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1. Introduction

B.-Y Chen originally explored the idea of slant submanifolds in [9, 10], expanding upon the ideas
of real and holomorphic submanifolds [12]. Additionally, A. Lotta [22] defined and examined the
slant submanifolds in almost contact metric manifolds, and he established certain properties of such
submanifolds. After that, this topic was researched in a number of structures on Riemannian manifolds
(see [3,6,7,13,19]).

From this viewpoint, the theory of existence and uniqueness for slant immersions emerged in
complex space forms [14, 15], in Sasakian space forms [5], in cosymplectic space forms [20], and
in Kenmotsu space forms [23].

Otherwise, F. Etayo [17] introduced the concept of pointwise slant submanifolds, also known
as quasi-slant submanifolds, as a generalization of slant submanifolds. Afterwards, pointwise slant
submanifolds of almost Hermitian manifolds were studied by Chen and Garay [11]. Subsequently,
many geometries investigated this concept (see [18,24-27]).

In an analogous manner, [1, 2] presented the existence and uniqueness theorems for pointwise slant
immersions in complex space forms and in Sasakian space forms, respectively.
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In the framework of previous papers, in this paper, we study these theorems in Kenmotsu
space forms.

The structure of the paper is as follows: In Section 2, we review some fundamental definitions
and formulas that will come in handy later. Next, we review some results for the pointwise-
slant submanifold of an almost contact-metric manifold, and we offer a general example of such a
submanifold in Section 3. Establishing the existence and uniqueness theorems for pointwise-slant
immersions into Kenmotsu space forms is the focus of Section 4.

2. Preliminaries

A smooth manifold A of dimension (2r + 1) is said to be an almost contact metric manifold
if it equipped with the almost contact metric structure (i, &,7,g), which included a (1,1) tensor
field ¥, a vector field &, a 1-form 7, and a Riemannian metric g on N, which satisfies the
following conditions: [4]

WU =-U+n)é yé=0, nyU)=0, nEé =1, (2.1)

and

gWUyV) =g(U,V)—-nUnV), gU,&) =nU), (2.2)
for all U, V € Q(TN?*!), where Q(TN**") denotes the Lie algebra of smooth vector fields on A%+,

Definition 2.1. [21] An almost contact metric manifold N**' is said to be a Kenmotsu manifold if
V)V = gU, V) = n(VgU, (2.3)
and
Vué = U -, (2.4)

for any U,V € QTN>*Y), where V denotes the Levi-Civita connection on N**' with respect to the
Riemannian metric g.

The following formula is known to provide the covariant derivative of the tensor field y:
Vo)V = VoV = yVyV, (2.5)

for all U,V € QT N**").
The Kenmotsu manifold A/%"+! with the constant y-sectional curvature k is referred to as a Kenmotsu
space form and is represented by A’>*!(k) when the curvature tensor R is given by:

- k-3 k+1
RWVIW = eV, W)U = g(U, W)V} + ——={nUnW)V

= (VW)U + n(V)g(U, W)é = n(U)g(V, W)é (2.6)
+ WV, WU = gU, WV + 2g(U,y V)W,
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for any U, V, W € Q(TN¥*") [21].

With the same Riemannian metric g induced on an almost contact metric manifold A>+!, let N be a
submanifold of dimension (s + 1) in A%*!. The tangent bundle of A is represented by TN, and the set
of all vector fields normal to AV is denoted by T*N. The Riemannian connection V of A?*! induces
the connections V and V* on TN and T+ N of N, respectively, governed by the Gauss and Weingarten
formulas as follows:

VoV =VyV +a(U, V), (2.7)

Vol = -AU + VL, (2.8)

forany U,V € Q(TN) and { € Q(T+N), where @ and A, are the second fundamental form of A and
the shape operator corresponding to £, respectively. Their relationship is based on

ga(U,V),0) = g(A U, V). (2.9)
For the second fundamental form «, the covariant derivative Va is given by
(Vya)(V, W) = Via(V, W) — a(VyV, W) — a(V, Vy W). (2.10)

The curvature tensors of the connections V and V* on N are denoted by R and R*. Then, the Gauss,
Ricci, and Codazzi equations are provided, respectively, by Chen in [8] as follows:

RU,V; W, X) = R(U, V; W, X) + g(a(U, W), a(V, X))

- 8(a(U, X), (V. W)), (2.11)
R(U,V;¢,w) = RY(U, Vi ¢, 0) — g([As, AU, V), (2.12)

and
(R(U, VYWY = (Vya)(V, W) = (Vya)(U, W), (2.13)

forany U, V,W,X € Q(TN) and {,w € Q(T*N), where (R(U, V)W)* denotes the normal component
of R(U, V)W.

Let us now decompose YU for any tangent vector U € (T N) into tangent and normal parts
as follows:

WU =TU + NU. (2.14)

In a similar vein, we decompose ¢ for any normal vector £ € Q(T+N) into tangent and normal parts
as follows:

Wl =t +nl. (2.15)
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The covariant derivatives of tensor fields in (2.14) are characterized by:

(VyT)V =VyTV =T(VyV), (2.16)

(VyN)V = VNV = N(Vy V). 2.17)
Immediately, from (2.3), (2.4), (2.7) and (2.8), we obtain

(VoT)V = Ay U + ta(U, V) + g(TU, V)é — n(V)TU, (2.18)

(VyN)V = na(U,V) —a(U, TV) —n(V)NU, (2.19)

for any U,V € Q(TN).
3. Pointwise slant submanifolds of an almost contact metric manifold

We revisit certain findings regarding pointwise slant submanifolds of an almost contact metric
manifold AV in this section.

For a submanifold A of an almost contact metric manifold AV, the angle (U) between U and T,N
for a non-zero vector U € T, N and for each point p € N is known as the Wirtinger angle, and N is
called a pointwise 0-slant submanifold of N if 6(U) is independent of the selection of U € T,N. In
this instance, 6(U) is called the slant function of the pointwise 6-slant submanifold N. If 6 is globally
constant, a pointwise 6-slant submanifold NV of N is referred to as slant. It is also referred to as an
invariant (resp., anti-invariant) if § = 0 (resp., 0 = 7), and it is called a proper pointwise slant whenever
6 # 0,Z and 6 are not constant on NV ( [9, 10]).

Now, we provide non-trivial examples of pointwise slant submanifolds of an almost contact
metric manifold.

Example 3.1. Let R’ be the Euclidean 7-space with the usual cartesian coordinates (x;, vih2), 1 <
i, j < 3. We define the structure (i, &, 7, g) on R as follows:

o, 0 9
o) " o) = g Uz =0

0
with ¢ = —, 7 = dz and the usual Euclidean metric tensor g = 37 _, (dx? + dy?) +dz* on R7. For any
0z

i,j=1

0
+v—in TR’, we have

vector field U = A;— o + Ui o, P

0 0 0 0 0 0
n) = dz(/l +ﬂj8_ Voo ) =v=gU¢) = g(/l +uja va—z, a—z),
0 0
U=-4i— +u;—, U)=0
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0 0 0
wUz = —/La —lu]g =-U+ Va_z = _U+77(U)é:’
i J

0 0 6 0
U.U) = 8z + g+ v A

a 2 2 2
+V8—Z):Al-+/.lj+v,
and

0

0 0
SWUYU) = g(-dige ¥ sy~ i +u@—>—ﬁ+wi

Thus,

gWU,yU) = g(U,U) — (V).
Hence, the defined structure (i, &, 7, g) is an almost contact metric structure on R”.
Consider a submanifold N of R7 given by the following immersion:

2+ 2 ) ] p2 2
, psing, gsin p,

f(p, q,2) = (pcosq, gcos p,

for any p, g non vanishing real valued functions. Thus, the tangent space of N is generated by the
following vectors:

Vi = cos 9 sin 9 + 9 + sin 9 + g cos 9 + 9
= _ = 1 —_— _— R N —
! q@xl gsmp 0x, pax3 9 oy, 1 payz p8y3
V, = —psin i+cos i+ i+ cos i+s1n i— i
2= P Ox P 0xy q8X3 peosq y1 P 0y> 3)’3 ’
0
Vi=—.
7 oz
Then, we have
1A% cos 9 + g sin 9 9 + sin 9 + g cos 9 + 9
= - — inp——-—p— — — —
! q@yl asmp 0y, p8y3 4 0x, 4 p8x2 p8x3
YV, = psin i — Cos i - i + pcos i + sin (') i

YVi =

By simple calculation, we infer that NV is a 3-dimensional proper pointwise slant submanifold of R’

p—q(1+2p)
, as
\/2p2+q2+1 \/2q2+p2+1

such that the vector field ¢ is tangent to N with slant function # = cos™! (
P, q (p # q) are non-vanishing real valued functions on N.

Example 3.2. Let R!! be the Euclidean 11-space with the usual cartesian coordinates (x;,y;,z), 1 <
i, j < 5 and the same almost contact metric structure (i, £, 17, g) as mentioned in the previous example.
Given a submanifold NV of R!'!, which is defined by the following immersion:

f(p,q,2)=((p+gq, —p, e, sinp, cosq, p—q, q, €’, cos p, sing, z),
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where p, g are non-vanishing real-valued functions. The tangent space of N is spanned by the
following vectors:

0 0
V= a—)ﬁ—@—)@+cospa—m+a—yl+e”a—y3—smpa—ﬂ,
V, = i+e"——sin o _9 i+cosq—
0x; 0x3 oxs dyr Oy dys’
=2,
0z
Then, the slant function is provided by 6 = cos™ (ﬁ:{f—p\;ﬁ). Hence, N is a 3-dimensional proper

pointwise slant submanifold of R'!.

For a pointwise 6-slant submanifold A of an almost contact metric manifold A, we remember the
following significant results from [27].

Theorem 3.1. Let N be a submanifold of an almost contact metric manifold N, such that the vector
field & is tangent to N. Then, N is a pointwise 0-slant submanifold of N if and only if

T*U = —cos> (U — n(U)é), (3.1
for any U € (T N), where 6 is the slant function on N.

Corollary 3.1. Let N be a pointwise 0-slant submanifold of N with & tangent to N. Then, we have

g(TU,TV) = cos’ 6(g(U, V) = n(U)n(V)), (3.2)

g(NU,NV) = sin® 6(g(U, V) = n(U)n(V)), (3.3)

forany U,V € Q(TN).
In addition, there is another relation achieved in the pointwise #-slant submanifold A of A/ given by:
(@) INU = —sin* (U — n(U)¢) (b) nNU = -NTU, (3.4)

for any U € Q(TN).

From now on, suppose that N is a pointwise #-slant submanifold in Kenmotsu space of form
N>+ (k) with & € Q(TN). Therefore, we can obtain the orthogonal direct decomposition TN = D@&(&)
if we denote the orthogonal distribution to £ in TN by D.

For each U € Q(TN), for simplicity, we set

U" = (cscO)NU, 3.5)

where 6 # 0 be a slant function. Let o be a symmetric bilinear 7 /N-valued form on N defined
as follows:

oU,V) =ta(U,V), (3.6)
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for any U,V € Q(TN). In particular, using (2.4) and (2.7), the above expression reduces to
o(U,8) = 0. (3.7)
Then, from (2.14) and (3.5) in (3.6), we find
Yo(U, V) =To(U, V) + (sin0)c*(U, V). (3.8)
In view of (2.15) and (3.6), we receive that
Ya(U,V)=oc(U,V)+6(UYV),

where ¢ is a symmetric bilinear D-valued form on N, and it is defined as 6*(U,V) = na(U,V).
Operating the almost contact structure ¥ on the above equation with (2.1), (2.15) and (3.8), we
observe that

—a(U, V) =To(U,V) + (sin@)c™(U, V) + 15" (U, V) + n6" (U, V).
Comparing the tangential and the normal parts in the above expression, we obtain
To(U,V)=-t5"(U,V),
and
a(U, V) = —(sin@)c* (U, V) — no*(U, V).

Making use of (3.1), (3.4) and (3.5), we find

o(U,V)=(cscHTo(U,V),
and

a(U, V) = —(csc )™ (U, V), (3.9)
In view of (2.14) and (3.5), the above relation becomes

a(U, V) = (csc? O)(T o (U, V) — yo (U, V)). (3.10)

On the other hand, taking the inner product of (2.18) with W € Q(TN) and using (2.2), (2.9) and (3.6),
we obtain

g(VyTHV, W) = g(a(U, W), NV) + g(a(U, V), W)
+n(W)g(TU, V) =n(V)g(TU,W).

Then, from (2.14) and (2.15), we get
g(VyT)V, W) = g(o(U, V), W) = g(o(U, W), V)
+n(W)g(TU, V) —n(V)g(TU, W),
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for any U, V,W € Q(TN). Now, we want to derive the equation of Gauss and Codazzi for a (s + 1)
dimensional pointwise 6-slant submanifold A in Kenmotsu space form N2 *!(k). First, by (2.6), (2.11)
and (2.14), we find

R(U, V: W, X) - g(a(U, X), a(V, W)) + g(a(U, W), «(V, X))

k-3 k+1
U X8V, W) = g (U W)g(V, 0} + = {n(Um(W)g(V, X)

—n(V)n(W)g(U, X) + n(V)n(X)g(U, W) — n(U)n(X)g(V, W)
+8(TU, X)g(TV, W) — g(TU, W)g(TV, X) + 2g(U, TV)g(TW, X)}.

But, from (3.3) and (3.9), we conclude that
R(U, Vi W, X) = esc® 0{g(a (U, X), (V. W) — g(o(U, W), o(V, X))}

k-3
+ T{g(U, X)g(V, W) — g(U,W)g(V, x)}

k+1
+ [ WR(V. X0 = n(VmW)g(U, X)

+n(Vn(X)g(U, W) — n(U)n(X)g(V, W)
+8(TU,X)g(TV,W) —g(TU, W)g(TV, X)

+2(U, TV)(TW, X)),

for any U, V, W, X € Q(TN), which is the Gauss equation of N in NZ+(k).
Second, for the Codazzi equation, we take the normal parts of (2.6), and we get

(Rw. V)W)l = ]%l{g(TV, W)NU - g(TU, W)NV
+28(U, TV)NW/. (3.11)
Moreover, from (3.5) and (3.9), we have
Vi(a(V, W) = —(csc® O)VENa (Y, Z) + 2(ese? f cot ) U(O)For(V, W),
which implies that

Vi@V, W)) = (csc® 0)| - na(U,a(V, W) + a(X, To (¥, Z))
= N((Vya)(V, W) + 2cot ) UGN (V, W), (3.12)

by using (2.17) and (2.19). Also, using (3.5) and (3.9), we derive
a(VyV, W) = —(csc? O)Na(Vy V, W), (3.13)
and

a(V,VyW) = —(csc? O)Na(V, V, W). (3.14)
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Applying the Egs (3.12)—(3.14) to (2.10), we find
(Vo) (V. W) = (ese? 0)] ~ na(U, o (V. W) + a(U. To (V. W)
= N((Vyo)(V. W) + 2(cot ) U(@)Na(V, W).
But, by (3.4), (3.5) and (3.9), the previous expression takes the form

(Vya)(V, W) = — (csc? 9)[(0802 ONT o (U, (V, W))
+ (csc? ONo (U, To-(V, W) + N(Vy)(V, W))
— 2(cotO)U@No(V, W)]. (3.15)

Replacing U by V in the above relation, we derive

(Vya)(U, W) = — (csc? 9)[(csc2 ONTo(V, (U, W))
+ (csc? O)Na(V, To(U, W)) + N(Vyo)(U, W))
— 2(cotO)V(O)No(U, W)]. (3.16)

Hence, substituting the Eqs (3.11), (3.15) and (3.16) in the Codazzi equation, we arrive at

(Vyo)(V, W) = 2(cot ) U(O)a(V, W)
+ (es2 T a(U,o(V, W)) + o(U, To(V, W))}

k+1
Z (sin” O){g(U, TV)(W = n(W)E) + g(U, TW)(V = n(V)é)))

= (Vyo)(U, W) = 2(cot )V(0)o (U, W)

+ (csc?> )T (Y, (U, W)) + o (Y, To(U, W))}

k+1
Z (sin” ){ g(V, TU)W = n(W)é) + g(V, TW)(U - n(U)é)},

+

+

for any U,V, W € Q(TN).
The previous equations lead to the following existence and uniqueness theorems for pointwise 6-
slant immersion into a Kenmotsu space form.

4. Existence and uniqueness theorems

Theorem 4.1. (Existence) Let N be a (s + 1)-dimensional Riemannian manifold that is simply
connected and has a metric tensor g attached to it. Assuming k to be constant, let us consider an
endomorphism T of the tangent bundle TN**', a unit global vector field &, a dual 1-form n of &, a
symmetric bilinear TN**'-valued form o on N**', and a differential real valued function 0 defined on

N where 0 < 6 < %, such that the following relationships hold:

T?U = —(cos® O)(U — n(U)¢), 4.1)

g(Tyu,v)=-g(U,TY), 4.2)
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() =0, ga(U,V),§) =0, Vy&=U-nX), (4.3)
o(U,€) = 0, (4.4)

g(VuT)Y,Z) = g(o(U, V), W) — g(o(U, W), V)
+n(W)g(TU, V) +n(V)g(U, TW), (4.5)

R(U, V; W, X) = es¢ 0{g(a (U, X), o(V, W) = g(o(U, W), o(V, X))}

k-3
+ = {e(U.X)g(V. W) = g(U, Wig(V, X))

k+1
+ S {nU W)Y X) = n(VIn(W)(U, X) (4.6)
+ (VIO W) = (U (X)g(V. W)

+ g(TUX)g(TV, W) ~ g(TU, W)g(TV.X)

+28(U, TV)(TW, X)),

and
(Vyo)(V, W) = 2(cot O)U(8)o (V, W)

+ (csc? ONTo(U,a(V,W)) + o(U, To(V, W))}
k+1
Z (sin® O){g(U, TV)(W — n(W)&) + g(U, TW)(V — n(V)é))}
= (Vyo)(U, W) — 2(cot ) V(@) (U, W)
+ (cs? T a (Y, (U, W) + o(¥, To(U, W))}

k +

4

with every U,V,W,X € Q(TN*Y). Then there exists a pointwise 6-slant isometric immersion of

N into a Kenmotsu space form N**'(k), and the second fundamental form a of N**' is given
by the relation

+
4.7)

1
+ (sin® O){ g(V, TUXW — n(W)&) + g(V, TW)(U — n(U)é)},

a(U, V) = (csc? O)(T o (U, V) — yo (U, V)). (4.8)

Proof. We assume that N sH ok, T, &, n, o and @ verify the relations mentioned above. Let us assume
a Whitney sum of TN**!' @ D. For each U € Q(TN**') and W € Q(D) we identify (U, 0) by U, (0, W)
by W*, and £ = (¢&,0) with &.

Represent the product metric on TAN**' @ D by g. Thus, if we put 77 as the dual 1-form of &, then
(U, W) = n(U), for any U € Q(TN**") and W € Q(D).

The endomorphism ¢ on TN**! @ D is defined by

Y(U,0) = (TU, (sinO)(U — n(U)E)), (0, W) = (~(sin W, ~TW), (4.9)
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forany U € Q(TN**') and W € Q(D). Therefore, it is immediately to clear that *(U, 0) = —(U, 0) +
AU, 0)¢ and ¢2(0, W) = —(0, W), which gives y2(U, W) = —(U, W) + #(U, W)é for any U € Q(TN**!)
and W € QD). So, (4.1), (4.2) and (4.9) imply that (é, 7, f £) 1s an almost contact metric structure on
TN D.

Now, we can define a (D)*-valued symmetric bilinear form a on TN**!, an endomorphism A on
TN**!, and a metric connection V* of the vector bundle (D)* over N**! by the following relations:

a(U, V) = —(csc )™ (U, V), (4.10)
Aw-U = (cscO{(VyT)W — o (U, W) — g(TU, W)&}, (4.11)

VeW* = (VyW = n(VyW)é)" — (cot )U(O)W*
+ (csc2 (T o (U, W) + (U, TW)), 4.12)

for U,V € Q(TN*") and W € Q(D).
Let V be the canonical connection on TN**! @ D as inferred from Eqs (4.9)—(4.12). After that, by
using (4.1), (4.3), (4.4) and (4.9), we derive

(Vwo)(V,0) = gW(U,0), (V,0)é — #(V, 00U, 0),
(Vwo)(O, W) =0,
forany U,V € Q(TN**') and W € Q(D).

Let R* be the curvature tensor correlated with the connection V+ on (D)* given by
R (U, V)Z" =V VyW* =V VW = Vi, W,

forevery U,V € Q(TN**") and W € Q(D).
Hence, by using (2.16), (4.2), (4.3), (4.7) and (4.12) with direct arithmetic, we obtain

RY (U, V)W = (csc? O)[V(0) — U@O]W" + {RU, V)W - n(R(U. V)W)g}*

* ]%1{”8("’ TW)YU — g(U, TW)V - 2g(U, TV)W]

+[g(V, T*W)(U — n(U)é) - g(U, T*W)(V = 1(V)é)

- 25U TV)TW])

+ esc?O|(Vy T (V, W) = (VyT)o (U, W) = n(V (T (V, W)))é

+ (VY (Ta(U, W))E = o(U, (VyTIW) + o(V, Yy T)W)

= V(T (V. TW))E + (Vo (o (U, TW))E}

+ UMy WHE = n(VIn(Ty W)E = n(Vy W)U + (Y W)V
Furthermore, (4.3), (4.5), (4.10) and (4.11) imply

*

(4.13)

g([Aw-. Ax-1U, V) = ese? Blg(VuT)X. (Vy )W) = g(Ty )W, (Vv T)X)
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+ (Ve YW, o(V, X)) + g(Vy D)X, (U, W))

—8(VyT)X, o (V. W)) = g(Vy W, (U, X)) (4.14)
+8(a(U, X), o(V, W)) = g(a(U, W), o(V, X))

+8(TU,2)8(TV,. W) - g(TU, W)g(TV, X))

—n(VyT)W)g(TU, X) = n(VyT)X)g(TV, W)

+n(VvT)X)g(TU, W) + n(VyT)W)g(TV, X)}-

By (4.2), we get
gla(V, W), TX) + g(To(V, W), X) = 0.

For any U € Q(TN**!), if we take the covariant derivative of the above expression with respect to U
and use (4.2), we obtain

ga(V, W), (VyT)X) + g(VyT)o(V, W), X) = 0.
Additionally, from (4.5), we observe that

g(VuTYW,(VyT)X) = g(Vu )W, o(V, X)) — g(o(V, (VyT)W), X)
+n(VoT)W)g(TV, X) + n(X)g(V, T(VyT)W)).

Thus, using a straightforward computation and the above relations in (4.13) and (4.14), we obtain that

g(RJ_(U’ V)W*?X*) - g([AW*’AX*]Ua V)
k+1

4
+ (csc® O)[V(0) — UO)] g(W, X),

|(sin” O){(U, X)g(V, W) — g(U, W)g(V, X)} - 2g(U, TV)g(TW, X)|

forany U, V, W, X € Q(T N**!). We note that (N**!, A, V) satisfies the equation of Ricci for a pointwise
6-slant submanifold N**! of dimension (s + 1) in the Kenmotsu space form N?*1(k) based on the
equation above with (2.6), (4.1) and (4.2). (N**!, @) satisfies the equations of Gauss and Codazzi,
respectively, for a pointwise 6-slant submanifold N**! of N¥+(k), according to (4.6) and (4.7).
Therefore, we have a vector bundle TN**!' @ D over N**! equipped with the product metric &, the
second fundamental form «, the shape operator A, and the connections V+ and \Y satisfy the structure
equations of a pointwise 6-slant submanifold N**' of A*!(k). Thus, we find that there is a pintwise
6-slant isometric immersion from N**! into A’**!(k), whose second fundamental form a is given by
the relation (4.8) by applying Theorem 1 of [16].

O

The necessary conditions to look into the pointwise #-slant immersion uniqueness property are
provided by the following result:

Theorem 4.2. (Uniqueness Theorem) Consider the two pointwise 6-slant isometric immersions x', x*
N — N2*(k) from the connected Riemannian manifold N**' to a Kenmotsu space form N*+'(k)
with the slant function 6 (0 < 6 < 7). Let a; and a, represent the second fundamental forms of x! and
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x%, respectively. Let us assume that there is a vector field & on N**' such that x' p(ép) = &yip) Jor any
point p € N and i = 1,2. Allow us to

(U, V), yxi W) = glax(U, V), yx; W), (4.15)

with every U, V, W € Q(T N**Y). Additionally, we take it for granted that at least one of the subsequent
prerequisites is met:

(i) 0=7.
(ii) There exists a point p in N such that T, = T,.
(iii) k # —1.

Then Ty = T, and there exists an isometry y of N*"+'(k) such that x' = y(x?).

Proof. By taking £ in the orthonormal frame tangent to AV, the proof of this theorem is similar to the
uniqueness theorem in complex space forms (see [1, 14]). O

5. Conclusions

In this paper, we established the theorems of existence and uniqueness for pointwise slant
immersions in Kenmotsu space forms. Firstly, we reviewed the definition of pointwise slant
submanifold of an almost contact-metric manifold and we provided non-trivial examples of such
submanifold. Then, we proved the Gauss and Codazzi equations of the pointwise slant submanifold in
Kenmotsu space form which leads to prove the existence and uniqueness theorems.
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