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Abstract: In this paper, we proposed and studied a simple five-dimensional mathematical model
that describes the second and third stages of the anaerobic degradation process under the influence
of leachate recirculation. The state variables are the concentration of insoluble substrate, soluble
substrate, produced hydrogen, acetogenic bacteria and hydrogenotrophic-methanogenic bacteria. The
growth rates of used bacteria will be of general nonlinear form. The stability of the steady states will be
studied by reducing the model to a 3D system. According to the operating parameters of the bioreactor
described by the added insoluble substrate, soluble substrate and hydrogen input concentrations and the
dilution rate, we proved that the model can admit multiple equilibrium points and we gave the necessary
and sufficient assumptions for their existence, their uniqueness and their stability. In particular, the
uniform persistence of the system was satisfied under some natural assumptions on the growth rates.
Then, a question was answered related to the management of renewable resources where the goal of
was to propose an optimal strategy of leachate recirculation to reduce the organic matter (either soluble
or insoluble) and keep a limitation of the costs of the recirculation operation during the process. The
findings of this work were validated by an intensive numerical investigation.
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1. Introduction

Methanization is a natural process of transformation of several organic matter into green energy
when degraded by specific bacteria without the presence of oxygen [1]. It produces biogas composed
mainly of methane while reducing the organic matter. The residue of digestion (or digestate) is stable,
deodorized and freed for the most part of pathogenic germs. Thanks to a better understanding of
microbiological mechanisms, the first digesters were designed at the end of the 19th century, especially
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for the treatment of urban water. This was to remedy the pestilential odors generated by the simple
decantation of wastewater practiced at the time. The first known reference concerns the City of
EXETER (United Kingdom), which in 1895 recovered the biogas produced for urban lighting. This
type of energy production, widely used and known for a long time, presents a promising solution for
the production of renewable energy [2]. Indeed, anaerobic digestion is a multistep process in which a
consortium of bacteria acts together on organic matter to transform it into biogas (CH4, CO2 and H2).

A large number of leachate recirculation strategies were tested on experimental operated solid-phase
digestion systems. Leachate recirculation played a critical role in methane production enhancement
since it is a specific factor to facilitate solid waste degradation [3–8].

Several models have been proposed in the literature to model the process anaerobic digestion [9].
The most famous one is the anaerobic digestion model (ADM1) proposed in [10]. The ADM1
model, which became a benchmark, was validated in several applications. ADM1 takes into account
the physical, chemical and biological processes. A total of 19 biochemical processes are included,
including decay, hydrolysis, acidogenesis, acetogenesis and methanogenesis [10]. Since the ADM1
model is highly parametrized and very complex to study, some numerical studies are validated [11,12].
Several simpler mathematical models describing microbial competition are inspired from ADM1
[13–20] in order to understand this microbial process. However, a few works studied the influence
of the leachate recirculation on a bacterial competition [21, 22]. In this article, we proposed a two-
tiered model describing a sytrophic relationship under the influence of the leachate recirculation.
The considered bacteria involved in the resulting two-tiered model are the acetogenic bacteria and
the hydrogenotrophic-methanogenic bacteria. The acetogenic bacteria grows on the soluble substrate
to produce hydrogen, which became an inhibitor to its growth. The hydrogenotrophic-methanogenic
bacteria used the hydrogen as an essential substrate for growth. This paper is an extension of previous
works [23–29] by considering the influence of the leachate recirculation. A detailed analysis using
a general nonlinear growth rate is given in [29] in the particular case without the influence of the
leachate recirculation. We have then extended the approach presented in [29] by including the influence
of the leachate recirculation into the model and characterizing the existence and stability of the four
equilibrium points for general growth rates. Moreover, we proposed an optimal strategy for the leachate
recirculation to minimize the organic matter in the process while keeping minimum costs.

This paper is organized as the following: In Section 2, we present a five-dimensional system of
differential equations modeling a two-tiered bacterial food-web, including the influence of the leachate
recirculation. General assumptions on the bacterial growth rates, solubilization rate and the hydrolysis
rate are given, then some technical results including the positivity and boundedness of trajectories and
the steady states of the system are discussed in Section 3. In Section 4, the five-dimensional system is
reduced to a three-dimensional one. The existence and local and global stability of the steady states are
discussed with respect to the operating parameters (the dilution rate and the three input concentrations)
and the species growth functions. Next, in Section 5, we discuss the uniform persistence for the reduced
dynamics and for the main five-dimensional model. In Section 6, we design an optimal strategy to
minimize both the organic matter with the cost of leachate recirculation. In Section 7, we discuss some
numerical simulations confirming the obtained theoretical findings. Finally, some concluding remarks
are summarized in Section 8.
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2. Mathematical model

The anaerobic fermentation is a natural phenomenon that transforms organic matter into several
products, mainly composed of methane, carbon dioxide and hydrogen (CH4, CO2 and H2), by the
concerted action of a close-knit community of bacteria (Figure 1) by catabolizing anaerobically
degradable organic matter to the end products [30]. The biological process consists of two
methanogenic bacteria that grow inside a chemostat (Figure 2). The acetogenic bacteria grows on
the soluble substrate, but is inhibited by the hydrogen that it produces by itself. However, the
hydrogenotrophic-methanogenic bacteria grows on the hydrogen produced by the acetogenic bacteria.
The model that we propose hereafter is inspired from a previous model proposed in [29] by adding
the influence of leachate recirculation as it is applied in [21,22] with generalized growth rates for both
species. Let S1(t), S2(t), P(t), X1(t) and X2(t) stand for the concentrations of insoluble substrate,
soluble substrate, hydrogen, acetogenic bacteria and hydrogenotrophic-methanogenic bacteria inside
the chemostat at time t.

S1 X1

S2 P X2

h(u)ψ(S1)
ϕ 1(

S 2,
P)

X 1

β1ϕ1(S2,P)X1 ϕ2(P)X2

DSin
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Figure 1. Biological diagram of the interactions of the anaerobic digestion process under the
influence of leachate recirculation [29].

S1,S2,P, X1,X2

Sin
1 ,S
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2 ,P

in S1,S2,P,X1,X2

Figure 2. A bioreactor (chemostat) for which the soluble substrate, insoluble substrate, and
the hydrogen were added at constant input concentration [31].

By neglecting natural mortality rates with respect to the dilution rate, the proposed mathematical model
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takes the following form.
Ṡ1 = D(Sin

1 −S1)−h(u)ψ(S1) ,
Ṡ2 = D(Sin

2 −S2)+h(u)ψ(S1)−β1ϕ1(S2,P)X1 ,

Ṗ = D(Pin−P)−β2ϕ2(P)X2 +β3ϕ1(S2,P)X1 ,

Ẋ1 = ϕ1(S2,P)X1−DX1 ,

Ẋ2 = ϕ2(P)X2−DX2 ,

(2.1)

where D is the dilution rate and Sin
1 , Sin

2 and Pin denote the input concentrations of soluble substrate,
insoluble substrate and hydrogen added to the reactor, respectively. The parameters Sin

1 , Sin
2 , Pin, D,

β1, β2, β3 are positive and constant and the functional responses of the species ϕ1 : R2
+ → R+ and

ϕ2 : R+→ R+ are of class C1. The functions ψ : R+→ R+ and h : R+→ R+ are C1 on R+.
The meaning of both the parameters and the variables is resumed in Table 1.

Table 1. Parameters and variables significance of model (2.1).

Notation Description
u Leachate recirculation rate (that can be a manipulating variable)
h(·) describes the effects of the leachate recirculation on the hydrolytic phenomenon:

the solubilization of insoluble substrate depends on the Leachate flow rate
ψ(·) Hydrolysis rate of insoluble substrate into soluble one
µ1(·, ·) Specific growth rate of acetogenic bacteria.
µ2(·) Specific growth rate of hydrogenotrophic-methanogenic bacteria.
Sin

1 Insoluble substrate added concentration
Sin

2 Soluble substrate added concentration
Pin Hydrogen added concentration
D Dilution rate
β1,β2 Yield coefficients, expressing the conversion rate of the substrate
β3 Stochiometric coefficients

We introduce some assumptions.

A1. ϕ1(Sin
1 +Sin

2 −S∗1 +2(Pin−P),P)> D, ∀ P≥ 0 such that ϕ2(P)≤ D.
A2. ϕ1(0,P) = 0, ∀ P ∈ R+.

A3.
∂ϕ1

∂S
(S,P)> 0, ∀ (S,P) ∈ R2

+.

A4.
∂ϕ1

∂P
(S,P)< 0, ∀ (S,P) ∈ R2

+.

A5. ϕ2(0) = 0, ϕ2(Pin)> D, ϕ ′2(P)> 0, ∀ P ∈ R+.
A6. The functions ψ(·) and h(·) are increasing with bounded derivative and ψ(0) = h(0) = 0.

The first Hypothesis (A1) reflects the fact that species one can exceed the inhibition of the hydrogen
once the concentration of hydrogen is limiting for species two. This assumption is a necessary and
sufficient condition from a mathematical point of view for the existence of the coexistence steady
state. Hypothesis A2 results from the fact that no growth can take place for acetogenic bacteria without
soluble substrate. Hypothesis A3 means that the growth of acetogenic bacteria increases with volatile
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fatty acid. Hypothesis A4 reflects that acetogenic bacteria is inhibited by the hydrogen H2 that it
produces by itself. The equality ϕ2(0) = 0 in Hypothesis A5 means that the hydrogen either introduced
to the chemostat or produced by the acetogenic bacteria is essential for the methanogenic bacteria
growth, and that the growth of methanogenic bacteria increases with hydrogen present in the chemostat.
The bacteria relationship is necessary for methanogenic bacteria, however, it is optional for acetogenic
bacteria. This kind of relationship is called “syntrophy”.

We transform (2.1) by means of the following changes of variables and notations: s1 =
2β3

β1
S1,

sin
1 =

2β3

β1
Sin

1 , s2 =
2β3

β1
S2, sin

2 =
2β3

β1
Sin

2 , p = P, pin = Pin, x1 = β3X1, x2 = β2X2, g(s1) =
2β3ψ(S1)

β1
,

µ1(s2, p) = ϕ1(S2,P) and µ2(p) = ϕ2(P). The equations thus obtained are
ṡ1 = D(sin

1 − s1)−h(u)g(s1) ,

ṡ2 = D(sin
2 − s2)+h(u)g(s1)−2µ1(s2, p)x1 ,

ṗ = D(pin− p)−µ2(p)x2 +µ1(s2, p)x1 ,
ẋ1 = µ1(s2, p)x1−Dx1 ,
ẋ2 = µ2(p)x2−Dx2 ,

(2.2)

where sin
1 > 0, sin

2 > 0, pin > 0, D > 0. µ1 : R2
+→ R+, µ2 : R+→ R+, g : R+→ R+ and h : R+→ R+

are functions of class C1. Assumptions A1 to A5 become:

H1. µ1(sin
1 + sin

2 − s∗1 +2(pin− p), p)> D, ∀ p≥ 0 such that µ2(p)≤ D.
H2. µ1(0, p) = 0, ∀ p ∈ R+.

H3.
∂ µ1

∂ s
(s, p)> 0, ∀ (s, p) ∈ R2

+ .

H4.
∂ µ1

∂ p
(s, p)< 0, ∀ (s, p) ∈ R2

+.

H5. µ2(0) = 0, µ2(pin)> D, µ
′
2(p)> 0, ∀ p ∈ R+.

H6. The functions g(·) and h(·) are increasing with bounded derivative where ψ(0) = h(0) = 0.

Remark 1. Typical examples of growth and conversion rates can be given by Monod functions (or also
Holling’s functions type II).

µ1(s, p) =
µ̄1s

(ks + s)(kp + p)
,µ2(p) =

µ̄2 p
k2 + p

,g(s) =
ḡs

k3 + s
,h(u) =

h̄u
k4 +u

where ks,kp,k2,k3 and k4 are Monod constants. µ̄1, µ̄2, ḡ and h̄ are positive constants.

3. Preliminary results

In this section, we will give some technical results, an attractive set and the steady states of
system (2.2).

Lemma 1. If the function µ2 : R+→ R+ satisfies hypothesis H5, then ∃! p∗ ∈ (0, pin) satisfying

µ2(p∗) = D . (3.1)
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Proof. It is evident since µ2(0) = 0, µ2(sin
1 + sin

2 + pin)> D and µ2 is a continuous increasing function.
�

Lemma 2. If a function g : R+→ R+ satisfies Assumption H6, then there exists a unique value s∗1 ∈
(0,sin

1 ) such that
h(u)g(s∗1) = D(sin

1 − s∗1) . (3.2)

Proof. Let γ(s) = D(sin
1 − s)− h(u)g(s), then γ ′(s) = −D− h(u)g′(s) < 0, γ(0) = Dsin

1 > 0, γ(sin
1 ) =

−h(u)g(sin
1 )< 0 and γ is a continuous and increasing function. Therefore, there exists a unique value

s∗1 ∈ (0,sin
1 ) satisfying (3.2). �

Remark 2. Since system (2.2) satisfies Assumptions H2 to H6, then by Lemma 1, the Assumption H1
is equivalent to µ1(sin

1 + sin
2 + pin−2p∗, p∗)> D.

Lemma 3. Under Assumptions H1 to H6, ∃ p̄ ∈
(

0, pin +
sin

2 + sin
1 − s∗1
2

)
satisfying

µ1
(
sin

2 + sin
1 − s∗1 +2(pin− p̄), p̄

)
= D . (3.3)

Proof. It is evident since µ1(0, pin +
sin

2 + sin
1 − s∗1
2

) = 0, µ1(sin
2 + sin

1 − s∗1 + 2pin,0) > D and p →
µ1(sin

2 + sin
1 − s∗1 +2(pin− p), p) is a continuous and decreasing function. �

System (2.2) is defined on the nonnegative cone, satisfying classical properties [32] given hereafter.

Proposition 1. 1) Trajectories of model (2.2) are defined, nonnegative and bounded.
2) Σ =

{
(s1,s2, p,x1,x2) ∈ R5

+ | s1 + s2 + p+ x1 + x2 = sin
1 + sin

2 + pin, s1 + s2 +2x1 = sin
1 + sin

2
}

is a
positively invariant attractor set of trajectories of the dynamics (2.2).

Proof.

1) The invariance of R5
+ is confirmed as follows: s1(t) = 0⇒ ṡ1(t) = Dsin

1 > 0, s2(t) = 0⇒ ṡ2(t) =
Dsin

2 + h(u)g(s1) > 0, x1(t) = 0⇒ ẋ1(t) = 0, p(t) = 0⇒ ṗ(t) = Dpin + µ1(s2,0)x1 > 0, and x2(t) =
0⇒ ẋ2(t) = 0 .
Consider the variables z(t) = s1(t)+ s2(t)+ p(t)+ x1(t)+ x2(t)− sin

1 − sin
2 − pin and ζ (t) = s1(t)+

s2(t)+2x1(t)− sin
1 − sin

2 .
By adding all equations of dynamics (2.2), we obtain

ż(t) =−Dz(t) , (3.4)

and, therefore, we deduce that

s1(t)+ s2(t)+ p(t)+ x1(t)+ x2(t) = sin
1 + sin

2 + pin + z(0)e−Dt (3.5)

with z(0) = s1(0)+ s2(0)+ p(0)+ x1(0)+ x2(0)− sin
1 − sin

2 − pin. Similarly,

ζ̇ (t) =−Dζ (t) , (3.6)

and, therefore, we deduce that

s1(t)+ s2(t)+2x1(t) = sin
1 + sin

2 +ζ (0)e−Dt (3.7)

with ζ (0) = s1(0)+ s2(0)+2x1(0)− sin
1 − sin

2 . Since all components of the sum are nonnegative, thus,
we deduce the boundedness of the trajectory of dynamics (2.2).
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2) It can be obtained from Eqs (3.4) and (3.6). �

Lemma 4. Consider a solution (s1,s2, p,x1,x2) of dynamics (2.2). Let the change of variable ω1 =
s1− s∗1 and ω2 = sin

1 + sin
2 − 2x1− s1− s2 = sin

1 + sin
2 − s∗1− 2x1−ω1− s2. Then, s1 = ω1 + s∗1, s2 =

sin
1 +sin

2 −s∗1−2x1−ω1−ω2 and system (2.2) is equivalent to the following subsystems (3.8) and (3.9):{
ω̇1 = −Dω1−h(u)g(ω1 + s∗1)≤−Dω1 ,

ω̇2 = −Dω2 ,
(3.8)

and 
ṗ = D(pin− p)−µ2(p)x2 +µ1(sin

1 + sin
2 − s∗1−2x1−ω1−ω2, p)x1 ,

ẋ1 = µ1(sin
1 + sin

2 − s∗1−2x1−ω1−ω2, p)x1−Dx1 ,
ẋ2 = µ2(p)x2−Dx2 .

(3.9)

Proof. The prove of Lemma 4 is evident and it is omitted. �

The next result is consecrated to the steady states of dynamics (2.2).

Theorem 1. Suppose that dynamics (2.2) satisfies Assumptions H1 to H6, then, dynamics (2.2) admits
four, and only four, steady states. There exists s∗2 ∈ R such that 0 < s∗2 < sin

1 + sin
2 , f (s∗2, p∗) = D , x∗1 =

sin
1 + sin

2 − s∗1− s∗2
2

> 0 , x∗2 =
sin

1 + sin
2 − s∗1− s∗2

2
+ pin− p∗ > 0 with p∗ given by Lemma 1, s∗1 given by

Lemma 2 and the steady states of dynamics (2.2) are given by

E0 = (s∗1,s
in
2 +(sin

1 − s∗1), pin,0,0) , E1 = (s∗1,s
in
2 +(sin

1 − s∗1)+2(pin− p̄), p̄, p̄− pin,0) ,
E2 = (s∗1,s

in
2 +(sin

1 − s∗1), p∗,0, pin− p∗) and E∗ = (s∗1,s
∗
2, p∗,x∗1,x

∗
2)

with p̄ defined in (3.3), and moreover, the constants p̄, p∗ satisfy

0 < p∗ < pin < p̄ < pin +
sin

1 + sin
2 − s∗1
2

. (3.10)

Proof. Suppose that dynamics (2.2) satisfies Assumptions H1 to H6. Let Ee = (se
1,s

e
2, pe,xe

1,x
e
2) be a

nonnegative steady state of dynamics (2.2), then it satisfies the following system
0 = D(sin

1 − se
1)−h(u)g(se

1) ,

0 = D(sin
2 − se

2)+h(u)g(se
1)−2µ1(se

2, pe)xe
1 ,

0 = D(pin− pe)−µ2(pe)xe
2 +µ1(se

2, pe)xe
1 ,

0 = µ1(se
2, pe)xe

1−Dxe
1 ,

0 = µ2(pe)xe
2−Dxe

2 ,

(3.11)

which is equivalent to 
h(u)g(se

1) = D(sin
1 − se

1) ,

µ1(se
2, pe)xe

1 = Dxe
1 ,

µ2(pe)xe
2 = Dxe

2 ,
se

1 + se
2 = sin

1 + sin
2 +2xe

1 ,
xe

2 = xe
1 + pin− pe .

(3.12)
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If xe
1 = 0, then we obtain se

1 = s∗1, se
2 = sin

1 + sin
2 − s∗1 and xe

2 + pe = pin. Then, xe
2 = 0 and we obtain

Ee = E0 or xe
2 , 0, and then pe = p∗ and xe

2 = pin− p∗, then we deduce that Ee = E2.
If x1 , 0 and x2 = 0, then we have

h(u)g(se
1) = D(sin

1 − se
1) ,

µ1(se
2, pe) = D ,

se
1 + se

2 = sin
1 + sin

2 −2xe
1 ,

xe
1 = pe− pin .

(3.13)

From Lemmas 2 and 3, we obtain se
1 = s∗1 and pe = p̄ and, therefore, xe

1 = p̄− pin. We deduce that
Ee = E1.
One case remains where x1 , 0 and x2 , 0. Therefore, we have

h(u)g(se
1) = D(sin

1 − se
1) ,

µ1(se
2, pe) = D ,

µ2(pe) = D ,
se

1 + se
2 = sin

1 + sin
2 −2xe

1 ,
xe

2 = xe
1 + pin− pe .

(3.14)

From Lemmas 1 and 2, we obtain pe = p∗ and se
1 = s∗1, and then

µ1(sin
1 + sin

2 +2pin− s∗1−2(xe
2 + p∗), p∗) = D ,

se
2 = sin

1 + sin
2 − s∗1−2xe

1 = sin
1 + sin

2 +2pin− s∗1−2(xe
2 + p∗) ,

xe
1 = xe

2− pin + p∗ .
(3.15)

From Assumption H1, we have µ1(sin
1 + sin

2 + 2pin − s∗1 − 2p∗, p∗) > D. Since µ1 is a continuous
function and Assumptions H2 and H3 are satisfied, then there exists xe

2 > 0 such that µ1(sin
1 + sin

2 +
2pin− s∗1− 2(xe

2 + p∗), p∗) = D and se
2 = sin

1 + sin
2 − s∗1− 2xe

1 = sin
1 + sin

2 + 2pin− s∗1− 2(xe
2 + p∗) > 0.

Thus, Ee is the positive steady state E∗. �

4. Reduced dynamics and local analysis

In this section, we aim to give an asymptotic analysis of the solutions of system (2.2). Note that
dynamics (2.2) is equivalent to the coupled subsystems (3.8) and (3.9), thus, it is sufficient to give the
asymptotic analysis for (3.8) and (3.9). One might think that, due to the attractivity of the set Σ, one
can straightforwardly deduce from the stability properties of system (3.8) and (3.9) restricted to the
invariant set Σ what the stability properties of the coupled system (3.8) and (3.9) are. Observe that
(ω1,ω2) solution of system (3.8) converges to (0,0), then the system (4.1) is obtained by considering
the system (3.8) and (3.9) with ω1 = 0 and ω2 = 0. Generally, this is false as highlighted in some
references [33,34], but fortunately in the case we consider, it turns out that this is true. We will manage
to deduce what is the behavior of the positive solutions of dynamics (3.8) and (3.9) from the asymptotic
analysis of the solutions of the following dynamics.

ṗ = λ1(p,x1,x2) ,

ẋ1 = λ2(p,x1,x2) ,
ẋ2 = λ3(p,x1,x2) ,

(4.1)

AIMS Mathematics Volume 8, Issue 12, 30287–30312.
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with

Λ(p,x1,x2) =

 λ1(p,x1,x2)

λ2(p,x1,x2)
λ3(p,x1,x2)

=

 D(pin− p)−µ2(p)x2 +µ1(sin
1 + sin

2 − s∗1−2x1, p)x1
µ1(sin

1 + sin
2 − s∗1−2x1, p)x1−Dx1
µ2(p)x2−Dx2


and with

S =
{
(p,x1,x2) ∈ (R∗+)

3 : 0 < x1 <
sin

1 + sin
2 − s∗1
2

}
as state space.

From Lemma 4 and Theorem 1, we deduce that the three-dimensional dynamics (4.1) admits F0 =

(pin,0,0),, F1 = (p̄, p̄− pin,0), F2 = (p∗,0, pin− p∗) and F∗ = (p∗,x∗1,x
∗
2) as steady states.

Lemma 5. Assume that dynamics (2.2) satisfies Assumptions H1 to H6, then F0, F1 and F2 are locally
unstable steady states and F∗ is a locally exponentially stable steady state for the dynamics (4.1).

Proof. The Jacobian matrix J(p,x1,x2)∈R3×3 of the function Λ(p,x1,x2) at a point (p,x1,x2) is given
by

J(p,x1,x2) =


−D−µ ′2(p)x2 +

∂ µ1

∂ p
x1 µ1−2

∂ µ1

∂ s2
x1 −µ2(p)

∂ µ1

∂ p
x1 µ1−D−2

∂ µ1

∂ s2
x1 0

µ ′2(p)x2 0 µ2(p)−D


where the function µ1 is expressed at

(
sin

1 + sin
2 − s∗1−2x1, p

)
. Now, we consider successively the

matrices J(F0), J(F1), J(F2) and J(F∗). Since

J(F0) =

 −D µ1(sin
1 + sin

2 − s∗1, pin) −µ2(pin)
0 µ1(sin

1 + sin
2 − s∗1, pin)−D 0

0 0 µ2(pin)−D

 ,
the eigenvalues of J(F0) are λ1 =−D < 0, λ2 = µ1(sin

1 + sin
2 − s∗1, pin)−D > 0 by Assumption H1 and

λ3 = µ2(pin)−D > 0 by Assumption H5. Consequently, F0 is an exponentially unstable steady state
of (4.1). The Jacobian at F1 is simply

J(F1) =


−D+(p̄− pin)

∂ µ1

∂ p
D−2(p̄− pin)

∂ µ1

∂ s2
−µ2(p̄)

(p̄− pin)
∂ µ1

∂ p
−2(p̄− pin)

∂ µ1

∂ s2
0

0 0 µ2(p̄)−D

 ,
where the function µ1 is expressed at (sin

2 +(sin
1 − s∗1)+2(pin− p̄), p̄).

J(F1) has an eigenvalue λ1 = µ2(p̄)−D and two other eigenvalues of the submatrix

SF1 =

 −D+(p̄− pin)
∂ µ1

∂ p
D−2(p̄− pin)

∂ µ1

∂ s2

(p̄− pin)
∂ µ1

∂ p
−2(p̄− pin)

∂ µ1

∂ s2

 .
AIMS Mathematics Volume 8, Issue 12, 30287–30312.
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Note that

tr(SF1) =−D+(p̄− pin)
∂ µ1

∂ p
−2(p̄− pin)

∂ µ1

∂ s2
< 0

and

det(SF1) = 2D(p̄− pin)
∂ µ1

∂ s2
−D(p̄− pin)

∂ µ1

∂ p
> 0.

Therefore, the matrix SF1 admits two eigenvalues with a negative real part. The inequalities (3.10), the
equality D = µ2(p∗) and Assumption H5, which ensures that µ2 is increasing, imply that µ2(p̄)−D >
0. Consequently, F1 is an exponentially unstable steady state of (4.1).
The Jacobian at F2 is simply

J(F2) =

 −D−µ ′2(p∗)(pin− p∗) µ1(sin
1 + sin

2 − s∗1, p∗) −D
0 µ1(sin

1 + sin
2 − s∗1, p∗)−D 0

µ ′2(p∗)(pin− p∗) 0 0

 .
The eigenvalues of J(F2) are λ1 =−D < 0, λ2 = µ1(sin

1 + sin
2 − s∗1, p∗)−D > 0 by Assumption H1 and

λ3 =−µ ′2(p∗)(pin− p∗)< 0. Consequently, F2 is an exponentially unstable steady state of (4.1).
The Jacobian at F∗ is

J(F∗) =


−D−µ ′2(p∗)x∗2 +

∂ µ1

∂ p
x∗1 D−2

∂ µ1

∂ s2
x∗1 −D

∂ µ1

∂ p
x∗1 −2

∂ µ1

∂ s2
x∗1 0

µ ′2(p∗)x∗2 0 0

 (4.2)

where the function µ1 is expressed at (sin
1 + sin

2 − s∗1−2x∗1, p∗). J(F∗) has an eigenvalue λ1 =−D < 0
and two other eigenvalues of the submatrix

S∗F =

 ∂ µ1

∂ p
(sin

1 + sin
2 − s∗1−2x∗1, p∗)x∗1 −2

∂ µ1

∂ s2
(sin

1 + sin
2 − s∗1−2x∗1, p∗)x∗1

µ ′2(p∗)x∗2 0

 . (4.3)

Note that

tr(S∗F) =
∂ µ1

∂ p
(sin

1 + sin
2 − s∗1−2x∗1, p∗)x∗1 < 0

and

det(S∗F) = 2µ
′
2(p∗)

∂ µ1

∂ s2
(sin

1 + sin
2 − s∗1−2x∗1, p∗)x∗1x∗2 > 0.

Therefore, the matrix S∗F admits two eigenvalues with a negative real part. Thus, the linear
approximation of (4.1) at F∗ is exponentially stable. �

Theorem 2. Assume that dynamics (2.2) satisfies Assumptions H1 to H6, then E0,E1 and E2 are
locally unstable steady states and E∗ is a locally exponentially stable.

Proof. Assume that Assumptions H1 to H6 hold. It is easy to see that E0, E1, E2, E∗ are locally
exponentially stable (resp. unstable) steady states of (2.2) if, and only if, F0, F1, F2, F∗ are locally
exponentially stable (resp. unstable) steady states of (4.1). �
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5. Global analysis for the main dynamics

We aim, in this subsection, to investigate the global stability properties of the main dynamics (2.2).
Our investigation is divided into two steps. We start by investigating the global stability of the reduced
dynamics (4.1). Therefore, we conclude on the global stability properties of the main dynamics (2.2).

5.1. Global analysis for the reduced dynamics

Let start by investigating the global stability of the reduced three-dimensional dynamics (4.1). We
need first to prove that S and S are positively invariant sets for the reduced dynamics (4.1) and
that (4.1) admits no periodic orbits on the faces of S .

Lemma 6. Assume that the system (2.2) satisfies Assumptions H1-H6 and consider the reduced
dynamics (4.1). The sets S and S are positively invariant set for the dynamics (4.1).

Proof. It is evident because we have ẋ1 =
(
µ1(sin

1 + sin
2 − s∗1−2x1, p)−D

)
x1 .

Next, we consider a trajectory of (4.1) belonging to S . �

5.2. No periodic orbits on the faces for the reduced dynamics

Let us begin by proving that dynamics (4.1) can’t have periodic trajectories in one of the faces of
the set S .

• Consider a solution of the reduced system (4.1) on the set S such that x2 = 0,{
ṗ = D(pin− p)+µ1(sin

1 + sin
2 − s∗1−2x1, p)x1,

ẋ1 = µ1(sin
1 + sin

2 − s∗1−2x1, p)x1−Dx1,
(5.1)

defined on Spx1 given by

Spx1 =
{
(p,x1) ∈ R2

+ : p+ x1 ≤ pin} .
The axis x1 = 0 is invariant and the axis p = 0 is repulsive since p = 0 implies that ṗ > Dpin. Let
us use the change of variables κp = ln(p) and κ1 = ln(x1) for p,x1 > 0. Therefore, we obtain:{

κ̇p = gp(κp,κ1) := D(pine−κp−1)+µ1(sin
1 + sin

2 − s∗1−2eκ1,eκp)eκ1−κp ,

κ̇1 = g1(κp,κ1) := µ1(sin
1 + sin

2 − s∗1−2eκ1,eκp)−D.
(5.2)

Note that

∂gp

∂κp
+

∂g1

∂κ1
= −Dpine−κp−µ1(sin

1 + sin
2 − s∗1−2eκ1 ,eκp)eκ1−κp

+
∂ µ1(sin

1 + sin
2 − s∗1−2eκ1,eκp)

∂ p
eκ1−

∂ µ1(sin
1 + sin

2 − s∗1−2eκ1,eκp)

∂ s2
eκp

< 0.
(5.3)

Let us apply the Dulac’s criterion [32] then dynamics (5.2) (and then dynamics (5.1)) has no
periodic trajectory. Therefore, dynamics (4.1) has no periodic trajectory in px1-face (x2 = 0).
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• Consider a solution of the reduced system (4.1) on the set S such that p = 0{
ẋ1 = µ1(sin

1 + sin
2 − s∗1−2x1,0)x1−Dx1,

ẋ2 = −Dx2,
(5.4)

defined on Sx1x2 given by

Sx1x2 =
{
(xi,x2) ∈ R2

+ : x1 + x2 ≤ sin
}
.

The axes x1 = 0 and x2 = 0 are invariant. Let us use the change of variables κ1 = ln(x1) and
κ2 = ln(x2) for x1,x2 > 0. Therefore, we obtain:{

κ̇1 = g1(κ1,κ2) := µ1(sin
1 + sin

2 − s∗1−2eκ1,0)−D ,

κ̇2 = g2(κ1,κ2) :=−D .
(5.5)

Note that
∂g1

∂κ1
+

∂g2

∂κ2
= −2eκ1

∂ µ1(sin
1 + sin

2 − s∗1−2eκ1,0)
∂ s2

< 0. (5.6)

Let us apply the Dulac’s criterion [32] then dynamics (5.5) (and then dynamics (5.4)) has no
periodic trajectory. Therefore, dynamics (4.1) has no periodic trajectory in x1x2-face (p = 0).
• Consider a solution of the reduced system (4.1) on the set S such that x1 = 0{

ṗ = D(pin− p)−µ2(p)x2,
ẋ2 = µ2(p)x2−Dx2,

(5.7)

defined on Spx2 given by

Spx2 =
{
(p,x2) ∈ R2

+ : p+ x2 ≤ pin} .
The axis x2 = 0 is invariant and the axis p = 0 is repulsive since p = 0 implies that ṗ > Dpin. Let
us use the change of variables κp = ln(p) and κ2 = ln(x2) for p,x2 > 0. Therefore, we obtain:{

κ̇p = gp(κp,κ2) := D(pine−κp−1)−µ2(eκp)eκ2−κp ,

κ̇2 = g2(κp,κ2) := µ2(eκp)−D .
(5.8)

Note that

∂gp

∂κp
+

∂g2

∂κ2
= −Dpine−κp +(µ2(eκp)− eκp µ ′2(e

κp))eκ2−κp < 0. (5.9)

Let us apply the Dulac’s criterion [32] then dynamics (5.8) (and then dynamics (5.7)) has no
periodic trajectory. Therefore, dynamics (4.1) has no periodic trajectory in px2-face (x1 = 0).

5.3. Persistence for the reduced dynamics

Let us demonstrate that p, x1 and x2 converge to nonnegative values through the uniform persistence
theory that will apply to system (4.1). Since the steady states of (4.1) given by F0, F1 and F2 are the
only boundary equilibrium points, which are saddle points, then we can use a similar proof as the one
given in [14, 15, 18, 20] using Butler-McGehee Lemma [32] several times.
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Theorem 3. The reduced model (4.1) is persistent.

Proof. Note that faces px1 and px2 of S are invariant and that the third face x1x2 is repulsive since
p = 0 implies that ṗ > Dpin. For clarity, we represent in Figure 3 the configuration of the stable and
unstable manifolds of the boundary equilibria of system (4.1).

p

x1

x2

x∗1

p∗

p̄
pin

x∗2

F∗

F2

F1
F0

Figure 3. Equilibria configuration. The three equilibria F0, F1 and F2 are saddle points and
F∗ is an asymptotically stable steady state.

Consider a solution ~z = (p(t),x1(t),x2(t)) with an initialization ~z(0) = (p(0),x1(0),x2(0)) with
p(0) > 0, x1(0) > 0 and x2(0) > 0 as nonnegative constants. We denoted by γ+(~z(0)), the positive
semi-orbit through~z(0) and ω = ω(γ+(~z(0))), the omega limit set of γ+(~z(0)). Let us now prove that
ω has no points on the faces of S .

• Let us suppose that F0 ∈ ω , which means that there exists z∗ , F0 in ω ∩W s(F0)\{F0}. Since
the stable manifold of F0 denoted by W s(F0) is one-dimensional, restricted to the p-axis, as a
consequence, the full orbit through z∗ (belonging to ω) will be unbounded and this contradicts
the existence of z∗.
• Let us suppose that F1 ∈ ω (respectively, F2 ∈ ω). F1 (respectively, F2) is a saddle point with

a stable manifold, W s(F1) (respectively, W s(F2)) of dimension two, restricted to the px1-plane
(respectively, px2-plane). Therefore, {F1} (respectively, {F2}) is not the entire omega limit set
ω . Using Butler-McGehee lemma [32], there exists a point z∗ , F1 (respectively, z∗ , F2) inside
ω ∩W s(F1)\{F1} (respectively, ω ∩W s(F2)\{F1}). Since W s(F1) (respectively, W s(F2)) lies
entirely in the px1-plane (respectively, px2-plane), and since the entire orbit through z∗ is in ω ,
this orbit is unbounded, which contradicts the fact that F1 (respectively, F2) is inside ω .

Consider z = (p(t),x1(t),x2(t)) and suppose that least p(t), x1(t) or x2(t) is zero with z ∈ ω . This
leads with the fact that the entire orbit through z will be in ω . Therefore, the orbit will be entirely in
one of the faces px1, x1x2 or px2, then it will converge to one of the boundary equilibria. This means
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that one of equilibria is in ω , which contradicts what we have just shown above. Thus, all components
of the solution are greater than zero.

liminf
t→∞

p(t)> 0, liminf
t→∞

x1(t)> 0 and liminf
t→∞

x2(t)> 0,

and the dynamics (4.1) is persistent (see [14, 18, 20, 35] for other applications). �

5.4. Uniform persistence for the reduced dynamics

In several cases of biological models, the persistence and uniform persistence [36] are associated.
Here, we will apply the theory given in [36], proving that dynamics (E ) admitting R3

+ and ∂R3
+ as

invariant sets, then, (E ) is uniformly persistent if we have

1) (E ) is weakly persistent,
2) (∂E ) is acyclic; (∂E ) be the restriction of (E ) to ∂R3

+,
3) (E ) is dissipative,
4) (∂E ) is isolated.

Let the dynamics (4.1) be a candidate of (E ) on Σ. By using the theory given in [36], if ∂Σ can be
written in the form ∂Σ = Σ1∪Σ2 such that (E ) is invariant on Σ1 but attracting Σ2 inside the interior
of Σ by restricting the dynamics (E ) to Σ1 to satisfy the Conditions 2 and 4, the one can easily see the
satisfaction of Condition 1 and the satisfaction of Condition 3 according to Theorem 3. Furthermore,
since all boundary equilibria are hyperbolic forming a covering of the omega limit sets of Σ1, then there
is the satisfaction of Condition 2. Moreover, since the boundary equilibria are not linked cyclically,
then there is the satisfaction of condition 4. Thus, the uniform persistence of dynamics (4.1) is satisfied.

Theorem 4. The reduced model (4.1) is uniformly persistent; ∃ δ > 0 satisfying

min
(

liminf
t→∞

p(t), liminf
t→∞

x1(t), liminf
t→∞

x2(t)
)
> δ .

5.5. Uniform persistence for the main dynamics

Let us now reconsider the dynamics (2.2) modeling a foodweb associated to the second and
third stages of the anaerobic degradation process under perfect mixing conditions conducted by the
acetogenic and the hydrogenotrophic-methanogenic bacteria and taking into account of the leachate
recirculation. Assume that the system (2.2) satisfies Assumptions H1–H6. Note that system (2.2)
admits E0, E1, E2 and E∗ as steady states. E0, E1 and E2 are saddle points, however, E∗ is locally
asymptotically stable.

Let us prove the uniform persistence of dynamics (2.2). Let ~y0 = (s1(0),s2(0), p(0),x1(0),x2(0))
with s1(0)≥ 0,s2(0)≥ 0, p(0)≥ 0,x1(0)≥ 0 and x2(0)≥ 0, then ω(~y0) ∈ Σ. Moreover, suppose that
∃~τ ∈ R5

+\Σ such that the trajectory converges to~τ , which is impossible because Σ is an attractor of all
solutions according to Proposition 1. Furthermore, assume that ω(~y0) contains a point from one of the
faces i.e., one of the variable p,x1 or x2 is equal to zero. Thus, the entire trajectory through this point
should be entirely inside ω(~y0). Therefore, the omega limit set ω(~y0) must be entirely inside Σ.

Theorem 5. The main model (2.2) is uniformly persistent, in the sense that there exists θ > 0 satisfying

min
(

liminf
t→∞

s1(t), liminf
t→∞

s2(t), liminf
t→∞

p(t), liminf
t→∞

x1(t), liminf
t→∞

x2(t)
)
> θ .
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For the next section and for simplicity, we will consider the case where the function h is linear, i.e.,
h(u) = h̄u where h̄ > 0 is a constant.

6. Optimal strategy for leachate recirculation

Anaerobic digestion, also called “methanization”, is the degradation of organic matter by
microorganisms in a closed environment devoid of oxygen. The anaerobic digestion produces biogas
(consisting mainly of methane and carbon dioxide). The leachate recirculation permits to transform
insoluble organic matter into a soluble one. The goal of this section is to propose an optimal strategy for
leachate recirculation to reduce the organic matter (s1(t),s2(t)) and by keeping a limitation of the costs
of the recirculation operation u(t) during the process. A previous strategy was applied to this model
but without leachate recirculation, where the goal was to maximize the biogas production [29]. We will
consider an objective functional reflecting the minimization of substrate in its two forms (s1(t),s2(t)),
which leads to maximizing the methane production.

Let us consider a time-varying control function u(t) expressing the recirculation costs. Assume
that µ1 and µ2 are globally Lipschitz where the upper bounds are given by µ̄1 = sup

s2,p>0
µ1(s2, p) and

µ̄2 = sup
p>0

µ2(p) and Lipschitz constants L1 and L2, respectively.

The admissible control set is given by

Pad = {u(t) : 0≤ umin ≤ u(t)≤ umax, 0≤ t ≤ T, u(t) is Lebesgue measurable},

which minimizes the following objective functional:

J(u) =
α1

2

∫ T

0
s2

1(t)dt +
α2

2

∫ T

0
s2

2(t)dt +
β

2

∫ T

0
u2(t)dt.

By choosing appropriate positive balancing constants α1,α2 and β , the goal is to minimize the
quantity of the substrate in its two forms and also the cost of the control. We use standard results [37] to
show the existence of both the optimal control and the corresponding states. For ϖ = (s1,s2, p,x1,x2)

t ,
dynamics (2.2) can be expressed as follows:

ϖ̇ = σϖ +ρ(ϖ) = υ(ϖ) (6.1)

with σ =−DI4 and ρ(ϖ) =


Dsin

1 − h̄ug(s1)

Dsin
2 + h̄ug(s1)−2µ1(s2, p)x1

Dpin−µ2(p)x2 +µ1(s2, p)x1
µ1(s2, p)x1

µ2(p)x2

, where I4 is the 4×4 identity matrix.
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Note that ρ satisfies∥∥ρ(ϖ ′)−ρ(ϖ)
∥∥

1 =
∣∣∣h̄ug(s′1)− h̄ug(s1)

∣∣∣+ ∣∣∣h̄ug(s′1)− h̄ug(s1)+2(µ1(s′2, p′)x′1−µ1(s2, p)x1)
∣∣∣

+
∣∣∣µ1(s′2, p′)x′1−µ1(s2, p)x1 +µ2(p)x2−µ2(p′)x′2

∣∣∣+ ∣∣∣µ2(p′)x′2−µ2(p)x2

∣∣∣
≤ 2h̄u

∣∣∣g(s′1)−g(s1)
∣∣∣+3

∣∣∣µ1(s′2, p′)x′1−µ1(s2, p)x1

∣∣∣+2
∣∣∣µ2(p)x2−µ2(p′)x′2

∣∣∣
≤ 2h̄umax|s′1− s1|+3µ̄1|x′1− x1|+3(sin

1 + sin
2 + pin)L1

∣∣∣(s′2, p′)− (s2, p)
∣∣∣

+2µ̄2|x′2− x2|+2(sin
1 + sin

2 + pin)L2

∣∣∣p′− p
∣∣∣

≤ M
∥∥ϖ1−ϖ2

∥∥
1,

where M = max(2h̄umax,3µ̄1,3(sin
1 + sin

2 + pin)L1,2µ̄2,2(sin
1 + sin

2 + pin)L2). Since
∥∥σϖ1−σϖ2

∥∥
1 ≤

D
∥∥ϖ1−ϖ2

∥∥
1, then

∥∥υ(ϖ1)−υ(ϖ2)
∥∥

1 ≤ K
∥∥ϖ1−ϖ2

∥∥
1 with K = max(M,D) and, therefore, υ is a

uniformly Lipschitz continuous function.
Therefore, system (6.1) admits a unique solution. By applying Pontryagin’s Maximum principle

[37–39], the optimal control problem for dynamics (6.1) subject to the minimization of the objective
functional J can be formulated in terms of the Hamiltonian function

H =
α1

2
s2

1 +
α2

2
s2

2 +
β

2 u2 +λ1ṡ1 +λ2ṡ2 +λ3 ṗ+λ4ẋ1 +λ5ẋ2

=
α1

2
s2

1 +
α2

2
s2

2 +
β

2 u2

+λ1(D(sin
1 − s1)− h̄ug(s1))

+λ2(D(sin
2 − s2)+ h̄ug(s1)−2µ1(s2, p)x1)

+λ3(D(pin− p)−µ2(p)x2 +µ1(s2, p)x1)
+λ4(µ1(s2, p)x1−Dx1)
+λ5(µ2(p)x2−Dx2).

(6.2)

For a given optimal control u, there exists adjoint functions λ1,λ2,λ3,λ4 and λ5 corresponding to
the states s1,s2, p,x1 and x2 that solve the adjoint system given hereafter,

λ̇1 = −∂H
∂ s1

=−α1s1 +λ1(D+ h̄ug′(s1))−λ2h̄ug′(s1),

λ̇2 = −∂H
∂ s2

=−α2s2 +λ2(D+2
∂ µ1(s2, p)

∂ s2
x1)− (λ3 +λ4)

∂ µ1(s2, p)
∂ s2

x1,

λ̇3 = −∂H
∂ p

= (2λ2−λ4)
∂ µ1(s2, p)

∂ p
x1 +λ3

(
D+µ ′2(p)x2−

∂ µ1(s2, p)
∂ p

x1

)
−λ5µ ′2(p)x2,

λ̇4 = −∂H
∂x1

= (2λ2−λ3)µ1(s2, p)−λ4(µ1(s2, p)−D),

λ̇5 = −∂H
∂x2

= λ3µ2(p)−λ5(µ2(p)−D),

with λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0, λ4(T ) = 0 and λ5(T ) = 0.
The Hamiltonian is minimized with respect to the control variable at u. The derivative of the

Hamiltonian is given by
∂H
∂u

= βu−λ1h̄g(s1)+ h̄λ2g(s1) = βu+ h̄(λ2−λ1)g(s1).
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Therefore,
∂H
∂u

= 0 admits the solution u∗(t) =
h̄
β
(λ1−λ2)g(s1) provided that β , 0 and

0 < umin ≤ h̄
β
(λ1−λ2)g(s1)≤ umax.

To summarize, the control characterization is:
if

∂H
∂u

< 0 at t, then u(t) = umax,

if
∂H
∂u

> 0 at t, then u(t) = umin,

if
∂H
∂u

= 0 at t, then u(t) = u∗(t) =
h̄
β
(λ1−λ2)g(s1).

7. Numerical simulations

We confirm the theoretical results using Holling’s functions type II as candidates for the growth
rates, the solubilization rate and the hydrolysis rate.

µ1(s, p) =
µ̄1s

(ks + s)(kp + p)
,µ2(p) =

µ̄2 p
k2 + p

,g(s) =
ḡs

k3 + s
and h(u) = h̄u

where ks,kp,k2, k3, µ̄1, µ̄2, ḡ and h̄ are positive constants and are given with the model parameters in
Table 2. We used Holling’s functions type II (or also Monod functions) as typical examples [40, 41]
since they are nonlinear and satisfied all our assumptions on either growth rates or the solubilization
and the hydrolysis rates.

Table 2. Some parameters values considered for the numerical simulation. Note that these
values have no biological meaning.

Parameter µ̄1 µ̄2 ḡ h̄ ks kp k2 k3 sin
1 sin

2 pin

Value 8 12 1.1 1 1 20 13 6 6 3 4

7.1. Numerical simulation for the main dynamics (2.2)

We give five numerical examples for the main dynamics (2.2) for a fixed leachate recirculation rate
u. The first example satisfies the Assumptions H1 to H6 for a dilution rate D = 0.25 and a leachate
recirculation rate u = 2, which ensures the uniform persistence of the dynamics (2.2) according to
Theorem 5, thus, the coexistence of both bacteria as seen in Figure 4 (left). As expected, the trajectories
filling the whole positive cone converge to the positive steady state (Figure 4, right).

The second example is the same as the first one, except by taking a leachate recirculation rate
u = 4. Again, the uniform persistence of the dynamics (2.2) is satisfied. Both bacteria persist as seen
in Figure 5 (left). Note that by increasing the leachate recirculation rate u the bacteria concentrations
increase however the substrate concentrations decrease.
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Figure 4. Behavior of dynamics (2.2); the components behavior (left) and the x1 − x2
behavior (right) for u = 2 and D = 0.25. Both species persist.

Figure 5. Behavior of dynamics (2.2); the components behavior (left) and the x1 − x2
behavior (right) for u = 4 and D = 0.25. Both species persist.

In Figure 6, the dilution rate is given by D = 1, which satisfies only Assumptions H2 to H6 and
does not satisfy Assumptions H1. Therefore, only species two can persist and the global stability of
the equilibrium point E2. The trajectories filling the whole positive cone converge to the point where
x1 = 0 (Figure 6, right).

Figure 6. Behavior of dynamics (2.2); the components behavior (left) and the x1 − x2
behavior (right) for D = 1. The trajectory converges to the steady state E2.
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In Figure 7, the dilution rate is given by D = 0.48. For the specific values µ̄1 = 12, µ̄2 = 4, sin
2 = 6

and pin = 1, only species one can persist and the global stability of the equilibrium point E1. The
trajectories filling the whole positive cone converge to the point where x2 = 0 (Figure 7, right).

Figure 7. Behavior of dynamics (2.2); the components behavior (left) and the x1 − x2
behavior (right) for the specific following values D = 0.48, µ̄1 = 12, µ̄2 = 4, sin

2 = 6 and
pin = 1. The trajectory converges to the steady state E1.

In Figure 8, the dilution rate is given by D = 3 which does not satisfy Assumptions H1 and H5.
Therefore, no one of the two species can persist and the global stability of the trivial equilibrium point
E0, where all species go to extinction. The trajectories filling the whole positive cone converge to the
origin (Figure 8, right).

Figure 8. Behavior of dynamics (2.2); the components behavior (left) and the x1 − x2
behavior (right) for D = 3. The trajectory converges to the steady state E0.

7.2. Numerical simulation for the control problem

In this section, we aim to apply the optimal strategy to reduce the total organic matter and keep
the costs minimal. We keep all parameters the same as in the previous section and consider only a
time-varying control function u(t) expressing the recirculation costs. We impose the following bounds
on the control umin = 0.05 and umax = 20 with the control initial condition u(0) = 2 as it is fixed
for the main dynamics (2.2) in the previous section, which permits to compare and conclude on the
efficiency of the optimal strategy. We choose the initial state as x0 = (6,5,7,0.01,0.01) with a final
time T = 140. Concerning the numerical resolution of the control problem, we used a numerical
scheme that improves the Gauss-Seidel-like implicit finite-difference method where we applied a first-
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order backward-difference for the adjoint variables (see Appendix 8 for more details and [42–44] for
other applications).

As it is seen in Figures 9–11, the curve of the optimal solution looks smooth. When increasing the
value of β , the asymptotic values of the control decrease and need more time to converge. However it
increases when increasing the values of α1 and α1 but with the same time of convergence. The optimal
strategy permits to increase both, soluble and insoluble organic matter with optimal control values.

Figure 9. State variable (left) and control (right) behavior for α1 = 1, α2 = 1, β = 1, D =
0.25.

Figure 10. State variable (left) and control (right) behavior for α1 = 1, α2 = 1, β = 10,
D = 0.25.

Figure 11. State variable (left) and control (right) behavior for α1 = 10, α2 = 10, β = 1,
D = 0.25.
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8. Conclusions

We presented a simple five-dimensional dynamical system modeling a foodweb associated to
the second and third stages of the anaerobic degradation process under perfect mixing conditions
conducted by the acetogenic and the hydrogenotrophic-methanogenic bacteria, taking into account
the leachate recirculation. We considered two component substrates: The first one was insoluble
transformed under a solubilization process, and the second one was a soluble component that was
degraded by an acetogenic bacteria to produce the hydrogen, which is an essential nutriment for
the hydrogenotrophic-methanogenic bacteria. We reduced the system to a three-dimensional one,
we studied the local stability and, therefore, we applied the persistence theory to conclude on the
persistence of both species. Moreover, we discussed an optimal strategy for the leachate recirculation
in order to minimize the organic matter and keep the operation costs for monitoring the effects of
leachate recirculation minimal. We presented some numerical simulations, confirming the theoretical
findings for both direct and control problems.
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hydrocarboné, C. R. Acad. Sci., 212 (1941), 771–773.

41. J. R. Lobry, J. P. Flandrois, G. Carret, A. Pave, Monod’s bacterial growth model revisited, Bull.
Math. Biol., 54 (1992), 117–122. https://doi.org/10.1007/BF02458623

42. M. El Hajji, Modelling and optimal control for Chikungunya disease, Theory Biosci., 140 (2021),
27–44. https://doi.org/10.1007/s12064-020-00324-4

43. M. El Hajji, A. Zaghdani, S. Sayari, Mathematical analysis and optimal control for Chikungunya
virus with two routes of infection with nonlinear incidence rate, Int. J. Biomath., 15 (2022),
2150088. https://doi.org/10.1142/S1793524521500881

44. M. El Hajji, S. Sayari, A. Zaghdani, Mathematical analysis of an SIR epidemic model in a
continuous reactor–deterministic and probabilistic approaches, J. Korean Math. Soc., 58 (2021),
45–67. https://doi.org/10.4134/JKMS.j190788

AIMS Mathematics Volume 8, Issue 12, 30287–30312.

http://dx.doi.org/https://doi.org/10.1016/j.wasman.2017.09.042
http://dx.doi.org/https://doi.org/10.1142/S1793524518501115
http://dx.doi.org/https://doi.org/10.1017/CBO9780511530043
http://dx.doi.org/https://doi.org/10.1007/BF00173267
http://dx.doi.org/https://doi.org/10.1216/rmjm/1181072470
http://dx.doi.org/https://doi.org/10.3934/math.20231269
http://dx.doi.org/https://doi.org/10.1090/S0002-9939-1986-0822433-4
http://dx.doi.org/https://doi.org/10.1007/978-1-4612-6380-7
http://dx.doi.org/https://doi.org/10.1201/9781420011418
http://dx.doi.org/https://doi.org/10.1201/9780203749319
http://dx.doi.org/https://doi.org/10.1007/BF02458623
http://dx.doi.org/https://doi.org/10.1007/s12064-020-00324-4
http://dx.doi.org/https://doi.org/10.1142/S1793524521500881
http://dx.doi.org/https://doi.org/10.4134/JKMS.j190788


30311

Appendix A

Appropriated scheme for the control problem

The time interval [0,T ] is discretesized as follows: [0,T ] =
N−1⋃
n=0

[tn, tn+1], tn = ndt, dt = T/N.

Let sn
1, sn

2, pn, xn
1, xn

2, λ n
1 , λ n

2 , λ n
3 , λ n

4 , λ n
5 and un be an approximation of s1(t), s2(t), p(t), x1(t), x2(t),

λ1(t), λ2(t), λ3(t), λ4(t), λ5(t) and the control u(t) at the time tn, s0
1, s0

2, p0, x0
1, x0

2, λ 0
1 , λ 0

2 , λ 0
3 , λ 0

4 ,
λ 0

5 and u0 as the state and adjoint variables and the controls at initial time and sN
1 , sN

2 , pN , xN
1 , xN

2 , λ N
1 ,

λ N
2 , λ N

3 , λ N
4 , λ N

5 and uN as the state and adjoint variables and the control at final time T . A Gauss-
Seidel-like implicit finite-difference method was created for the state variables. However, a first-order
backward-difference is applied to solve the adjoint states.


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1 − sn

1
dt

= D(sin
1 − sn+1

1 )−
h̄unḡsn+1

1
k3 + sn

1
,
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2
dt
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2 )+
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1
−
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2 xn
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µ̄2 pn+1xn
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k2 + pn +
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2 xn
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1 − xn

1
dt
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2 xn+1
1
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2
dt
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k2 + pn+1 −Dxn+1

2 ,

λ
N−n
1 −λ

N−n−1
1

dt
=−α1sn+1
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=
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3 µ̄2 pn+1
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.

Hence, un+1 will be calculated as follows un+1 =
h̄
β
(λ N−n−1

1 −λ
N−n−1
2 )g(sn+1

1 ), provided that β , 0

and 0 < umin ≤ un+1 ≤ umax.
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The algorithm hereafter will be applied under MATLAB software.
s0

1← s1(0),s0
2← s2(0), p0← p(0),x0

1← x1(0),x0
2← x2(0),λ N

1 ← 0,λ N
2 ← 0,λ N

3 ← 0,λ N
4 ← 0,λ N

5 ← 0, u0← u(0),
for n = 0 to N−1 do

sn+1
1 ←

sn
1 +dtDsin

1

1+dt
(

D+
h̄unḡ

k3 + sn
1

) , sn+1
2 ←

sn
2 +dtDsin

2 +dt
h̄unḡsn+1

1

k3 + sn+1
1

1+dt
(

D+
2µ̄1xn

1
(ks + sn

2)(kp + pn)

) ,

pn+1←
pn +dtDpin +

dt µ̄1sn+1
2 xn

1

(ks + sn+1
2 )(kp + pn)

1+dt
(

D+
µ̄2xn

2
k2 + pn

) ,xn+1
1 ←

xn
1

1−dt

(
µ̄1sn+1

2

(ks + sn+1
2 )(kp + pn+1)

−D

) ,

xn+1
2 ←

xn
2

1−dt
(

µ̄2 pn+1

k2 + pn+1 −D
) , λ

N−n−1
1 ←

λ
N−n
1 −dt

(
−α1sn+1

1 −λ
N−n
2

h̄unḡk3

(k3 + sn+1
1 )2

)

1+dt

(
D+

h̄unḡk3

(k3 + sn+1
1 )2

) ,

λ
N−n−1
2 ←

λ
N−n
2 −dt

(
−α2sn+1

2 − (λ N−n
3 +λ

N−n
4 )

µ̄1ksxn+1
1

(ks + sn+1
2 )2(kp + pn+1)

)

1+dt

(
D+

2µ̄1ksxn+1
1

(ks + sn+1
2 )2(kp + pn+1)

) ,

λ
N−n−1
3 ←

λ
N−n
3 −dt

(
(λ N−n

4 −2λ
N−n−1
2 )µ̄1sn+1

2 xn+1
1

(ks + sn+1
2 )(kp + pn+1)2

−λ
N−n
5

µ̄2k2xn+1
2

(k2 + pn+1)2

)

1+dt

(
D+

µ̄1sn+1
2 xn+1

1

(ks + sn+1
2 )(kp + pn+1)2

+
µ̄2k2xn+1

2
(k2 + pn+1)2

) ,

λ
N−n−1
4 ←

λ
N−n
4 −dt

(
(2λ

N−n−1
2 −λ

N−n−1
3 )µ̄1sn+1

2

(ks + sn+1
2 )(kp + pn+1)

+
Dµ̄1sn+1

2

(ks + sn+1
2 )(kp + pn+1)

)

1+dt

(
µ̄1sn+1

2

(ks + sn+1
2 )(kp + pn+1)

−D

) ,

λ
N−n−1
5 ←

λ
N−n
5 −dt

λ
N−n−1
3 µ̄2 pn+1

k2 + pn+1

1−dt
(

µ̄2 pn+1

k2 + pn+1 −D
) ,

un+1←max

(
min

(
h̄
β

ḡsn+1
1

k3 + sn+1
1

(λ N−n−1
1 −λ

N−n−1
2 ),umax

)
,umin

)
.

end
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