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Abstract: The focal point of this investigation is the exploration of solutions for Caputo-Hadamard
fractional differential equations with boundary conditions, and it follows the initial formulation of
a model that is intended to address practical problems. The research emphasizes resolving the
challenges associated with determining precise solutions across diverse scenarios. The application of
the Burton-Kirk fixed-point theorem and the Kolmogorov compactness criterion in £P-spaces ensures
the existence of the solution to our problem. Banach’s theory is crucial for the establishment of solution
uniqueness, and it is complemented by utilizing the Holder inequality in integral analysis. Stability
analyses from the Ulam-Hyers perspective provide key insights into the system’s reliability. We have
included practical examples, tables, and figures, thereby furnishing a comprehensive and multifaceted
examination of the outcomes.
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1. Introduction

Fractional differential equations have attracted much attention and been widely used in engineering,
physics, chemistry, biology, and other fields. For more details, see [1-3]. The theory is a beautiful
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mixture of pure and applied analysis. Over the years, the theory of fixed points has been revealed as a
very powerful and important tool in the study of nonlinear phenomena.

In particular, fixed-point techniques have been applied in many areas of mathematics, sciences, and
engineering. Various fixed-point theorems have been utilized to establish sufficient conditions for the
existence and uniqueness of solutions for different types of fractional differential problems; see, for
example, [4—10].

The Caputo-Hadamard fractional differential equations (CHF DEs), with their non-integer order
derivatives, offer a distinctive perspective on modeling complex phenomena. Incorporating boundary
conditions adds depth to the study by constraining solutions, and this is essential for practical
applications and system analysis. There have been investigations into the existence, uniqueness,
and properties of solutions under specific constraints by using diverse techniques like Laplace
transformation and numerical methods. Unveiling new insights into fractional dynamics under
constraints has broad applications in physics, engineering, biology, and finance. The development
of tailored analytical and numerical tools for fractional contexts presents hurdles and opportunities for
solving real-world problems effectively. Ongoing research promises advancements in mathematical
methods, algorithms, and theoretical frameworks, potentially refining existing models and solving
complex problems. Moreover, researchers have made great efforts in the study of the properties of
Caputo-Hadamard fractional derivatives, and they have established the existence of the (CHF DEs)
by applying some fixed-point theorems; see [11-17].

Furthermore, the £"-integrable solutions for fractional differential equations have been intensively
studied by many mathematicians. For example, the authors of [18] discussed the existence of fractional
boundary-value problems in £P-spaces. Agrwal et al. [19] derived the existence of £P-solutions for
differential equations with fractional derivatives under compactness conditions. The investigations of
£P-integrable solutions can be see in [20-24]. Nowadays, the Ulam-Hyers stability is a crucial topic
in nonlinear differential equation research, as it studies the effective flexibility of solutions along small
perturbations and focuses on how the differential equations behave when the initial state or parameters
are slightly changed. Several articles have been published related to this subject; see [25-31].

Dhaigude and Bhairat [32] discussed the existence and Ulam-type stability of solutions for the
following fractional differential equation:

DI'S() = M. S0, DI'S(Q).  CellpL > 1,
shy=c eR", k=0,1,.p-1,
where p — 1 < W < p and D* denotes the Caputo-Hadamard derivative of order 0.

In [33], utilizing the O’Regan fixed-point theorem and Burton-Kirk fixed-point theorem, Derbazi
and Hammouche presented a new result on the existence and stability for the boundary-value problem
of nonlinear fractional differential equations, as follows:

‘DRS(Q) = ML &), D).8(), ¢€[0,1],  2<W<3,
S0) =g1(S), €O0)=mI'S(oy), 0<oi<l,
‘DR &(1) = mly &), 0<oy <],

where D, DF, and D?' are the Caputo fractional derivatives such that 0 < 8, 8; < 1 and Igl, Igi are

the Riemann-Liouville fractional integral and m, m,, d;, 9, are real constants. In [34], Hu and Wang
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investigated the existence of solutions of the following nonlinear fractional differential equation:
D¥E() = M, &(0). D), 1<W<2, 0<H<I,

with the following integral boundary conditions:

1
S(0) =0, @(1)=fg(8)<5(8)ds,
0

where D? is the Riemann-Liouville fractional derivative, M : [0,1] X R x R — R, and g € £'[0, 1].
In [35], Murad and Hadid, by means of the Schauder fixed-point theorem and the Banach
contraction principle, considered the boundary-value problem of the fractional differential equation:

DTE(Q) = M, S(0), D),  L€O,1),
sO)=0, &1)=1"s.

where D%, D% are Riemann-Liouville fractional derivatives, ] < W <2, 0<$H < 1,and 0 < U < 1.
The focal point of the originality of this work is that we deal with the existence of L’-integrable
solutions for CHF DEs by applying the rarely used Burton-Kirk fixed-point theorem under sufficient
conditions with the help of the Kolmogorov compactness criterion and Holder inequality. The Burton-
Kirk fixed-point theorem, a pivotal result in the field of functional analysis and nonlinear analysis,
is a tool for addressing existence problems in systems of differential equations; see [36-38]. This
theorem combines Krasnoselskii’s fixed-point theorem on the sum of two operators with Schaefer’s
fixed-point theorem. Schaefer’s theorem eliminates a difficult hypothesis in Krasnoselskii’s theorem,
but it requires an a priori bound on solutions. Motivated by the above works, we extended the previous
results obtained in [34, 35] to study the existence, uniqueness, and Ulam stability of solutions for
fractional differential equations of the Caputo-Hadamard type with integral boundary conditions of the
following form:

HPES() = MU, ). D), (eI =1[aT], (1.1)
a S T T S0)
6(61) = O, 6(1) = mﬁ (ln 5) T dg, (12)

where HD®, CHPDS are Caputo-Hadamard fractional derivatives of order I € (1,2], $ € (0, 1], I&I”
is the Caputo-Hadamard fractional integral, 2 € (0, 1], and M : I X R X R — R.

To the best of our knowledge, up to now, no work has been reported to drive the (CHF DEs) with the
rarely used Bourten-Kirk fixed-point in Lebesgue space ( £°). The main contribution is summarized as
follows:

1) (CHF DEs) with integral boundary conditions are formulated.

2) Initially, we establish the uniqueness result by applying the Banach fixed-point theorem together
with the Holder inequality.

3) The arguments are based on the Bourtin-Kirk fixed-point theorem, in combination with the technique
of measures of noncompactness, to prove the existence of L’-integrable solutions for Eq (1.1). A
necessary and sufficient condition for a subset of Lebesgue space to be compact is given in what is
often called the Kolmogorov compactness theorem.
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4) Ulam-Hyers stability is also investigated by applying the Holder inequality for the £"-integrable
solutions.

5) Appropriate examples with figures and tables are also provided to demonstrate the applicability of
our results.

The paper is organized as follows. In Section 2, we recall some definitions and results required for
this study. Section 3 deals with the existence and uniqueness of £P-integrable solutions for CHF DEs.
In Section 4, we show the stability of this solution by using the Ulam-Hyers with Ulam-Hyers-Rassias
stability. Examples are given to illustrate our main results in Section 5.

2. Preliminaries

Definition 2.1. [2] Let G : [a,T] — R be a continuous function. Then, the Hadamard fractional

integral is defined by
L ) S
s :—f(ln—)) —d
PO = | () = e

provided that the integral exists.

Definition 2.2. [2] Let S be a continuous function. Then, the Hadamard fractional derivative is defined

by
y—W-1
D S
IBC5(§)— %)(5%) f (l( )) %d@

where v = [23] + 1, [2] denotes the integer part of the real number 23, and I' is the gamma function.

Definition 2.3. [2] Let S be a continuous function. Then, the Caputo-Hadamard derivative of order
W is defined as follows

—m-1 dy
ng<5(§)— %)f (1( )) AV@(@)?,

where v =[W]+ 1,A=( d%), and [2B] denotes the integer part of the real number 28.

Lemma 2.4. [2] Let W € R* and v = [W] + 1. If S € ACy,([a, T],R), then the Caputo-Hadamard
differential equation /' D¥S(¢) = 0 has a solution

v—1
SO =Y g0y,
p=0

and the next formula hold:

v—1
EODESO) = B0+ Y g0 5.
p=0

where g, € R, p=0,1,2,...,v - 1.

Definition 2.5. [39] If there exists a real number ¢, > 0 such that & > 0, for each solution ¥ e
£8([a, T],N) of the inequality

CHDYP() = M PO DY) < 8, ¢ela T, (2.1)

AIMS Mathematics Volume 9, Issue 7, 17464—-17488.



17468

there exists a solution © € £°([a, T],N) of Eq (1.1) with

Q) - Sl <ce, (€laTl
Then, Eq (1.1) is Ulam-Hyers-stable

Definition 2.6. [39] If there exists a real number ¢pp > 0 such that & > 0, for each solution ¥ e
£8([a, T],N) of the inequality

CHD™() — M, (O D)) <6 D), ¢ela T, (2.2)
there exists a solution © € £¥([a, T],N) of Eq (1.1) with
19(0) - Sl < c o8, ¢ €la 2.

Then, Eq (1.1) is Ulam-Hyers-Rassias-stable with respect to ®.

Theorem 2.7. [40] (Kolmogorov compactness criterion)

Letv C €P[a,T],1 < p<oo. If

(i) vis bounded in £*[a, T] and

(ii) ¥ is compact (relatively) in £°[a, ] then i, — ¢ as b — O uniformly with respect to i/ € 9, where
J+D

o 1 n
Uy(0) = - Y(0)de.
b J;

Theorem 2.8. [41] (Burton-Kirk fixed-point theorem)
Assume that H is a Banach space and that there are two operators &, &, : H — H such that ¥, is a
contraction and ¥, is completely continuous. Then, either

S
-E={GeH:yF(T)+¥F1(S) =S isunbounded for ¥ € (0, 1)}, or
Y

- the operator equation S = ¥(S) + ¥.(S) has a solution.
Then, z € H exists such that z = 1z + &z

Lemma 2.9. [42] (Bochner integrability)
If |V is Lebesgue integrable, then a measurable function V :[a,T] xR — N is Bochner integrable.

Lemma 2.10. [43] (Holder’s inequality)
Assume that ( is a measurable space and that a and b satisfy the condition that % + % =l.1<ax<
00, 1 < b < oo and () belongs to £(0), which is satisfied if e € 2%(Q) and j € £°(Q).

f |ej|d4s( f |e|“d§)“( f |j|bd§)b.
0 Q (]

Lemma 2.11. [44] If0 < W < 1, then

. In g)a(*lB 1H+1
In a(lB 1) d@ (
f ( aW-1)+1’

where 1 <a< 1/(1 —2W).
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Lemma 2.12. A function S € £°(3,R) is a unique solution of the boundary-value problem given by
Eqgs (1.1) and (1.2) if and only if & satisfies the integral equation

Sm-t $ d_9 G(ln 5)
() = F(ﬂB)f (In ) M6, S(6), D°S(0)) Tb)

[ag [ a2 >%1dg—<1n%>”-l M. 50), D E0)

Proof. Equation (1.1) can be reduced to the corresponding integral equation by using Lemma 2.4:

() = F(iB)f (In = )ﬁB LM, (), @56(9))— +gi(In §)+90, (2.3)

for gg, g1 € N and S(a) = 0; we can obtain gy = 0. Then, we can write Eq (2.3) as
1 e do l

S() = —— In )™ M6, S(6), D S(0)— In2),

&) F(ﬁB)fa(ne) M(6, S(0), D ())9+91(na)

and it follows from the condition &(Z) = Ig” S that

B O T T . s dw do
gl_mf f(ln—) (0 25 M(@, S(w), D*S(@) = &

W-1 I
") f (In— ) M6, S(0), D 6(6))

__9 o T Taado T gy S do
g = F(ﬂB)f& [F(u)‘fg (In w) (In 9) p- (In 9) M6, S(6), DYS(0)) o

QD)

where U = .
(n 3 (rap - an H* g, 2))
Hence, the solution of the problem defined by Eqs (1.1) and (1.2) is given by

A & do  V(n%)
@) = o) f (ln ”3 "M, S(0), 1)556(9))— r(;)s;

2.4)
f [F(l[)f (In u 1(1 )\m 1d:; (In %)QB—I M, 6(9),1)56(9))%9_

3. Existence and uniqueness results

In this section, we study the existence of a solution for the boundary-value problem given by
Eqgs (1.1) and (1.2) under certain conditions and assumptions. For measurable functions denoted by
M:IXRXR — R, define the space 3, = {{ : S € (3, R),H DS e L7(3, N)),
equipped with the norm

T T
ISl}5, = ISl + 1D° Sl =f |@(§)|pd§+f DSOS, (1< p <o),
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where £*(J, R) represents the Banach space containing all Lebesgue measurable functions.
Our results are based on the following assumptions:

(01) Jaconstant 3 > Osuchthat  |[M(C, S1, )| < 3 (IS +S,)),

for each £ € J and for all S, S, € R.

(02) M is continuous and 7 a constant Q; > 0 such that

ML, S, S2) - ML, E1, Sl < @](Ks] _ G418 - 6‘2|),

for each 3, S,, S, S, € R.
To make things easier, we set the notation as follows:

2P p—1 D oGP B, A) T et e p(W+ ) — 1
= (2L DT e N G
CEB)» pW -1 pAW ras)rLaany a p—1
z)n*lB 1 .
+ W] (In 5) ),
B ( ¥ ( p—1 )p—l (In %)(QB—S))D N 22p '(’\)'p
>~ \(rems - 2)))" W-H)p-1 W-9)p TWW)rT2-9)”
B T et pr pRHW -1 DM T
[Ty 8 S W]mz)p )
1 o1 (n 2y
V= (F(%))p(psm— D T
SRS R d B L
=

T - H)° (W - 55)10—1 (W - H)p

1)

_ 220 (v B3, ) MO ot p(ﬂB +U) -1 (In %)pﬂ)&—l I .
= T R L (T Jean 2
A, = 220 (yp (,8(%, u)( );(mur) 1 e 1(p(ﬂB +U) -1 1) N (In %p‘m—l . E)p(l_g))
T Tayae-sy\aapy e T AT D D e
(In 3)*™ (In 3)®-9®
= ((F(QB Ty T@-5+ 1))v)

w =2V, +V,)r Q.

The first theorem is based on Banach contraction mapping.

Theorem 3.1. Let M : [a, T] xR XR — R be a continuous function that satisfies the conditions (O1)

and (02). If w < 1, then the problem defined by Eqs (1.1) and (1.2) has only one solution.
Proof. First, define the operator & by

R S A 4P 5= 20
) f (In 2™ M, S(6), DYS(0) -+

O(n %)
T

I T3 Vel Ty dT T . 4o
: [Hu)f@ (In =) (In ™1 — = (In )™ M(6, S(6), D°S(6) -
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It is necessary to derive the fixed-point of the operator & on the following set:
VDo = {S € LT, N) : ||6||§:* < U, A > 0}. For S € Yy, we have

4 \ do\®
GNP < ( f ang)ﬂ*—w(e, e(m,zﬁe(e)ng)

(W)
220%(In £)? Ty " . o
* Ty T f fg in =) an 2 IMe, 60, D22 F) G
220%(In g)v
(F(W))?

T doy®
f (In 2)™ M@, €(0), DO )
From Holder’s inequality and Lemma 2.11, the first term of Eq (3.1) can be simplified as follows:

(In(3 )‘lel

(DQB 1

4
( f (ln YU M, ©(0), 1)‘56(9))|d—9) f IM(8, S(6), DYS(9))|°d6. (3.2)

Now, by the same technique, the second term can be found as follows

p(4+11) 1

f f (0 )"0 7)™ M6, 30), DY SO T ) < e, wiin )
(3.3)

( p(W +_II)

,1) f IM(6, S(0), D>S(0))° a6,

where S(23, W) and ﬁ%(%, 1) are beta functions. Now, the last term of Eq (3.1) needs to be
found, as follows:

( Z)plB 1

T T 5 doy? S
( f (In 2)""1IM(8, &), D e(e))@) < f IM(8, S(6), D*S(O))[°d6. (3.4)

(]JQB 1

T T W— P M P
Thus, ( 7 an H®1 M, e(e),@%(e))ld—;’) , ( [an gy -1me, 6(6),@56(0)»‘1—;’) and
: P
( FF L7 an 2 n 22 me, 6(9),1)%(9)»%’%?) are Lebesgue-integrable; by Lemma 2.9,

we conclude that (In )™M, S(6), D5S(@), [ (In 2y (In 242 M(9, S(9), DOS(6))
and (In g)ﬂB—‘M(e, S(0), D>S(H)) are Bochner-integrable with respect to 6 € [a, ] for all € J. From
Eqgs (3.2)—-(3.4), Eq (3.1) gives

U S LY e s .
j; I(FS)I'dS < T’ f; (p%l)p_l fa IM(0, S(6), D>S(0))"dbd{

22°0P (BB, ) - T s g1 p(W+ ) — 1
* Ty (<r<u)>v (nZz) = B T

1)

(ll’l ¢)p‘lB 1 T B { T )
—a- f (In a)p f IM(8, S(6), D*S(0))|"déd¢,

(D‘IB l)p 1
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: 230 (T (n D
f'@@“W“Sammwf MmylfWum+D%mwwﬂ

220 3p (yv [Ig(ﬁg ) B0 lﬁp i M (In I)pslB : (3.5)

Ty L cany 3 7 T W AT =

T { T
f (1n5)p f 1S(0) + D >S(0)|Pdodc .

By using integration by parts, Eq (3.5) becomes

o 28
NP pW -1 pW (CE))»

( ?)pml T
]‘.I(lng)" f SO d6 + f |Z)556(9)|"d9)d§,

~1 = , (In )P N 2% PGP [,3(%3, ) et e p(m + ) -1

(A) B (

TrQn)® Y

W—1\p—
(Bt

P _ 1 %MB 2p yp PABA-1  p-1 -
< p( 2 i 1, (nZ) L2 (0 [ﬁ(%u)(ln ) ot (p(QB+lI) 1

, 1
T@))" " pW -1 p3 @) L@Qny = a p—-1 )

( Z)p‘lB 1

T
+0§h Jran 2y )3,

IFSII < 2PV, 3PP, (3.6)

and

T . 2p
D(FS "d_—f fl oo eeezﬁee—
L.'(g)@”§<<nw—5w (n £-71M@, 2(0), D01 ) de

. O bty . T IM o d
2(r(%)r(2—55)) f (In?) (f [fg Tan) g o

+(In %)‘”H] M6, (), D° e(e))%g)pdg.

a»z/\

By (O1) and the Holder inequality, we can find that

p _ In )B-9)» 2p 7¥p
105l < 27 2 -l plno) >0
ITW-9) W-9H)r-1 (W -H)p (F(%))p(F(2 - 9H)P
ﬁ(% 11) P+ H) 1 p-l p(IB + 11) -1 ( I)pIB ! T (1-9) N
[aum“ma A Sy Jy%@%% R ) s
D FSIE < 2°V, 3PP (3.7)

Combining Eq (3.6) with Eq (3.7), we get

IFSILS, = IS, + 1D FEIL,
1
153Gz, <2(Vi+V2)P3 4,
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which implies that §)y € 9q. Hence, F(S)({) is Lebesgue-integrable and § maps 9y into itself.
Now, to show that  is a contraction mapping, considering that S;, S, € £L*(3J,R), we obtain

QB 1
(rom))vf f (n

$ 9 & ZpUp(ln ()p
IM(E, S1(6), DG4 (6)) — M(6, S,(6), D 62(9))'?) d“f W f F(ll)f (in
w1 d@

9T | (n z)‘m‘l] M6, S,(6), DYS1(6)) — M(6, S(0), 9562(9))|—) d.
o 0 0

T
f (TSN = (FSHIPdS <

()
In —
(In )

Some computations give

ZPQD p— p 1 -1 5 5 p
(r(ﬂB))p MB f (In ) f 1S1(0) — S2(0)] + |D°S,(0) — D 62(9)|) dod;

2% Qp (Ol BB, lI) p<m+u) 1o P+ U) —
W)y [<r<u>>v( LA ey

L)+ n 2y T -

T T
f (In gf’ f (|<51<9)— S,(0)] + 1D°S,(6) —D‘B@z(en) dédt.

of 20 p—1 . (nF)™ 225w gan, ) st oy PB4+ 1) — 1
: ((F@B))”(DQB—I) p2 ’ (F(QB))p[(F(lI))p (ln& B p-1 D

(In 3yt

p
] (In —)P) f (|el(e) 62<9)|+|z>961(0>—@562(9)|) do

-1\
(5!

2° -1 (hl ¢)p*1B 220 '(A)'p ﬁ(gB u) T pw+-1
6—6"32"( bl [ ) et
151 = 5%all (F@B»v(n%— D Tem T Tyl capy )
s p(W 4 20) — 1 (In %yﬂ“] )
v—l “—zl—pape—e"
ﬁ ( _ 1 s )+ (psf))i_ll)p_l (n &) 1 ” 1 2”;)3*’
IFS) - FSallE <2° V) QNS - Sl - (3.8)

Using similar techniques, we obtain

T
9 S _ D S PdE < f f In *IB $—1
fa |D*(FS1)() — D (FS)()IdE < (F(QB ) (

$ $ zzpm T L aes)
IM(6, ,(0), D>S,(0)) — M(6, S,(0), D 62(9))|E) di + TP T =5 f (In 5)

: T DY @ dw T g s . doyP
( f [ fg g T ) ]|M<e,61<9),z> 1(0) - M, ezw),ﬂ’»’ez(e)»;) dc.
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Then,
P p—1 1(111 *)(QB—S:))D
1)55 S _Dﬁ SIP< Qb p—
D751 = D5l < 1[(r<ﬂB—s5>)v((ﬁB—s§>p—1) W - H)p
220 (v B, ) st oy P+ — | (In 2P T s
T @) Te- 55>>v(<r<u>)v A= )
T p
f (1210 - 01+ 1D°@10) - D200 o,
IDOFS, - DOFSIE < 2P Vs 118, - Soll’-.. (3.9)

Combining Egs (3.8) and (3.9), we get
1
TS = FSallpz. <2 Q1 (Vi + V)" (IS = Gallpa,,

1TSS = sz, < w (181 = Sollpa..

If w < 1, then the Banach theorem guarantees that there is only one fixed-point which is a solution of
the problem defined by Eqs (1.1) and (1.2). O

The following outcome is the Burton-Kirk theorem.

Theorem 3.2. Suppose that (01) and (O2) hold. Then, the problem defined by Eqs (1.1) and (1.2) has
at least one solution.

Proof. Let & : 2, — 3.; we define the operators as follows

(( ()QB]
(816)(§)=I T(m) — o M8, S(0), @96(9))—
.G JO0D I T T Ty M©, S(0), D (0) 22
(F2S)() = T J, F(H)L (nw) (ne) p (He) (6, 3(0), ())9-

Step 1: The operator ¥ is continuous.

T
S; - S *d & yw-1
f& (3 SN ~ GHSOPL < (F(%))v f f (In "
do\®
MG, B(0), DYE(6) - M. S0, D EO)| 5 ) de.

It follows from the Holder inequality and the integration by parts that Eq (3.10) becomes

I)pﬂB

| -

<<F(%B>)p( -
P —1 Pl

IS - GO < Vs MO, S(6). D S(6)) - M(6, S(6). D SO

IM(8, &i(6), D*S(8)) — M(6, S(6), D*SO))I},
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for all € 3. In a similar manner, we obtain

S 9 W-H—1
f |D>(F1E)() — D (F:S)NOIFde < T - 5))pf f(ln =)
IM(6, ,(6), D>S(0)) — M(8, S(6), D° 6(0))|g) g,

ID(F1S) — DXFS)IIE < Vi IM(O, S,(6), D*Si(8)) — M(6, S(0), D S@))II}.
Then,

IS = F1 ). < (Vs +Va)* M@, S(6). D°S(6)) - M(B. S(6), D SO,

According to the Lebesgue dominated convergence theorem, since M is of Caratheodory type, we have
that [|(F:S) — (F19)lpz, = 0 as j— oo.

Step 2: Consider the set Ny = {S € 2°(J,R) : IIGIIEJ* <Y Y > 0).

For S € Ny and ¢ € 3, we will prove that §;(N+) is bounded and equicontinuous, and that

2 p—1 . (nIpm
IGO0 FayGu-1T
IGSIE < 2V .

3w,

In a like manner,
ID>(F S < 2°V,3° U,

Then, 1
(51 6)”1}3* < 2((‘/3 + (V4)6 3.

Hence, &;(Ny) is bounded.

Now, Theorem 2.7-(Kolmogorov compactness criterion) will be applied to prove that ¥; is completely
continuous. Assume that a bounded subset of Ny is 6. Hence, 31(3) is bounded in £¥(J,R) and
condition (i) of Theorem 2.7 is satisfied. Next, we will demonstrate that, uniformly with regard to
e 5, (F1S)y = (F1S) in L¥(J,N) as h — 0. We estimate the following:

T
I(&1S) — (FO} = f |(31©)5(0) - (F:18)()|'d¢,
T 1 [+ ‘ »
< f |B f (&18)(0)do — (F:©)()| de,
a 4

T [+D
< f % f |1 M6, (), D*S(6)) — "ML, 6(5),9556(5))|pd9d§-
a 14

Similar, the following is obtained:
T
D& S)y — D*(F O} = f |D%(F1©)(0) - DX S| de,
T [+
< f % f I M6, S(9), D°E(6)) - I M(L, (L), D2S())| dbd.
a e
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Since M € €°(3, R), we get that I M, IS M € €°(J,R), as well as that
1 ¢+ S D A p
5 f [P M6, S(6), DOE(6)) ~ I M(L, S(0), DY E(0)|'d — 0,
¢

and

J+D
% f I M6, (8), D°E(8)) - I ML, &), D2ES(0))|'db — 0.
4

Hence, [[(5:19)y — (&F:1S)llpz. — 0.
(F1©S)y — (F1©), uniformlyas b — 0.

Then, we conclude that §; (3) is relatively compact, i.e., & is a compact, by using Theorem 2.7.
Step 3: &, is contractive. For all S, S, € £°(3J, R), we have

* p 0 * N ! : T o, Tan do
[ @0 -Geoori s gaes [ ([ g [ e a T

+ I ™1 MO, 800, DY) - MO, 2.0, D SO ) .

222 0P (BB, A) - T st o p(W A+ ) — 1
158 - %20 < s (a0 3) BT o)
3Pty g
W)i’i(ln SIECRCN
1328 = F2&clly < A QNS - Sl (3.11)
and
T v Ty T T g
9 —_ )Y 2\p(1-9) . U=l
[ G000 - D G0 < e [ S ([ [ )
P
(In %)QB_I%U +(In %)m_l] IM(6, S(6), D°S(6)) — M(6, S.(6), D SC(Q))ld??) ¢,
220 v B, T st o p(W+ ) — 1
R — PO — P P (07—
ID°5: - D20 = gLy 7 PO o)
(In )P T ,
p—1
ID°F:3 - D F Gl < A, Q1€ - Sl . (3.12)

Combining Egs (3.11) and (3.12), the following is obtained:
1
1F2S = F2Cellpz. < (A1 +A2)" Q) IS = Sl
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Step4: Let=Z ={S € &) : ¥ 82(§)+§/‘Z;1(6) =G, y€(0,1)}. Forall S € E, there exists ¥ € (0, 1)
Y
such that
IR A s do
(FS)Q) = 7[ %fa (In 5) M6, S(0), D C5(49))3

O(n$) *
T J,

1 T T, g dw T S NN L
P

p(W + ) — 1
p—1

P < AP Pl
1531 < 2 (Fmr G et Ty

(ln %)p%_l z p p P
@]ﬂln =) Bl

p—1 (11’1 %)p‘w 2213 Gv [,B(QB, 1[) T p(ﬂB+’ll)—1 p%l 1)

cay a) P

With the same arguments, we have

o = 3 —l fg g W-H-1 o d_@ —6 é (1-9)
DEO = I =g | " MO.S0). DCONG + e in )

T o dw T S $S df
f& ( fg g g )M(e,§<9),z> ;(9»;],
o p—1 _,(In g)(‘lB—SB)p 220 (yp
DOFS|P < 2° e’
1275l < (<r(% S @-sp-1T @-%p  T@rTC-9)y
e Y [xn =09) g

p(W + 2) — 1 (In )™
rany "2’ o (!

Then,
1
ISllyz, < 2(V1 +V2)? 3 1G]]z

Hence, the set = is bounded, and, by Theorem 3.2, the problem defined by Eqs (1.1) and (1.2) has a
solution. O

4. Stability results

In this section, we establish the Ulam-Hyers and Ulam-Hyers-Rassias stability of the problem
defined by Eqs (1.1) and (1.2); we set the following condition.
(03) de LP(3, M) is an increasing function and 3 /Al@,, Q(i) > 0 such that, for any £ € 3, we have

1 ¢ Lt dO0 5 4
o f (In )™ 100 < 25,

1 e . do A .
——— | (In2)® 2P — < Qi D).
r(m_g)famQ) O) < 2udQ)
Theorem 4.1. Let M be a continuous function and (02) hold with
27XV + V) < 1.
Then, the problem defined by Eqs (1.1) and (1.2) is Ulam-Hyers-stable.
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Proof. For & > 0, ¥ is a solution that satisfies the following inequality:
[TD™HQ) - ME BT DO < & @.1)

There exists a solution S € £%(J,R) of the boundary-value problem defined by Eqs (1.1) and (1.2).
Then, ©(¢) is given by Eq (2.4); from Eq (4.1), and for each { € 3, we have

_ ‘lBl 9 d_@_ (ln%) 1l fz Ty, T d@
SO~ t f (n 9™ M6, 20, D20 G ~ e | g | (0 ) an g™
(i Zym seon?? g(ng)m ’
(n 2™ M@, 20, DY) 1 < (r(QB+ 1)),
(4.2)
and
) _ 1 fg é W—-H—1 9 ﬁ _ 6 é 1-9
1D*S() -9 J. (In 0) M6, S(6), D*S(0)) —F(ﬂB)F(Z— 55)(hl&)
1 : T i,y T dw T 5 &(In é)%_b !
fa [mfg e R ]M(H S(0). D 6(0)) O < (—F(QB - 1))
4.3)
For each ¢ € 3, we have
B b < B QB 1 5 ﬁ 3 O(In ;%)
P - S < Q) —F(QB) f (In =)"""M(6, S(6), D S(0)) )
1 T u-1 w1 d@ T (5 dg
j; [mfe (In =)*"'(In 5) — —(n) ]M(@, (0). DO S(O) 1"
Then, from Eq (4.2), we conclude that
T p o [T B ™ 2 [ [F ™!
|, wo-seracs2 | arpiac | ([ S
IM@6, ¥(6), D P(0)) — M6, S(6), D° ewmﬁ)pdg
2 0 pfz épf f =y %_10,'_73 ZQB—I
) | @ |rg | mp e T vy
IM(0. (), DXF()) — M(6. S(0), D° 6(0))I?) dc.
By (02) and the Holder inequality, it follows that
§ e %)p% 27 -1 ,(n Z)pyB 2% OF
=2l = 2 rar vy +2‘[(r(w)>v(pw—1) P (T
B3, ) D1 ] p(W+ ) -1 (In Z)p\IB : 0 e o
(a8 W)m?"] Y - @l
Hence, -
X &% (In 3)* .
1o <22 T gy g, (4.4)

W + 1))
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Now, from Eq (4.3), we have

T A T &°(In g)n(‘lB—Sb) T ¢ (In é)ﬁB—b—l
) D P a 2 el
fa DO =~ DIOFAE < 2" | ran— g+ e 2 pj; (f F - %)

IM@6, ¥(6), D P(0)) — MO, S(6), D° 6(9))|%9)pd§

2 0 p * C (-9 fl sz Eu—l E«m—ld_w z‘lB—l
P2 rwre-s) f&(lna) ( . [r(u) , ) gy +ng)

IM(6, P(0), D F(©H)) — M8, S(6), ﬂﬁe(e)n%e)pd{,

and
R &° (In ~)(QB H)p z 92p p—1 (In 1)(% H)p
D — DOG? < 272 -
| Iy < T -9+ 1))“ [(F@B - 55))"((%)3 - 9H)p - ) (W — H)p
230 v W, 2 ot et p(W 4+ ) — 1
T
(F(QB))*’(FQ HP\NTQD)P  a p-1

(In )"

T )
e Jran =y 2 19 - el

. & (In 3)W-9» .
P — DOG|IP < 2P a 22QPVLI¥ - S . 4.5
1D DE; < TW -5 1) + (Vo o=, (4.5)

Combining Eq (4.4) with Eq (4.5), we have

(In 3)"™ (In )P )
P_c _( )z*’ump(vwv‘{feﬂ.
17 -l < 2 (G * T s )Y (Vi + VI - S}
Hence,
¥ — Cllyz, < cr &,
where 1
_ 2 35°
Cf = N T
(1 =22Q5(V) +Vy))»
Then, the problem is Ulam-Hyers-stable. O

Theorem 4.2. Let M be a continuous function and (02) and (O3) hold. Then, the problem defined by
Eqgs (1.1) and (1.2) is Ulam-Hyers-Rassias-stable.

Proof. Let ¥ e LP(3,R) be a solution of Eq (2.2) and there exist a solution S € £°(J,R) of Eq (1.1).
Then, we have

1 (¢ \ do  V(n%)
S(©) = ra f (ln YA, 3(0), 1)56(9))— - (;3;

o7 zu_l @ g dT T s do
fa [% fg (in =)0 23152 1 252 | M0, 2(0), DOE(0) -

w
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From Eq (2.2), for each { € 3, we get

1 (Y o oo do O 11 Y @ do
Ig(é)—r(%)fa(lné) M6, S(6), D 6(@)g— T J. [F(ll)fg (1115) (hlg) e

e Ty S o, if( Lo 90N (23 a0n)
(lne) ]M(Q, S(6), D*S(0)) 9' S(F(QB) ) (In 0) D(0) 9) S(s/lq,d)({)),
4.6)
and

Sen_ | C o Cmee sl _ 0 {ii-s
1D°S(0) EEE) fa (In2) M@, 2(60), D*S(0)— T2 = 55)(111 =)

R T, T dw T % do.,
fa [mfg (In 5) (In 5) = —(In 5) ]M(G, S6), D 6(0))?| 4.7)
p

< (m f “(in Lys1dn D) < (2 090)

On the other hand, for each { € J, from Eq (4.6), the below is found:

- T, ) z é(lng)%_l
f #() - S@OPdg <2° 8f (1s90) a2 +2pf (f rw)

g\, DOV — A ﬂvfz ¢ fz
IM(0.(60), DXF(9)) — M(6. S(6), D 6(9))|0)d§+2”(r(%)) an a)P( & [

1

- 4.8
T (4.8)

T
f (In §>u—1<1n Eoh df +(In %)%‘_l]lM(G, #(6). D°¥(©) - M@, (), @56(9))'6{?9)pd§'
0

Thus, by condition (02) and the Holder inequality, Eq (4.8) becomes
W - S} < 2° £(D@)° DI Vs + 27V I - S|} . (4.9)

Now, from Eq (4.7), one has

T g % o A ) o [T 4(1ng)~m—s5—1
| v -orewracsze [ (ado)ac [ [ s

IM@, ¥(6), D P(9)) — MO, S(6), D° 6(9))|%9)pd§

2 0 p * C - fz sz ELI—I E«m—ld_w Z*IB—I
Y rwre-s) f&(lna) ( . [r(u) , Ing) gy +ny)

IM(6, ¥(6), DY) — M(6, S(6), D° 6(9))|%‘9)pd§.
Similarly, we have
D — DG} < 2°8%(D(T))" T DI} Vi + 27 QVHIY - S . (4.10)
Combining Eq (4.9) with Eq (4.10), we have

W = GI,, < 2°(Vs + Vi) E@D@)IIDIE T + 27 Q(Vy + VIV - S, .
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Hence,
IV = Gllyz. < cp & D(DNDl; ,
P b
where cr= 2 (V)" 2 T.
(122 v, +v)) "
Then, the problem defined by Eqs (1.1) and (1.2) is Ulam-Hyers-Rassias-stable. m|

5. Examples

In this section, we present two examples to illustrate the utility of our main results.

Example 5.1. Consider the following Bagley-Torvik equation:

{ CﬂDZQ + QCWDS:)Q =—1-¢et, {e[l,2], 5.1

GgH)=0, G2 =1I'G.
Here,a =1, T=2,0=1/25, W=2, H=04and U =0.7. Also, let p = 2, by the condition (02),
we have that Q; = 0.04. Then, from Theorem 3.1,
V) =17.38072643, V, =17.46632688, — w =29 (V, +(V2)% = 0.4722511421 < 1.

This indicates that the solution to the problem defined by Eq (5.1) is unique.

Example 5.2. Consider the following boundary-value problem:

(9 et $ ~
DGO =— + 15(3+ln(§))(§+ﬂ G), (€3, (elle], 52)

6()=0, Gle)= I'G.

Here,a =1, T =¢, W =17, H = 0.3, and U = 0.6. By the Lipschitz condition, we have that
Q; = 0.00817509. Now, to check the obtained results for the Banach contraction mapping and Ulam-
Hyers and Ulam-Hyers-Rassias stability, we examine the following cases:

Case I: Let p = 2; by a direct calculation and by Theorem 3.1, one can obtain that

V, = 3.24027038¢ + 02, V, = 1.77652891e+02, = w =22, (V,+Vs)" =0.36621519 < 1.

We get that the problem defined by Eq (5.2) has a unique solution.
At this moment, to examine the stability, let S = 1; we show that Eq (2.1) hold. Indeed,

@ __ et

03, _ A
12 153 + In(9)) (G+DG) =0.08443313 < &.

1DYG() -

From Theorem 4.1, we have

1
n 2 xp
I — S, < )

_& = 0.42244099,
(1 =2°Q0(V) + Vo))

which shows that the problem defined by Eq (5.2) is Ulam-Hyers-stable.
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Next, let &(¢) = ¢ — 1.8; by applying Theorem 4.2, we have

L (@ -8 —(a—1.8)! o
ol = : P+ ia " and e, d(@)|d]l, = 1.43585898.

Hence, the problem defined by Eq (5.2) is Ulam-Hyers-Rassias-stable with
¥ - Sllpa. < cu & DD)|D]|, = 0.12123407.

Case II: Let p = 3, & = 0.08443313, and ®(¢) = ¢ — 1.8; we have that w = 0.24914024 < 1.

Then, the boundary-value problem defined by Eq (5.2) has a unique solution.

Now, according Theorems 4.1 and 4.2, the Ulam-Hyers and Ulam-Hyers-Rassias stability for the
boundary-value problem defined by Eq (5.2) are respectively given as follows

¥ - S||,o. < 0.22796162, and || - S|l,a. < ¢, & D@D, = 0.01175782.

Case III: Let p = 4. From Theorem 3.1, we start by computing the following:

29 (V + (Vz)% = 0.209580118 < 1. Hence, the boundary-value problem defined by Eq (5.2) has a
unique solution. Also, it has Ulam-Hyers and Ulam-Hyers-Rassias stable with

¥ - S|l,5. < 0.19198746, and ¥ - Sll,m. < ¢y & D)D), = 0.02696865.
6. Discussion

To show the efficiency of the Banach contraction principle and that the problem has a unique
solution, we will evaluate the value of w for some different fractional orders, i.e., 1 < W < 2 and
0 < 9 < 1. Table 1 presents the value of w when p = 2 and { € [1, e] for some specific orders, such
aswhen I = 1.2, H =0.2,0.8, when W = 1.5, H = 0.2,0.5,0.8, and when W = 1.8, H = 0.2,0.5.
Furthermore, the behavior of w at some selected points is illustrated in Figure 1.

Figure 2 shows that the problem has a unique solution at p = 3 when 1 < W < 2, $ = 0.5, and
when W =1.5,0< H < 1. Inaddition, forp=4and 1 <W <2, H=08orW=12,0< H <1,
w has been plotted in Figure 3 and is presented in Table 2. To illustrate the sufficiency of our results to
find the solution and its uniqueness, we chose p = 15 as shown in Figure 4.

g 0.

(@) (b)
Figure 1. Results of w on { = [1,¢e] with p = 2 for Example 5.2 when a) 1 < 2 < 2 and
H9=03;b)W=17and0< H<1.
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0.35

0.3

0.25

0.2

s 0.

0.15

0.1

0.05

(a) (b)
Figure 2. Results of w on ¢ = [1,e] with p = 3 for Example 5.2 when a) 1 < W < 2,
$=05b)W=15,0< H<1.

s 0.

(a) (b)
Figure 3. Results of w with p = 4 for Example 5.2 whena) 1 <W <2, $=0.8;b) W= 1.2,
0< H<1.

(a) (b)
Figure 4. Results of w with p = 15 for Example 5.2 when a) = 1.2, 0 < $ < 1; b)
1 <W<2, H=0.8.
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Table 1. Values of o whenp=2and 1 <W <2, 0 < $ < 1 for Example 5.2.

w<l1 w<l1 w<l1 w<1 w<l1 w<l1 w<l1
W=1.2, W=1.2, W=1.5, W=15, W=15 W=1.8, W=1.8,
14 $=02 H=08 H=02 H=05 H=08 H=02 H=038

1.0000  0.0003 0.1393 0.0000 0.0001 0.0038 0.0000 0.0001
1.2455  0.0607 0.0913 0.0401 0.0438 0.0532 0.0258 0.0304
1.4909 0.1105 0.1314 0.0818 0.0868 0.0925 0.0581 0.0630
1.7364  0.1664 0.1816 0.1313 0.1376 0.1401 0.0990 0.1037
1.9819  0.2306 0.2417 0.1900 0.1976 0.1972 0.1493 0.1537
22273 0.3048 0.3129 0.2594 0.2684 0.2652 0.2102 0.2143
24728  0.3909 0.3967 0.3415 0.3520 0.3461 0.2837 0.2874
277183  0.4917 0.4956 0.4386 0.4508 0.4423 0.3719 0.3752

Table 2. Values of o whenp=3,4and 1 <MW <2, 0 < $H <1 for Example 5.2.
p=3 p=3 p=3 p=4 p=4 p=4

w<1 w<l1 w<l1 w<1 w<1 w<1
W=12, W=15, W=18, W=1.2, W=1.5 W=1.8,
4 H$=08 H=05 H=02 H=08 H=05 9H=02

1.0000  0.0203 0.0001 0.0001 0.0078 0.0003 0.0003
1.2455  0.0656 0.0390 0.0299 0.0575 0.0425 0.0353
1.4909  0.0964 0.0713 0.0554 0.0853 0.0706 0.0589
1.7364  0.1315 0.1068 0.0843 0.1149 0.1001 0.0837
1.9819  0.1716 0.1471 0.1178 0.1475 0.1326 0.1112
22273 0.2177 0.1932 0.1571 0.1842 0.1692 0.1424
24728  0.2708 0.2464 0.2034 0.2260 0.2110 0.1785
27183  0.3323 0.3082 0.2581 0.2741 0.2592 0.2209

7. Conclusions

In this paper, we examined the £P-integrable solutions of nonlinear CH¥ DEs with integral
boundary conditions. We applied the Burton-Kirk fixed-point theorem and Banach contraction
principle with the Kolmogorov compactness criterion and Holder’s inequality technique to demonstrate
the main results. In addition, the Ulam-Hyers and Ulam-Hyers-Rassias stability of the problem defined
by Egs (1.1) and (1.2) have been studied. Finally, examples have been provided to demonstrate the
validity of our conclusions. In future works, one can extend the given fractional boundary-value
problem to more fractional derivatives, such as the Hilfer and Caputo-Fabrizio fractional derivatives.
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