The focal point of this investigation is the exploration of solutions for Caputo-Hadamard fractional differential equations with boundary conditions, and it follows the initial formulation of a model that is intended to address practical problems. The research emphasizes resolving the challenges associated with determining precise solutions across diverse scenarios. The application of the Burton-Kirk fixed-point theorem and the Kolmogorov compactness criterion in $ {\mathfrak{L}}^\mathfrak{p} $-spaces ensures the existence of the solution to our problem. Banach's theory is crucial for the establishment of solution uniqueness, and it is complemented by utilizing the Hölder inequality in integral analysis. Stability analyses from the Ulam-Hyers perspective provide key insights into the system's reliability. We have included practical examples, tables, and figures, thereby furnishing a comprehensive and multifaceted examination of the outcomes.
Citation: Shayma Adil Murad, Ava Shafeeq Rafeeq, Thabet Abdeljawad. Caputo-Hadamard fractional boundary-value problems in $ {\mathfrak{L}}^\mathfrak{p} $-spaces[J]. AIMS Mathematics, 2024, 9(7): 17464-17488. doi: 10.3934/math.2024849
The focal point of this investigation is the exploration of solutions for Caputo-Hadamard fractional differential equations with boundary conditions, and it follows the initial formulation of a model that is intended to address practical problems. The research emphasizes resolving the challenges associated with determining precise solutions across diverse scenarios. The application of the Burton-Kirk fixed-point theorem and the Kolmogorov compactness criterion in $ {\mathfrak{L}}^\mathfrak{p} $-spaces ensures the existence of the solution to our problem. Banach's theory is crucial for the establishment of solution uniqueness, and it is complemented by utilizing the Hölder inequality in integral analysis. Stability analyses from the Ulam-Hyers perspective provide key insights into the system's reliability. We have included practical examples, tables, and figures, thereby furnishing a comprehensive and multifaceted examination of the outcomes.
[1] | K. Diethelm, A. D. Freed, On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity, Scientific computing in chemical engineering Ⅱ: computational fluid dynamics, reaction engineering, and molecular properties, Berlin, Heidelberg: Springer Berlin Heidelberg, 1999,217–224. https://doi.org/10.1007/978-3-642-60185-9_24 |
[2] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 204 (2006). https://doi.org/10.1016/S0304-0208(06)80001-0 |
[3] | W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl., 332 (2007), 709–726. https://doi.org/10.1016/j.jmaa.2006.10.040 doi: 10.1016/j.jmaa.2006.10.040 |
[4] | A. Cernea, On a fractional differential inclusion involving a generalized Caputo type derivative with certain fractional integral boundary conditions, J. Fract. Calc. Nonlinear Syst., 3 (2022), 1–11. https://doi.org/10.48185/jfcns.v3i1.345 doi: 10.48185/jfcns.v3i1.345 |
[5] | S. A. Murad, H. J. Zekri, S. Hadid, Existence and uniqueness theorem of fractional mixed Volterra-Fredholm integrodifferential equation with integral boundary conditions, Int. J. Differ. Equat., 2011 (2011). https://doi.org/10.1155/2011/304570 doi: 10.1155/2011/304570 |
[6] | B. Tellab, Positivity results on the solutions for nonlinear two-term boundary-value problem involving the $\psi$-Caputo fractional derivative, J. Math. Anal. Model., 3 (2022), 14–30. https://doi.org/10.48185/jmam.v3i2.523 doi: 10.48185/jmam.v3i2.523 |
[7] | J. Patil, A. Chaudhari, M. S. Abdo, B. Hardan, A. Bachhav, Positive solution for a class of Caputo-type fractional differential equations, J. Math. Anal. Model., 2 (2021), 16–29. https://doi.org/10.48185/jmam.v2i2.274 doi: 10.48185/jmam.v2i2.274 |
[8] | S. A. Murad, A. S. Rafeeq, Existence of solutions of integro-fractional differential equation when $\alpha \in(2, 3]$ through fixed-point theorem, J. Math. Comput. Sci., 11 (2021), 6392–6402. https://doi.org/10.28919/jmcs/6272 doi: 10.28919/jmcs/6272 |
[9] | A. Ahmadkhanlu, Existence and uniqueness for a class of fractional differential Equations with an integral fractional boundary condition, Filomat, 31 (2017), 1241–1246. https://doi.org/10.2298/FIL1705241A doi: 10.2298/FIL1705241A |
[10] | S. Shahid, S. Shahid, A. Zada, Existence theory and stability analysis to a coupled nonlinear fractional mixed boundary-value problem, J. Fract. Calc. Nonlinear Syst., 4 (2023), 35–53. https://doi.org/10.48185/jfcns.v4i1.714 doi: 10.48185/jfcns.v4i1.714 |
[11] | A. Boutiara, K. Guerbati, M. Benbachir, Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces, AIMS Math., 5 (2020), 259–272. https://doi.org/10.3934/math.2020017 doi: 10.3934/math.2020017 |
[12] | G. C. Wu, T. T. Song, S. Q. Wang, Caputo-Hadamard fractional differential equations on time scales: Numerical scheme, asymptotic stability, and chaos, Interdisc. J. Nonlinear Sci., 32 (2022). https://doi.org/10.1063/5.0098375 doi: 10.1063/5.0098375 |
[13] | Y. Arioua, N. Benhamidouche, Boundary value problem for Caputo-Hadamard fractional differential equations, Surv. Math. Appl., 12 (2017), 103–115. |
[14] | A. Lachouri, A. Ardjouni, A. Djoudi, Existence and uniqueness of mild solutions of boundary-value problems for Caputo-Hadamard fractional differential equations with integral and anti-periodic conditions, J. Fract. Calc. Appl., 12 (2011), 60–68. https://doi.org/10.21608/JFCA.2021.308764 doi: 10.21608/JFCA.2021.308764 |
[15] | Y. Gambo, F. Jarad, D. Baleanu, T. Abdeljawad, On Caputo modification of the Hadamard fractional derivatives, Adv. Differ. Equat., 2014 (2014), 1–12. https://doi.org/10.1186/1687-1847-2014-10 doi: 10.1186/1687-1847-2014-10 |
[16] | S. Rezapour, S. B. Chikh, A. Amara, S. K. Ntouyas, J. Tariboon, S. Etemad, Existence results for Caputo-Hadamard nonlocal fractional multi-order boundary-value problems, Mathematics, 9 (2021). https://doi.org/10.3390/math9070719 doi: 10.3390/math9070719 |
[17] | S. Abbas, M. Benchohra, N. Hamidi, J. Henderson, Caputo-Hadamard fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal., 21 (2018), 1027–1045. https://doi.org/10.1515/fca-2018-0056 doi: 10.1515/fca-2018-0056 |
[18] | J. G. Abdulahad, S. A. Murad, Local existence theorem of fractional differential equations in Lp space, AL-Rafid. J. Comput. Sci. Math., 9 (2012), 71–78. https://doi.org/10.33899/CSMJ.2012.163702 doi: 10.33899/CSMJ.2012.163702 |
[19] | R. P. Agrwal, A. Asma, V. Lupulescu, D. O'Regan, Lp-solutions for a class of fractional integral equations, J. Integral Equ. Appl., 29 (2017), 251–270. https://doi.org/10.1216/JIE-2017-29-2-251 doi: 10.1216/JIE-2017-29-2-251 |
[20] | M. S. Souid, A. Refice, K. Sitthithakerngkiet, Stability of p (·)-integrable solutions for fractional boundary-value problem via piecewise constant functions, Fractal Fract., 7 (2023), 198. https://doi.org/10.3390/fractalfract7020198 doi: 10.3390/fractalfract7020198 |
[21] | S. Ibrahim, S. A. Murad, Solution od fractional differential equations with some existence and stability results, Palest. J. Math., 12 (2023), 482–492. |
[22] | A. Refice, M. Inc, M. S. Hashemi, M. S. Souid, Boundary value problem of Riemann-Liouville fractional differential equations in the variable exponent Lebesgue spaces L p(.), J. Geom. Phys., 178 (2022), 104554. https://doi.org/10.1016/j.geomphys.2022.104554 doi: 10.1016/j.geomphys.2022.104554 |
[23] | H. Ahmed, H. Boulares, A. Ardjouni, A. Chaoui, On the study of fractional differential equations in a weighted sobolev space, Bull. Int. Math. Virtual Inst., 9 (2019), 333–343. https://doi.org/10.7251/BIMVI1902333H doi: 10.7251/BIMVI1902333H |
[24] | S. Arshad, V. Lupulescu, D. O'Regan, ${\mathfrak{L}}^p$-solutions for fractional integral equations, Fract. Calc. Appl. Anal., 17 (2014), 259–276. https://doi.org/10.2478/s13540-014-0166-4 doi: 10.2478/s13540-014-0166-4 |
[25] | R. Poovarasan, P. Kumar, K. S. Nisar, V. Govindaraj, The existence, uniqueness, and stability analyses of the generalized Caputo-type fractional boundary-value problems, AIMS Math., 8 (2023), 16757–16772. https://doi.org/10.3934/math.2023857 doi: 10.3934/math.2023857 |
[26] | M. A. Almalahi, S. K. Panchal, F. Jarad, T. Abdeljawad, Ulam-Hyers-Mittag-Leffler stability for tripled system of weighted fractional operator with time delay, Adv. Differ. Equ., 2021 (2021), 1–18. https://doi.org/10.1186/s13662-021-03455-0 doi: 10.1186/s13662-021-03455-0 |
[27] | Q. Dai, S. Liu, Stability of the mixed Caputo fractional integro-differential equation by means of weighted space method, AIMS Math., 7 (2022), 2498–2511. https://doi.org/10.3934/math.2022140 doi: 10.3934/math.2022140 |
[28] | S. A. Murad, Certain analysis of solution for the nonlinear Two-point boundary-value problem with Caputo fractional derivative, J. Funct. Space., 2022 (2022). https://doi.org/10.1155/2022/1385355 doi: 10.1155/2022/1385355 |
[29] | J. V. da C. Sousa, E. C. de Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., 81 (2018), 50–56. https://doi.org/10.1016/j.aml.2018.01.016 doi: 10.1016/j.aml.2018.01.016 |
[30] | Q. Dai, R. M. Gao, Z. Li, C. J. Wang, Stability of Ulam-Hyers and Ulam-Hyers-Rassias for a class of fractional differential equations, Adv. Differ. Equat., 2020 (2020), 1–15. https://doi.org/10.1186/s13662-020-02558-4 doi: 10.1186/s13662-020-02558-4 |
[31] | S. A. Murad, Z. A. Ameen, Existence and Ulam stability for fractional differential equations of mixed Caputo-Riemann derivatives, AIMS Math., 7 (2022), 6404–6419. https://doi.org/10.3934/math.2022357 doi: 10.3934/math.2022357 |
[32] | D. B. Dhaigude, S. P. Bhairat, On Ulam type stability for nonlinear implicit fractional differential equations, arXiv preprint, 2017. https://doi.org/10.48550/arXiv.1707.07597 |
[33] | C. Derbazi, H. Hammouche, Boundary value problems for Caputo fractional differential equations with nonlocal and fractional integral boundary conditions, Arab. J. Math., 9 (2020), 531–544. https://doi.org/10.1007/s40065-020-00288-9 doi: 10.1007/s40065-020-00288-9 |
[34] | M. Hu, L. Wang, Existence of solutions for a nonlinear fractional differential equation with integral boundary condition, Int. J. Math. Comput. Sci., 5 (2011). https://doi.org/10.5281/zenodo.1335374 doi: 10.5281/zenodo.1335374 |
[35] | S. A. Murad, S. B. Hadid, Existence and uniqueness theorem for fractional differential equation with integral boundary condition, J. Fract. Calc. Appl., 3 (2012), 1–9. |
[36] | Z. Cui, Z. Zhou, Existence of solutions for Caputo fractional delay differential equations with nonlocal and integral boundary conditions, Fix. Point Theor. Algorithms Sci. Eng., 1 (2023). https://doi.org/10.1186/s13663-022-00738-3 doi: 10.1186/s13663-022-00738-3 |
[37] | J. Garcia-Falset, K. Latrach, E. Moreno-Gálvez, M. A. Taoudi, Schaefer-Krasnoselskii fixed-point theorems using a usual measure of weak noncompactness, J. Differ. Equations, 252 (2012), 3436–3452. https://doi.org/10.1016/j.jde.2011.11.012 doi: 10.1016/j.jde.2011.11.012 |
[38] | J. Borah, S. N. Bora, Non-instantaneous impulsive fractional semilinear evolution equations with finite delay, J. Fract. Calc. Appl., 12 (2021), 120–132. https://doi.org/10.21608/jfca.2021.308746 doi: 10.21608/jfca.2021.308746 |
[39] | I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103–107. https://doi.org/10.1177/43999438 doi: 10.1177/43999438 |
[40] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2005. https://doi.org/10.1007/978-0-387-21593-8 |
[41] | T. Burton, C. J. Kirk, A fixed-point theorem of Krasnoselskii-Schaefer type, Math. Nachr., 189 (1998), 23–31. https://doi.org/10.1002/mana.19981890103 doi: 10.1002/mana.19981890103 |
[42] | J. Mikusiński, The Bochner integral, Mathematische Reihe, 1978. http://dx.doi.org/10.1007/978-3-0348-5567-9 |
[43] | H. L. Royden, Real analysis, Prentice-Hall of India Private Limited, New Delhi110001, 2005. http://dx.doi.org/10.1137/1007096 |
[44] | J. Wang, Y. Zhou, M. Medved, Existence and stability of fractional differential equations with Hadamard derivative, Topol. Method. Nonl. An., 41 (2013), 113–133. |