
    [11] X. Zhao, L. Li, D. Wu, T. Xiao, Y. Ma, X. Peng, Modified anaerobic digestion model No. 1 for modeling methane production from food waste in batch and semi-continuous anaerobic digestions, Bioresoure Technol., 271 (2019), 109–117. https://doi.org/10.1016/j.biortech.2018.09.091 doi: 10.1016/j.biortech.2018.09.091
    [12] A. Bornhoft, R. Hanke-Rauschenbach, K. Sundmacher, Steady-state analysis of the anaerobic digestion model No.1 (ADM1), Nonlinear Dyn., 73 (2013), 535–549. https://doi.org/10.1007/s11071-013-0807-x doi: 10.1007/s11071-013-0807-x
    [13] M. J. Wade, R. W. Pattinson, N. G. Parker, J. Dolfing, Emergent behaviour in a chlorophenol35 mineralising three-tiered microbial 'food web', J. Theor. Biol., 389 (2016), 171–186. https://doi.org/10.1016/j.jtbi.2015.10.032 doi: 10.1016/j.jtbi.2015.10.032
    [14] A. A. Alsolami, M. El Hajji, Mathematical analysis of a bacterial competition in a continuous reactor in the presence of a virus, Mathematics, 11 (2023), 883. https://doi.org/10.3390/math11040883 doi: 10.3390/math11040883
    [15] A. H. Albargi, M. El Hajji, Bacterial competition in the presence of a virus in a chemostat, Mathematics, 11 (2023), 3530. https://doi.org/10.3390/math11163530 doi: 10.3390/math11163530
    [16] G. Lyberatos, I. V. Skiadas, Modelling of anaerobic digestion–A review, Glob. Nest J., 1 (1999), 63–76. https://doi.org/10.30955/gnj.000112 doi: 10.30955/gnj.000112
    [17] M. Weedermann, G. Seo, G. Wolkowicz, Mathematical model of anaerobic digestion in a chemostat: Effects of syntrophy and inhibition, J. Biol. Dyn., 7 (2013), 59–85. https://doi.org/10.1080/17513758.2012.755573 doi: 10.1080/17513758.2012.755573
    [18] S. Sobieszek, M. J. Wade, G. S. K. Wolkowicz, Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow, Math. Biosci. Eng., 17 (2020), 7045–7073. https://doi.org/10.3934/mbe.2020363 doi: 10.3934/mbe.2020363
    [19] T. Bayen, G. Pedro, On the steady state optimization of the biogas production in a two-stage anaerobic digestion model, J. Math. Biol., 78 (2019), 1067–1087. https://doi.org/10.1007/s00285-018-1301-3 doi: 10.1007/s00285-018-1301-3
    [20] M. El Hajji, N. Chorfi, M. Jleli, Mathematical modelling and analysis for a three-tiered microbial food web in a chemostat, Electron. J. Differ. Equ., 2017 (2017), 1–13.
    [21] M. Bisi, M. Groppi, G. Martaló, R. Travaglini, Optimal control of leachate recirculation for anaerobic processes in landfills, Discrete Cont. Dyn. Syst.-B, 26 (2021), 2957–2976. https://doi.org/10.3934/dcdsb.2020215 doi: 10.3934/dcdsb.2020215
    [22] O. Laraj, N. El Khattabi, A. Rapaport, Mathematical model of anaerobic digestion with leachate recirculation, hal-03714305f.
    [23] M. El Hajji, F. Mazenc, J. Harmand, A mathematical study of a syntrophic relationship of a model of anaerobic digestion process, Math. Biosci. Eng., 7 (2010), 641–656. https://doi.org/10.3934/mbe.2010.7.641 doi: 10.3934/mbe.2010.7.641
    [24] T. Sari, M. El Hajji, J. Harmand, The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat, Math. Biosci. Eng., 9 (2012), 627–645. https://doi.org/10.3934/mbe.2012.9.627 doi: 10.3934/mbe.2012.9.627
    [25] A. Xu, J. Dolfing, T. Curtis, G. Montague, E. Martin, Maintenance affects the stability of a two-tiered microbial 'food chain'? J. Theor. Biol., 276 (2011), 35–41. https://doi.org/10.1016/j.jtbi.2011.01.026 doi: 10.1016/j.jtbi.2011.01.026
    [26] T. Sari, J. Harmand, A model of a syntrophic relationship between two microbial species in a chemostat including maintenance, Math. Biosci., 275 (2016), 1–9. https://doi.org/10.1016/j.mbs.2016.02.008 doi: 10.1016/j.mbs.2016.02.008
    [27] Y. Daoud, N. Abdellatif, T. Sari, J. Harmand, Steady state analysis of a syntrophic model: The effect of a new input substrate concentration, Math. Model. Nat. Phenom., 13 (2018), 31. https://doi.org/10.1051/mmnp/2018037 doi: 10.1051/mmnp/2018037
    [28] R. Fekih-Salem, Y. Daoud, N. Abdellatif, T. Sari, A mathematical model of anaerobic digestion with syntrophic relationship, substrate inhibition and distinct removal rates, SIAM J. Appl. Dyn. Syst., 20 (2021), 1621–1654. https://doi.org/10.1137/20M1376480 doi: 10.1137/20M1376480
    [29] A. H. Albargi, M. El Hajji, Mathematical analysis of a two-tiered microbial food-web model for the anaerobic digestion process, Math. Biosci. Eng., 20 (2023), 6591–6611. https://doi.org/10.3934/mbe.2023283 doi: 10.3934/mbe.2023283
    [30] R. Saidi, P. P. Liebgott, H. Gannoun, L. B. Gaida, B. Miladi, M. Hamdi, et al., Biohydrogen production from hyperthermophilic anaerobic digestion of fruit and vegetable wastes in seawater: Simplification of the culture medium of thermotoga maritima, Waste Manage., 71 (2018), 474–484. https://doi.org/10.1016/j.wasman.2017.09.042 doi: 10.1016/j.wasman.2017.09.042
    [31] M. El Hajji, How can inter-specific interferences explain coexistence or confirm the competitive exclusion principle in a chemostat? Int. J. Biomath., 11 (2018), 1850111. https://doi.org/10.1142/S1793524518501115 doi: 10.1142/S1793524518501115
    [32] H. L. Smith, P. Waltman, The theory of the chemostat: Dynamics of microbial competition, Cambridge University Press, 1995. https://doi.org/10.1017/CBO9780511530043
    [33] H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755–763. https://doi.org/10.1007/BF00173267 doi: 10.1007/BF00173267
    [34] H. R. Thieme, Asymptotically autonomous differential equations in the plane, Rocky Mountain J. Math., 24 (1993), 351–380. https://doi.org/10.1216/rmjm/1181072470 doi: 10.1216/rmjm/1181072470
    [35] M. El Hajji, Periodic solutions for chikungunya virus dynamics in a seasonal environment with a general incidence rate, AIMS Mathematics, 8 (2023), 24888–24913. https://doi.org/10.3934/math.20231269 doi: 10.3934/math.20231269
    [36] G. Butler, H. I. Freedman, P. Waltman, Uniformly persistent systems, Proc. Amer. Math. Soc., 96 (1986), 425–429. https://doi.org/10.1090/S0002-9939-1986-0822433-4 doi: 10.1090/S0002-9939-1986-0822433-4
    [37] W. Fleming, R. Rishel, Deterministic and stochastic optimal control, New York: Springer Verlag, 1975. https://doi.org/10.1007/978-1-4612-6380-7
    [38] S. Lenhart, J. T. Workman, Optimal control applied to biological models, Chapman and Hall/CRC, 2007. https://doi.org/10.1201/9781420011418
    [39] L. S. Pontryagin, Mathematical theory of optimal processes, Routledge, 1987. https://doi.org/10.1201/9780203749319
    [40] J. Monod, Croissance des populations bactériennes en fonction de la concentration de l'aliment hydrocarboné, C. R. Acad. Sci., 212 (1941), 771–773.
    [41] J. R. Lobry, J. P. Flandrois, G. Carret, A. Pave, Monod's bacterial growth model revisited, Bull. Math. Biol., 54 (1992), 117–122. https://doi.org/10.1007/BF02458623 doi: 10.1007/BF02458623
    [42] M. El Hajji, Modelling and optimal control for Chikungunya disease, Theory Biosci., 140 (2021), 27–44. https://doi.org/10.1007/s12064-020-00324-4 doi: 10.1007/s12064-020-00324-4
    [43] M. El Hajji, A. Zaghdani, S. Sayari, Mathematical analysis and optimal control for Chikungunya virus with two routes of infection with nonlinear incidence rate, Int. J. Biomath., 15 (2022), 2150088. https://doi.org/10.1142/S1793524521500881 doi: 10.1142/S1793524521500881
    [44] M. El Hajji, S. Sayari, A. Zaghdani, Mathematical analysis of an SIR epidemic model in a continuous reactor–deterministic and probabilistic approaches, J. Korean Math. Soc., 58 (2021), 45–67. https://doi.org/10.4134/JKMS.j190788 doi: 10.4134/JKMS.j190788
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1147) PDF downloads(94) Cited by(0)

Article outline

Figures and Tables

Figures(11)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog