
Electronic  
Research Archive

http://www.aimspress.com/journal/era

ERA, 31(6): 3552–3567.
DOI: 10.3934/era.2023180
Received: 21 January 2023
Revised: 27 March 2023
Accepted: 29 March 2023
Published: 23 April 2023

Research article

The exact solutions of the fractional-stochastic Fokas-Lenells equation in
optical fiber communication

Sahar Albosaily1, Wael Mohammed1,2,* and Mahmoud El-Morshedy3,4

1 Department of Mathematics, Collage of Science, University of Ha’il, Ha’il 2440, Saudi Arabia
2 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
3 Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin

Abdulaziz University, Al-Kharj 11942, Saudi Arabia
4 Department of Statistics and Computer Science, Faculty of Science, Mansoura University,

Mansoura 35516, Egypt

* Correspondence: Email: wael.mohammed@mans.edu.eg.

Abstract: The fractional-stochastic Fokas-Lenells equation (FSFLE) in the Stratonovich sense is
taken into account here. The modified mapping method is used to generate new trigonometric,
hyperbolic, elliptic and rational stochastic fractional solutions. Because the Fokas-Lenells equation
has many implementations in telecommunication modes, complex system theory, quantum field theory,
and quantum mechanics, the obtained solutions can be employed to describe a wide range of exciting
physical phenomena. We plot several 2D and 3D diagrams to demonstrate how multiplicative noise and
fractional derivatives affect the analytical solutions of the FSFLE. Also, we show how multiplicative
noise at zero stabilizes FSFLE solutions.
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1. Introduction

Nonlinear evolution equations (NEEs) are used extensively in engineering and scientific fields,
including wave propagation phenomena, quantum mechanics, shallow water wave propagation,
chemical kinematics, solid-state physics, optical fibers, fluid mechanics, plasma physics, heat flow
and so on. Recently, much research on NEEs has focused on existence, uniqueness, convergence and
finding solutions: for example, [1–11], and the references therein. One of the essential physical issues
for NEEs is obtaining traveling wave solutions. Therefore, the looking for mathematical techniques to
generate exact solutions to NEEs has become a significant and necessary task in nonlinear sciences.
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Recently, various techniques for dealing with NEEs have been established, such as the exp-function
method [12], perturbation method [13, 14], sine-cosine method [15, 16], spectral methods [17],
tanh-sech method [18, 19], Jacobi elliptic function [20], Hirota’s method [21], exp(−ϕ(ς))-expansion
method [22], extended trial equation method [23, 24], (G′/G)-expansion method [25, 26], etc.

In recent years, the use of fractional differential equations has grown due to their wide range of
applications in fields such as control theory, fluid flow, finance, electrical networks, solid state
physics, chemical kinematics, optical fiber, plasma physics, signal processing, and biological
populations. A number of mathematicians have proposed various types of fractional derivatives.
These types include, the new truncated M-fractional derivative, Caputo fractional derivative,
Riemann-Liouville fractional derivative, Grunwald-Letnikov fractional derivative, He’s fractional
derivative, Riesz fractional derivatives, the Weyl derivative and conformable fractional
definitions [27–34].

Khalil et al. [32] have developed a new derivative operator known as the conformable derivative
(CD). From this point, let us define the CD for the function u : [0,∞) → R of order β ∈ (0, 1] as
follows:

Dβz u(z) = lim
h→0

u(z + hz1−β) − u(z)
h

.

The CD satisfies the following properties for any constants a and b:
1)Dβz [au(z) + bv(z)] = aDβz u(z) + bDβz v(z) , 2)Dβz [a] = 0,
3)Dβz [za] = aza−β, 4)Dβz u(z) = z1−β du

dz .

In contrast, stochastic partial differential equations (SPDEs) are models for spatiotemporal physical,
biological and chemical systems that are sensitive to random influences. In the past few decades,
these models have been the subject of extensive research. It has been emphasized how crucial it is
to take stochastic effects into account when modeling complex systems. For instance, there is rising
interest in employing SPDEs to represent complex phenomena mathematically in the fields of finance,
mechanical and electrical engineering, biophysics, information systems, materials sciences, condensed
matter physics, and climate systems [35, 36].

Therefore, it is crucial to consider NEEs with fractional derivatives and for some stochastic force.
Here, we consider the fractional-stochastic Fokas-Lenells equation (FSFLE):

DαxΦt − γ1D
α
xxΦ − 2iγ2D

α
xΦ + ϑ |Φ|

2 (Φ + iρDαxΦ) + σDαxΦ ◦Wt = 0, (1.1)

where Φ(x, t) gives the complex field, γ1, γ2 and ρ are positive constants, ϑ = ±1, W is the standard
Wiener process, σ is the strength of the noise, and Φ ◦ dW is multiplicative noise in the Stratonovich
sense.

If we put σ = 0 and α = 1, then we get the Fokas-Lenells equation [37–39]:

Φxt − γ1Φxx − 2iγ2Φx + ϑ |Φ|
2 (Φ + iρΦx) = 0. (1.2)

Equation (1.2) is one of the most significant equations, and it has many applications in
telecommunication models, complex system theory, quantum field theory and quantum mechanics.
Also, it appears as a pattern that identifies nonlinear pulse propagation in optical fibers. Demiray and
Bulut [37] obtained the exact solutions of Eq (1.2) by utilizing the extended trial equation and
generalized Kudryashov methods. Meanwhile, Xu and Fan [38] used the Riemann-Hilbert problem to
obtain the long-time asymptotic behavior of the solution of Eq (1.2).
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It is important to note that Stratonovich and Itô [40] are the two versions of stochastic integrals that
are most frequently used. Modeling problems essentially establish which form is acceptable;
nevertheless, once that form is chosen, an equivalent equation of the alternate form can be created
utilizing the same solutions. The following correlation can therefore be used to switch between
Stratonovich (denoted as

∫ t

0
Φ ◦ dW) and Itô (denoted as

∫ t

0
ΦdW):∫ t

0
σΦ(τ) ◦ dW(τ) =

∫ t

0
σΦ(τ)dW(τ) +

σ2

2

∫ t

0
Φ(τ)dτ. (1.3)

Our aim in this study is to derive the analytical fractional-stochastic solutions of the FSFLE (1.1).
The modified mapping method is what we employ to obtain these solutions. Physics researchers would
find the solutions very helpful in defining several major physical processes because of the stochastic
term and fractional derivatives present in Eq (1.1). Additionally, by using MATLAB software, we
introduce numerous graphs to investigate the effects of noise and the fractional derivative on the exact
solution of the FSFLE (1.1).

The outline of this paper is as follows: In Section 2, we get the wave equation for the FSFLE (1.1).
In Section 3, the modified mapping method is used to get the exact solutions of the FSFLE (1.1). In
Section 4, we can see how white noise and the fractional derivative affect the acquired FSFLE solutions.
At last, the conclusions of the paper are given.

2. Traveling wave equation for FSFLE

The wave equation for FSFLE (1.1) is obtained by using the wave transformation

Φ(x, t) = Ψ(η)eiΘ(µ)−σW(t)−σ2t, Θ(µ) =
µ1

α
xα + µ2t and η =

η1

α
xα + η2t, (2.1)

where the function Ψ is deterministic, and µ1, µ2, η1 and η2 are non-zero constants. We note that

Φt = [η2Ψ
′ + iµ2Ψ − σΨWt +

1
2
σ2Ψ − σ2Ψ]eiΘ(µ)−σW(t)−σ2t,

= [η2Ψ
′ + iµ2Ψ − σΨWt −

1
2
σ2Ψ]eiΘ(µ)−σW(t)−σ2t,

= [η2Ψ
′ + iµ2Ψ − σΨ ◦Wt]eiΘ(µ)−σW(t)−σ2t, (2.2)

where we used Eq (1.3), and the term 1
2σ

2Ψ is the Itô correction.

DαxΦt = [η1η2Ψ
′′ + i(η1µ2 + µ1η2)Ψ′ − σ(η1Ψ

′ + iµ1Ψ) ◦Wt − µ1µ2Ψ]eiΘ(µ)−σW(t)−σ2t, (2.3)

and

DαxΦ = (η1Ψ
′ + iµ1Ψ)eiΘ(µ)+σW(t)−σ2t,

DαxxΦ = (η2
1Ψ
′′ + 2iµ1η1Ψ

′ − µ2
1Ψ)eiΘ(µ)−σW(t)−σ2t. (2.4)

Inserting Eqs (2.3) and (2.4) into Eq (1.1), we have the following system:

(η1η2 − γ1η
2
1)Ψ′′ + (ν − µ1µ2 + γ

2
1µ1 + 2γ2µ1)Ψ − νρµ1Ψ

3e[−2σW(t)−2σ2t] = 0, (2.5)
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and
i[(η1µ2 + µ1η2 − 2γ1µ1η1 − 2γ2η1)Ψ′ + νρη1Ψ

2Ψ′e[−2σW(t)−2σ2t]] = 0. (2.6)

We have, by taking the expectation on both sides,

(η1η2 − γ1η
2
1)Ψ′′ + (ν − µ1µ2 + γ

2
1µ1 + 2γ2µ1)Ψ − νρµ1Ψ

3e−2σ2tEe−2σW(t) = 0, (2.7)

and
i[(η1µ2 + µ1η2 − 2γ1µ1η1 − 2γ2η1)Ψ′ + νρη1Ψ

2Ψ′e−2σ2tEe−2σW(t)] = 0. (2.8)

Since W(t) is normal distribution, then E(e2kW(t)) = e2k2t for any real number k. Therefore, Eqs (2.7)
and (2.8) become

(η1η2 − γ1η
2
1)Ψ′′ + (ν − µ1µ2 + γ

2
1µ1 + 2γ2µ1)Ψ − νρµ1Ψ

3 = 0, (2.9)

i[(η1µ2 + µ1η2 − 2γ1µ1η1 − 2γ2η1)Ψ′ + νρη1Ψ
2Ψ′] = 0. (2.10)

From the imaginary part of Eq (2.10), we obtained

η2 =
1
µ1

(−η1µ2 + 2γ1µ1η1 + 2γ2η1 − νρη1Ψ
2).

while the real part is given by
Ψ′′ + AΨ − BΨ3 = 0, (2.11)

where

A =
(ν − µ1µ2 + γ

2
1µ1 + 2γ2µ1)

(η1η2 − γ1η
2
1)

, and B =
νρµ1

(η1η2 − γ1η
2
1)
.

3. Exact solutions of FSFLE

In this section, we apply the modified mapping method stated in [41]. Assuming that the solutions
of Eq (2.11) have the form

Ψ(η) =
N∑

i=0

ℓiφ
i(η) +

N∑
i=1

ℏiφ
−i(η), (3.1)

where ℓi and ℏi are unknown constants to be evaluated for i = 1, 2, ..ℓN , and φ satisfies the first type of
the elliptic equation

φ′ =
√

r + qφ2 + pφ4, (3.2)

where r, q and p are real parameters.
First, let us balance Ψ′′ with Ψ3 in Eq (2.11) to find the parameter N as

N + 2 = 3N =⇒ N = 1.

With N = 1, Eq (3.2) takes the form

Ψ(η) = ℓ0 + ℓ1φ(η) +
ℏ1

φ(η)
. (3.3)
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Differentiating Eq (3.3) twice and using (3.2), we get

Ψ′′ = ℓ1(qφ + 2pφ3) + ℏ1(qφ−1 + 2rφ−3). (3.4)

Putting Eqs (3.3) and (3.4) into Eq (2.11) we have

(2ℓ1 p − Bℓ31)φ3 − 3Bℓ0ℓ21φ
2 + (ℓ1q − 3Bℓ20ℓ1 − 3Bℏ1ℓ

2
1 + ℓ1A)φ

+(Aℓ0 − Bℓ30 − 6Bℓ0ℓ1ℏ1) + (Aℏ1 + ℏ1q − 3Bℓ20ℏ1 − 3Bℓ1ℏ2
1)φ−1

−3Bℏ2
1φ
−2 + (2rℏ1 − Bℏ3

1)φ−3 = 0.

Comparing each coefficient of φk and φ−k with zero for k = 3, 2, 1, 0, we attain

2ℓ1 p − Bℓ31 = 0,

−3Bℓ0ℓ21 = 0,

ℓ1q − 3Bℓ20ℓ1 − 3Bℏ1ℓ
2
1 + ℓ1A = 0,

Aℓ0 − Bℓ30 − 6Bℓ0ℓ1ℏ1 = 0,

Aℏ1 + ℏ1q − 3Bℓ20ℏ1 − 3Bℓ1ℏ2
1 = 0,

−3Bℓ0ℏ2
1 = 0

and
2rℏ1 − Bℏ3

1 = 0.

When we solve these equations, we get three different families:
First family:

ℓ0 = 0, ℓ1 = ±

√
2p
B
, ℏ1 = 0, q = −A. (3.5)

Second family:

ℓ0 = 0, ℓ1 = 0, ℏ1 = ±

√
2r
B
, q = −A. (3.6)

Third family:

ℓ0 = 0, ℓ1 = ±

√
2p
B
, ℏ1 = ±

√
2r
B
, q = 6

√
pr − A. (3.7)

First family: The solution of Eq (2.11), by utilizing Eqs (3.3) and (3.5), takes the form

Φ(x, t) = ±

√
2p
B
φ(η)eiΘ(µ)−σW(t)−σ2t. (3.8)

There are many cases depending on p > 0 :
Case 1-1: If p = κ2, q = −(1 + κ2) and r = 1, then φ(η) = sn(η). In this case the solution of FSFLE

(1.1), by utilizing Eq (3.8), is

Φ(x, t) = ±κ

√
2
B

sn(
η1

α
xα + η2t)eiΘ(µ)−σW(t)−σ2t. (3.9)
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If κ → 1, then Eq (3.9) transfers to

Φ(x, t) = ±

√
2
B

tanh(
η1

α
xα + η2t)eiΘ(µ)−σW(t)−σ2t. (3.10)

Case 1-2: If p = 1, q = 2κ2 − 1 and r = −κ2(1 − κ2), then φ(η) = ds(η). In this case the solution of
FSFLE (1.1), by using Eq (3.8), is

Φ(x, t) = ±

√
2
B

ds(
η1

α
xα + η2t)eiΘ(µ)−σW(t)−σ2t. (3.11)

If κ → 1, then Eq (3.11) transfers to

Φ(x, t) = ±

√
2
B

csch(
η1

α
xα + η2t)eiΘ(µ)−σW(t)−σ2t. (3.12)

If κ → 0, then Eq (3.11) transfers to

Φ(x, t) = ±

√
2
B

csc(
η1

α
xα + η2t)eiΘ(µ)−σW(t)−σ2t. (3.13)

Case 1-3: If p = 1, q = 2 − κ2 and r = (1 − κ2), then φ(η) = cs(η). In this case the solution of
FSFLE (1.1), by utilizing Eq (3.8), is

Φ(x, t) = ±

√
2
B

cs(
η1

α
xα + η2t)eiΘ(µ)−σW(t)−σ2t. (3.14)

If κ → 1, then Eq (3.14) transfers to

Φ(x, t) = ±

√
2
B

csch(
η1

α
xα + η2t)eiΘ(µ)−σW(t)−σ2t. (3.15)

When κ → 0, then Eq (3.14) transfers to

Φ(x, t) = ±

√
2
B

cot(
η1

α
xα + η2t)eiΘ(µ)−σW(t)−σ2t. (3.16)

Case 1-4: If p = κ
2

4 , q = (κ2−2)
2 and r = 1

4 , then φ(η) = sn(η)
1+dn(η) . In this case the solution of FSFLE

(1.1), by using Eq (3.8), is

Φ(x, t) = ±κ

√
1

2B
sn( η1

α
xα + η2t)

1 + dn( η1
α

xα + η2t)
eiΘ(µ)−σW(t)−σ2t. (3.17)

If κ → 1, then Eq (3.17) transfers to

Φ(x, t) = ±

√
1

2B
tanh( η1

α
xα + η2t)

1 + sech( η1
α

xα + η2t)
eiΘ(µ)−σW(t)−σ2t. (3.18)
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Case 1-5: If p = (1−κ2)2

4 , q = (1−κ2)2

2 and r = 1
4 , then φ(η) = sn(η)

dn(η)+cn(η) . In this case the solution of
FSFLE (1.1), by using Eq (3.8), is

Φ(x, t) = ±(1 − κ2)

√
1

2B
[

sn( η1
α

xα + η2t)

dn( η1
α

xα + η2t) + cn( η1
α

xα + η2t)
]eiΘ(µ)−σW(t)−σ2t. (3.19)

If κ → 0, then Eq (3.19) transfers to

Φ(x, t) = ±

√
1

2B
[

sin( η1
α

xα + η2t)

1 + cos( η1
α

xα + η2t)
]eiΘ(µ)−σW(t)−σ2t. (3.20)

Case 1-6: If p = 1−κ2
4 , q = (1−κ2)

2 and r = 1−κ2
4 , then φ(η) = cn(η)

1+sn(η) . In this case the solution of
FSFLE (1.1), by using Eq (3.8), is

Φ(x, t) = ±

√
2
B

cn( η1
α

xα + η2t)

1 + sn( η1
α

xα + η2t)
]eiΘ(µ)−σW(t)−σ2t. (3.21)

When κ → 0, then Eq (3.21) transfers to

Φ(x, t) = ±
1
2

√
2
B

cos( η1
α

xα + η2t)

1 + sin( η1
α

xα + η2t)
]eiΘ(µ)−σW(t)−σ2t. (3.22)

Case 1-7: If p = 1, q = 0 and r = 0, then φ(η) = c
η
. In this case the solution of FSFLE (1.1), by

utilizing Eq (3.8), is

Φ(x, t) = ±

√
2
B

c
( η1
α

xα + η2t)
]eiΘ(µ)−σW(t)−σ2t. (3.23)

Second family: The solution of Eq (2.11), by using Eqs (3.3) and (3.6), takes the form

Φ(x, t) = ±

√
2r
B

1
φ(η)

eiΘ(µ)−σW(t)−σ2t. (3.24)

There are many cases depending on r > 0 :
Case 2-1: If p = κ2, q = −(1 + κ2) and r = 1, then φ(η) = sn(η). In this case the solution of FSFLE

(1.1), by utilizing Eq (3.24), is

Φ(x, t) = ±

√
2
B

1
sn( η1

α
xα + η2t)

eiΘ(µ)−σW(t)−σ2t. (3.25)

If κ → 1, then Eq (3.25) transfers to

Φ(x, t) = ±

√
2
B

coth(
η1

α
xα + η2t)eiΘ(µ)−σW(t)−σ2t. (3.26)

Case 2-2: If p = 1, q = 2 − κ2 and r = (1 − κ2), then φ(η) = cs(η). In this case the solution of
FSFLE (1.1), by utilizing Eq (3.24), is

Φ(x, t) = ±

√
2(1 − κ2)

B
1

cs( η1
α

xα + η2t)
eiΘ(µ)−σW(t)−σ2t. (3.27)
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When κ → 0, then Eq (3.27) transfers to

Φ(x, t) = ±

√
2
B

tan(
η1

α
xα + η2t)eiΘ(µ)−σW(t)−σ2t. (3.28)

Case 2-3: If p = −κ2, q = 2κ2 − 1 and r = (1 − κ2), then φ(η) = cn(µ). In this case the solution of
FSFLE (1.1), by utilizing Eq (3.24), is

Φ(x, t) = ±

√
2(1 − κ2)

B
1

cn( η1
α

xα + η2t)
eiΘ(µ)−σW(t)−σ2t. (3.29)

If κ → 0, then Eq (3.31) transfers to

Φ(x, t) = ±

√
2
B

sec(
η1

α
xα + η2t)eiΘ(µ)−σW(t)−σ2t. (3.30)

Case 2-4: If p = κ
2

4 , q = (κ2−2)
2 and r = 1

4 , then φ(η) = sn(η)
1+dn(η) . In this case the solution of FSFLE (1.1),

by using Eq (3.24), is

Φ(x, t) = ±

√
1

2B
1 + dn( η1

α
xα + η2t)

sn( η1
α

xα + η2t)
eiΘ(µ)−σW(t)−σ2t. (3.31)

If κ → 1, then Eq (3.31) transfers to

Φ(x, t) = ±

√
1

2B
[coth(

η1

α
xα + η2t) + csch(

η1

α
xα + η2t)]eiΘ(µ)−σW(t)−σ2t. (3.32)

Case 2-5: If p = 1−κ2
4 , q = (1−κ2)

2 and r = 1−κ2
4 , then φ(η) = cn(η)

1+sn(η) . In this case the solution of
FSFLE (1.1), by utilizing Eq (3.8), is

Φ(x, t) = ±

√
1 − κ2

2B
1 + sn( η1

α
xα + η2t)

cn( η1
α

xα + η2t)
]eiΘ(µ)−σW(t)−σ2t. (3.33)

When κ → 0, then Eq (3.33) transfers to

Φ(x, t) = ±

√
2
B

[sec(
η1

α
xα + η2t) ± tan cn(

η1

α
xα + η2t)]eiΘ(µ)−σW(t)−σ2t. (3.34)

Case 2-6: If p = (1−κ2)2

4 , q = (1−κ2)2

2 and r = 1
4 , then φ(η) = sn(η)

dn(η)+cn(η) . In this case the solution of
FSFLE (1.1), by using Eq (3.24), is

Φ(x, t) = ±

√
1

2B
[
dn( η1

α
xα + η2t) + cn( η1

α
xα + η2t)

sn( η1
α

xα + η2t)
]eiΘ(µ)−σW(t)−σ2t. (3.35)

If κ → 0, then Eq (3.35) transfers to

Φ(x, t) = ±

√
1

2B
[csc(

η1

α
xα + η2t) + cot(

η1

α
xα + η2t)]eiΘ(µ)−σW(t)−σ2t. (3.36)
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If κ → 1, then Eq (3.35) transfers to

Φ(x, t) = ±

√
2
B

csch(
η1

α
xα + η2t)eiΘ(µ)−σW(t)−σ2t. (3.37)

Third family: The solution of Eq (2.11), using Eqs (3.3) and (3.7), takes the form

Φ(x, t) = [±

√
2p
B
φ(η) ±

√
2r
B

1
φ(η)

]eiΘ(µ)−σW(t)−σ2t. (3.38)

There are many cases depending on r > 0 :
Case 3-1: If p = κ2, q = −(1 + κ2) and r = 1, then φ(η) = sn(η). In this case the solution of FSFLE

(1.1), by utilizing Eq (3.38), is

Φ(x, t) = ±

√
2
B

[κsn(
η1

α
xα + η2t) +

1
sn( η1

α
xα + η2t)

]eiΘ(µ)−σW(t)−σ2t. (3.39)

If κ → 1, then Eq (3.39) transfers to

Φ(x, t) = ±[

√
2
B

tanh(
η1

α
xα + η2t) +

√
2
B

coth(
η1

α
xα + η2t)]eiΘ(µ)−σW(t)−σ2t. (3.40)

Case 3-2: If p = 1, q = 2 − κ2 and r = (1 − κ2), then φ(η) = cs(η). In this case the solution of
FSFLE (1.1), by using Eq (3.38), is

Φ(x, t) = ±[

√
2
B

cs(η) +

√
2(1 − κ2)

B
1

cs(η)
eiΘ(µ)−σW(t)−σ2t, (3.41)

where η = η1
α

xα + η2t.When κ → 0, then Eq (3.41) transfers to

Φ(x, t) = ±

√
2
B

[cot(
η1

α
xα + η2t) + tan(

η1

α
xα + η2t)]eiΘ(µ)−σW(t)−σ2t. (3.42)

Case 3-3: If p = κ
2

4 , q = (κ2−2)
2 and r = 1

4 , then φ(η) = sn(η)
1±dn(η) . In this case the solution of FSFLE (1.1),

by utilizing Eq (3.38), is

Φ(x, t) = ±

√
1

2B
[κ

sn(η
1 + dn(η)

+
1 + dn(η)

sn(η)
]eiΘ(µ)−σW(t)−σ2t, (3.43)

where η = η1
α

xα + η2t. If κ → 1, then Eq (3.43) transfers to

Φ(x, t) = ±

√
2
B

coth(
η1

α
xα + η2t)eiΘ(µ)−σW(t)−σ2t. (3.44)

Case 3-4: If p = 1−κ2
4 , q = (1−κ2)

2 and r = 1−κ2
4 , then φ(η) = cn(η)

1+sn(η) . In this case the solution of
FSFLE (1.1), by utilizing Eq (3.38), is

Φ(x, t) = ±

√
1 − κ2

2B
[

cn(η)
1 + sn(η)

+
1 + sn(η)

cn(η)
]eiΘ(µ)−σW(t)−σ2t, (3.45)
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where η = η1
α

xα + η2t.When κ → 0, then Eq (3.45) transfers to

Φ(x, t) = ±

√
2
B

sec(η)eiΘ(µ)−σW(t)−σ2t. (3.46)

Case 3-5: If p = (1−κ2)2

4 , q = (1−κ2)2

2 and r = 1
4 , then φ(η) = sn(η)

dn(η)+cn(η) . In this case the solution of the
FSFLE (1.1), by using Eq (3.38), is

Φ(x, t) = ±

√
1

2B
[

(1 − κ2)sn(η)
dn(η) + cn(η)

+
dn(η) + cn(η)

sn(η)
]eiΘ(µ)−σW(t)−σ2t, (3.47)

where η = η1
α

xα + η2t. If κ → 0, then Eq (3.35) transfers to

Φ(x, t) = ±

√
2
B

csc(
η1

α
xα + η2t)eiΘ(µ)−σW(t)−σ2t. (3.48)

4. Effects of noise and fractional derivative

In deterministic systems, the stabilizing and destabilizing consequences of noisy terms are well
known at this time, based on the research done on the issue [42, 43]. There is no longer any doubt
that these effects are critical to comprehending the long-term behavior of real systems. Recently,
there have been studies on the stabilization problem of stochastic nonlinear delay systems; see, for
instance [44, 45]. Now, we examine the effect of white noise and fractional derivatives on the exact
solution of the FSFLE (1.1). To describe the behavior of these solutions, we present a number of
diagrams. For certain obtained solutions such as Eqs (3.9) and (3.10), let us fix the parameters ρ =
γ1 = µ1 = η1 = 1, η2 = 2, µ2 = −2, x ∈ [0, 4] and t ∈ [0, 2] to simulate these diagrams.

First, the fractional derivative effects: In Figures 1 and 2, if σ = 0, we can see that the graph’s
shape is compressed as the value of β decreases:

We deduced from Figures 1 and 2 that there is no overlap between the curves of the solutions.
Furthermore, as the order of the fractional derivative decreases, the surface moves to the right.

Second, the noise effects: In Figure 3, the surface is not flat and contains various fluctuations when
σ = 0 (i.e., there is no noise).
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(a) σ = 0, α = 1 (b) σ = 0, α = 0.7

(c) σ = 0, α = 0.5 (d) σ = 0, α = 1, 0.7, 0.5

Figure 1. (a–c) 3D graph of solution |Φ(x, t)| in Eq (3.9) with σ = 0 and different values of
α = 1, 0.7, 0.5 (d) 2D graph of Eq (3.9) with different values of α = 1, 0.7, 0.5.

(a) σ = 0, α = 1 (b) σ = 0, α = 0.7

(c) σ = 0, α = 0.5 (d) σ = 0, α = 1, 0.7, 0.5

Figure 2. (a–c) indicate 3D-graph of solution |Φ(x, t)| in Eq (3.10) with σ = 0 and different
values of α = 1, 0.7, 0.5 (d) denotes 2D-graph of Eq (3.10) for different values of α = 1, 0.7,
and 0.5.
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σ = 0 σ = 0

Figure 3. 3D diagram of solution |Φ(x, t)| in Eqs (3.9) and (3.10).

While we can see in Figures 4 and 5, after small transit behaviors, the surface has become more
planar:

σ = 1 σ = 2

Figure 4. 3D graph of solution |Φ(x, t)| in Eq (3.9) for σ = 1, 2.

σ = 1 σ = 2

Figure 5. 3D graph of solution |Φ(x, t)| in Eq (3.10) for σ = 1, 2.
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In the end, we can deduce from Figures 4 and 5 that, when the noise is ignored (i.e., at σ = 0), there
are some different types of solutions, such as a periodic solution, kink solution, etc. After minor transit
patterns, the surface becomes significantly flatter when noise is included and its strength is increased
by σ = 1, 2. This demonstrates that the multiplicative white noise has an effect on the FSFLE solutions
and stabilizes them around zero.

5. Conclusions

We looked at FSFLE derived in the Itô sense by multiplicative white noise in this paper. By using a
modified mapping technique, we were able to acquire the exact fractional-stochastic solutions. These
solutions play a crucial role in the explanation of a wide range of exciting and complex physical
phenomena. In addition, the fractional derivative and multiplicative white noise effects on the
analytical solution of FSFLE (1.1) were demonstrated using MATLAB software. We came to the
conclusion that the multiplicative white noise stabilized the solutions around zero and the
fractional-derivative pushed the surface to the right when the fractional-order derivative declined.
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