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Abstract: In this paper, we consider the existence and multiplicity of normalized solutions to the
following pseudo-relativistic Schrödinger equations{ √

−∆ + m2u + λu = ϑ|u|p−2v + |u|2
]−2v, x ∈ RN ,

u > 0,
∫
RN |u|2dx = a2,

where N ≥ 2, a, ϑ,m > 0, λ is a real Lagrange parameter, 2 < p < 2] = 2N
N−1 and 2] is the critical Sobolev

exponent. The operator
√
−∆ + m2 is the fractional relativistic Schrödinger operator. Under appropriate

assumptions, with the aid of truncation technique, concentration-compactness principle and genus theory, we
show the existence and the multiplicity of normalized solutions for the above problem.
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1. Introduction

This paper deals with the following pseudo-relativistic equation of the form:{ √
−∆ + m2u + λu = ϑ|u|p−2u + |u|2

]−2u, x ∈ RN ,

u > 0,
∫
RN |u|2dx = a2,

(1.1)

where the frequency λ as a real Lagrange parameter and is part of the unknowns, 2 < p < 2]. For
s ∈ (0, 1), the operator (−∆ + m2)s is defined in Fourier space as multiplication by the symbol (|ξ|2 + m2)s

see( [1, 2]) i.e., for any u : RN → R belonging to the Schwartz space S (RN) of rapidly decreasing
functions,

F ((−∆ + m2)su)(ξ) := (|ξ|2 + m2)sF u(ξ), ∀ ξ ∈ RN ,
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where we denote by

F u(ξ) := (2π)−
N
2

∫
RN

eik·xu(x)dx, ξ ∈ RN ,

the Fourier transform of u. Aslo, we show an alternative definition of (−∆ + m2)s (see [2, 3]):

(−∆ + m2)su(x) := m2su(x) + C(N, s)m
N+2s

2 P.V.
∫
RN

u(x) − u(y)

|x − y|
N+2s

2

K N+2s
2

(m|x − y|)dy, x ∈ RN , (1.2)

where P.V. is the Cauchy principal value, Kι is the modified Bessel function of the third kind of index ι
(see [4, 5]) and

C(N, s) := 2−
N+2s

2 +1π−
N
2 22s s(1 − s)

Γ(2 − s)
.

Once m→ 0, then (−∆ + m2)s reduces to the classical fractional Laplacian (−∆)s defined via Fourier
transform by

F ((−∆)su)(ξ) := |ξ|2sF u(ξ), ξ ∈ RN .

At the same time, by singular integrals, we also get

(−∆)su(x) := CN,sP.V.
∫
RN

u(x) − u(y)
|x − y|N+2s dy, x ∈ RN , CN,s := π−

N
2 22s Γ( N+2s

2 )
Γ(2 − s)

s(1 − 2s) (1.3)

for s ∈ (0, 1). We observe that the most important difference between operators (−∆)s and (−∆ + m2)s is
showed in scaling: the first one is homogeneous in scaling, while the second one is inhomogeneous,
which is evident from the Bessel function Kι in (1.2). There are many scholars devoted to the exploration
of fractional Schrödinger equation

(−∆)su + V(x)u = f (u), x ∈ Ω,

where (−∆)s as the fractional Laplacian, f (u) represents the nonlinearity, the function V(x) : RN → R is
an external potential function, and Ω is a bounded domain in RN or Ω = RN . It was first introduced in the
work of Laskin [6,7] and originated from an expansion of the Feynman path integral from Brownian-like
to Lévy-like quantum mechanical paths. Note that the Feynman path integral produces the classical
Schrödinger equation, however, the fractional Schrödinger equation is obtained by the path integral over
Lévy trajectories.

When s = 1
2 , the operator

√
−∆ + m2 associates with the free Hamiltonian of a free relativistic particle

of mass m. It is worth noting that works of Lieb and Yau [8, 9] on the stability of relativistic matter
bring great inspiration to the exploration of

√
−∆ + m2. There are some results for this topic, here we

just quote a few, please refer to [10–12]. In particularly, it is interesting to consider results for fractional
equations involving the operator

√
−∆u + m2 with m > 0. From the perspective of mathematics, many

scholars focused on finding a solution to the following pseudo-relativistic equation
√
−∆u + m2u + λu = ϑ|u|p−2u + g(u) in Rn, (1.4)

with g(u) = |u|2
]−2u. Now, there are two different approaches to consider problem (1.4) according to the

characteristics of the frequency λ :

(i) the frequency λ is a fixed given constant,
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(ii) the frequency λ is part of the unknown in problem (1.4).

In case (i), we use a variant of extension method [13] to consider problem (1.4) due to the presence
of the nonlocal operator

√
−∆u + m2u and we shall introduce this tool in detail in Section 2. Therefore,

it can be seen that the solution of problem (1.4) is a critical point connected with the energy functional
Iλ(v) defined in H1(RN+1

+ ) by

Iλ(v) =
1
2

"
RN+1

+

(|∇v|2 + m2v2)dxdy +
1
2
λ

∫
RN
|v(x, 0)|2dx −

ϑ

p

∫
RN
|v(x, 0)|pdx −

1
2]

∫
RN
|v(x, 0)|2

]

dx.

In this case, we are devoted to looking for the ground state solutions because they possess many more
properties, such as positivity, symmetry and stability. In particularly, the ground state solutions are
regarded as minimizers of Iλ on the Nehari manifold

Mλ :=
{
v ∈ H1(RN+1

+ )\{0} :
〈
I′λ(v), v

〉
= 0

}
,

(see [14]). In addition, by building a nonempty closed subset of the sign-changing Nehari manifold, Yang
and Tang [15] obtained the existence of least energy sign-changing solutions for Schrödinger-Poisson
system involving concave-convex nonlinearities in R3.

Alternatively, in case (ii) other papers are devoted to looking for nontrivial solutions of problem (1.4)
when the frequency λ is unknown. In this situation, λ is regarded as a Lagrange multiplier. Moreover,
this method from the perspective of physics seems particularly interesting because of the conservation
of mass and the mass has a clear physical meaning. On the other hand, such solutions help us to better
understand the dynamical properties, such as orbital stability or instability, where ϑ > 0 represents
the strength of attractive interactions between cold atoms. In general, the solutions with prescribed
L2-norms of solutions is called normalized solutions, i.e., the solutions satisfy |u|2 = c > 0 for a priori
given c. Here, in order to look for normalized solutions of problem (1.1), we shall take advantage of a
variant of extension method [13] and transform problem (1.1) into a local problem in a upper half-space
RN+1

+ with Neumann boundary condition. In addition, we look for the critical point of the functional on
the constraint manifold S(a). We shall introduce S(a) and the upper half-space RN+1

+ in detail in Section 2.
In recent years, many scholars have paid great attention to exploration of normalization solutions

to various classes of local and non-local problems, and have obtained many results, which are not
only of special significance in physics, but also closely related to nonlinear optics and Bose-Einstein
condensation. In addition, more and more mathematical scholars begin to explore also solutions with
prescribed L2-norms. This kind of problems was first proposed by Jeanjean in [16], who considered the
existence of normalized solutions for the Schrödinger equations{

−∆u = λu + g(u) in RN ,∫
RN |u|2dx = a2,

(1.5)

where N ≥ 1, λ ∈ R and g satisfies suitable assumptions. Inspired by pioneering work of Jeanjean [16],
with the help of variational methods, Alves et al. [17] considered the existence of normalized solutions
to the nonlinear Schrödinger equation with critical growth both when N ≥ 3 and N = 2. The author
in [18] established existence and several properties of ground states for the following critical equation{

−∆u = λu + µ|u|q−2u + |u|2
∗−2u in RN , N ≥ 3,∫

RN |u|2dx = a2,
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Later, Soave [19] also was interested in existence and qualitative properties of normalized solutions
of the nonlinear Schrödinger equation with combined power nonlinearities driven by two different
Laplacian operators. With the aid of an approximation method, Deng and Wu [20] obtained the existence
of normalized solutions for the Schrödinger equation, and the positive solution is mountain-pass type
for p = 2∗. Li and Zou [21] were interested in the exploration of fractional Schrödinger equation, they
obtained the existence of multiple normalized solutions in both the L2-subcritical and L2-supercritical
cases by truncation technique, concentration-compactness principle, genus theory and a fiber map. Wang
et al. [22] explored the existence results of normalized solutions for p-Laplacian equations in the case
( N+2

N p, p∗) by a mountain-pass argument and constrained variational methods. Yao et al. [23] considered
several nonexistence and existence results of normalized solutions for the Choquard equations involving
lower critical exponent by variational methods. With the aid of a perturbation method, Jeanjean et al. [24]
verified the existence of two solutions involving a prescribed L2-norm for a quasi-linear Schrödinger
equation. We point out that, in [19, 25–27], several applications are discussed. However, results about
the pseudo-relativistic equation are relatively few, as far as we know.

Inspired by the works above, we treat existence of the multiple normalized solutions for problem
(1.1). Undoubtedly, we shall encounter some difficulties in proving the existence of the normalized
solutions of problem (1.1). One is that Sobolev critical exponent 2] = 2N

N−1 which makes the lack of
compactness occur. On the other hand, since the embedding Xrad(RN+1

+ ) ↪→ L2(RN) is not compact, we
observe that the weak limit of (PS ) sequence can not be established in the constraint manifoldS(a). Therefore,
we have to prove that the Lagrange multipliers λ are non-negative in case 2 < p < 2 + 2/N < 2], which is
crucial for us to be able to obtain the compactness. Using the compactness principle, the difficulty is solved.

In the following, in case 2 < p < 2 + 2/N < 2], the energy functional J is unbounded from below
on S(a) , which results in the failure to get the existence of the solution to problem (1.1) via minimizing
problem. In the case 2 < p < 2 + 2

N , inspired by [17, 28], we use a truncation technique that allows the
truncation function to be bounded from below and coercive.

Finally, problem (1.1) is nonlocal, we shall encounter new difficulties and the study of this kind of
equations becomes very meaningful. Therefore, by the extension method in [13], we transform problem
(1.1) into a local problem in a upper half-space with a nonlinear Neumann boundary condition.

Our main result is stated in the following theorem:

Theorem 1.1. Let 2 < p < 2 + 2
N < 2] be satisfied. Then for given k ∈ N, there exists β > 0 independent

of k and ϑk := ϑ(k) such that problem (1.1) has at least k couples (u j, λ j) ∈ H
1
2 (RN)×R of weak solutions

for ϑ ≥ ϑk and a ∈ (0, (β/ϑ)
1

1−θ ], with
∫
RN |u j|

2dx = a2, λ j < 0 for all j ∈ [1, k] and θ =
(p−2)(N−1)

2 .

The organizational structure of present paper in what follows. In Section 2, we give some necessary
preliminaries and outline the variational framework. In Section 3, we are devoted to the proof of
Theorem 1.1.

2. Preliminaries

Let H
1
2 (RN) be the fractional Sobolev space defined as the completion of C∞c (RN) with the following

norm

|u|
H

1
2 (RN )

:=
(∫
RN

√
|ξ|2 + m2|Fu(ξ)|2dξ

) 1
2

.
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Therefore, H
1
2 (RN) is continuously embedded in Lp(RN) for all p ∈ [2, 2]) and H

1
2 (RN) is compactly

embedded in Lp
loc(R

N) for all p ∈ [1, 2]), please refer to [2,4,29,30]. Let H1(RN+1
+ ) denote the completion

of C∞c (RN+1
+ ) in the norm:

‖v‖ := ‖v‖H1(RN+1
+ ) =

("
RN+1

+

(|∇v|2 + m2v2) dxdy
) 1

2

.

According to Lemma 3.1 in [3], for s ∈ (0, 1), we have that the continuous imbedding H1(RN+1
+ ) ↪→

L2γ(RN+1
+ , y1−2s), this fact means

‖v‖L2γ(RN+1
+ ,y1−2s) ≤ Ŝ ‖v‖ for all v ∈ H1(RN+1

+ ), (2.1)

for some Ŝ > 0, where γ := 1 + 2
N−2s , and Lr(RN+1

+ , y1−2s) is the weighted Lebesgue space for r ∈ (1,∞),
equipped with the norm

‖v‖Lr(RN+1
+ ,y1−2s) :=

("
RN+1

+

y1−2s|v|r dxdy
) 1

r

.

Using Lemma 3.1.2 in [31], it follows that H1(RN+1
+ ) compactly embedded in L2(B+

R, y
1−2s) for all R > 0.

In the lignt of Proposition 5 in [3], there exists a (unique) linear trace operator Tr : H1(RN+1
+ )→ H

1
2 (RN)

such that
√
σs|Tr(v)|

H
1
2 (RN )

≤ ‖v‖H1(RN+1
+ ) for all v ∈ H1(RN+1

+ ), (2.2)

where σs := 21−2sΓ(1 − s)/Γ(s), please refer to [32, 33]. For the sake of simplicity, we will show Tr(v)
by v(·, 0). It is worth noting that (2.2) implies

σsm2s
∫
RN

v2(x, 0) dx ≤
"
RN+1

+

(|∇v|2 + m2v2) dxdy, (2.3)

for all v ∈ H1(RN+1
+ ), which is equivalent to

σs

∫
RN

v2(x, 0) dx ≤ m−2s
"
RN+1

+

|∇v|2 dxdy + m2−2s
"
RN+1

+

v2 dxdy. (2.4)

To simplify the notation, we can get rid of the constant σs in (2.4).
In the following, we define the work space

X := {v ∈ H1(RN+1
+ ) :

∫
RN
|v(x, 0)|2dx < ∞}

equipped with the norm

‖v‖X :=
(
‖v‖2 +

∫
RN
|v(x, 0)|2dx

) 1
2
.

Clearly, X ⊂ H1(RN+1
+ ) and using (2.3), we see that

‖v‖ ≤ ‖v‖X for all v ∈ X.
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Moreover, X is a Hilbert space equipped with the inner product

〈v,w〉 =

"
RN+1

+

(∇v · ∇w + m2vw)dxdy +

∫
RN

v(x, 0)w(x, 0)dx.

At the same time, X∗ is the dual space of X.
Now, we recall some results in the case s ∈ (0, 1). Since Tr(H1(RN+1

+ )) ⊂ H
1
2 (RN) and the embedding

H
1
2 (RN) ↪→ Lq(RN) is continuous for any q ∈ [2, 2∗s] and s ∈ (0, 1). we have the following results.

Theorem 2.1. [34] For any u ∈ H1(RN+1
+ , y1−2s) and for any q ∈ [2, 2∗s]

Cq,s,N |u|2Lq(RN ) ≤ κs

∫
RN

(|ξ|2 + m2)s|F u(ξ)|2dξ

≤

"
RN+1

+

y1−2s(|∇v|2 + m2v2)dxdy,

where κs = 21−2s Γ(1−s)
Γ(s) and u(x) = v(x, 0) is the trace of v on ∂RN+1

+ .

Theorem 2.2. [34] Let H1
rad = {u ∈ H1(RN+1

+ , y1−2s) : u is radially symmetric with respect to x}. Then
H1

rad(RN+1
+ , y1−2s) ↪→↪→ Lq(RN) for any q ∈ (2, 2∗s).

We recall the trace inequality with s = 1
2 (see Theorem 2.1 in [32]):"

RN+1
+

|∇v|2dxdy ≥ S ∗(
∫
RN
|v(x, 0)|2

]

dx)
2
2] (2.5)

for all v ∈ H1
0(RN+1

+ ), where H1
0(RN+1

+ ) as the completion of Cc(RN+1
+ ) in the norm("

RN+1
+

|∇v|2dxdy
) 1

2

and the best constant is given by

S ∗ =
2π

1
2 Γ( 1

2 )Γ( N+1
2 )Γ( N

2 )
1
N

Γ( 1
2 )Γ( N−1

2 )Γ(N)
1
N

.

This constant is obtained on the family of functions ωε = E1/2(uε), where E1/2 denotes the 1
2-harmonic

extension [13], and

uε(x) :=
ε

N−1
2

(|x|2 + ε2)
N−1

2

, ε > 0,

see [29, 32]. Therefore,

ωε(x, y) := (P1/2(·, y) ∗ uε)(x) = pN,1/2y
∫
RN

uε(ξ)

(|x − ξ|2 + y2)
N+1

2

dξ,

where
P1/2(x, y) :=

pN,1/2y

(|x|2 + y2)
N+1

2
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as the Poisson kernel for the extension problem in RN+1
+ . We observe that ωε(x, y) = ε

1−N
2 ω1( x

ε
, y
ε
).

We are devoted to studying the existence and multiplicity of normalized solutions of problem (1.1)
in present paper. To consider problem (1.1) by variational methods, we make full use of a variant of
the extension method [13] given in [3, 29, 33]. To be more precise, the nonlocal operator

√
−∆ + m2

in RN can be achieved by a local problem in RN × (0,∞). In the following, we shall describe this
construction in detail. For any function u ∈ H

1
2 (RN), there exists a unique function v ∈ H1(RN+1

+ ) (here,
RN+1

+ = {(x, y) ∈ RN × R : y > 0} such that{
−∆v + m2v = 0 in RN+1

+ ,

v(x, 0) = u(x) for x ∈ RN = ∂RN+1
+ .

(2.6)

Set
Tu(x) = −

∂v
∂y

(x, 0),

we have the following equation{
−∆w + m2w = 0 in RN+1

+ ,

w(x, 0) = Tu(x) for x ∈ ∂RN+1
+ = {0} × RN ' RN

with the solution w(x, y) = −∂v
∂y (x, y). By (2.6), we have

T (Tu)(x) = −
∂w
∂y

(x, 0) =
∂2v
∂y2 (x, 0) = (−∆xv + m2v)(x, 0)

and hence T 2 = (−∆x + m2). Thus, the operator T that maps the Dirichlet-type data u to the Neumann-
type data −∂v

∂y (x, 0) is actually
√
−∆ + m2. Therefore, for problem (1.1), we shall consider the following

nonlinear boundary value problem:
−∆v + m2v = 0 in RN+1

+ ,

−∂v
∂y = ϑ|v(x, 0)|p−2u + |v(x, 0)|2

]−2u − λv(x, 0) on RN ,

v > 0,
∫
RN |v(x, 0)|2dx = a2.

(2.7)

Furthermore, we shall look for the critical points of the energy functional J : Xrad(RN+1
+ ) → R

associated with problem (2.7):

J(v) =
1
2

"
RN+1

+

(|∇v|2 + m2v2)dxdy −
ϑ

p

∫
RN
|v(x, 0)|pdx −

1
2]

∫
RN
|v(x, 0)|2

]

dx

on the constraint
S(a) := {v ∈ Xrad : |v(x, 0)|22 = a2}.

3. Proof of Theorem 1.1

Let us start the section by recalling the definition of genus. Let X be a Banach space and D be a
subset of X. The set D is called to be symmetric if −u ∈ D for all u ∈ D. Denote by Σ the family of
closed symmetric subsets D of X such that 0 < D, that is

Σ = {D ⊂ X \ {0} : D is closed and symmetric with respect to the origin}.
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For D ∈ Σ, we define

γ(A) =


0, if D = ∅,

inf{k ∈ N : ∃ an odd map φ ∈ C(D,Rk \ {0})},
∞, if such an odd map does not exist,

and Σk = {D ∈ Σ : γ(D) ≥ k}. Now, we are ready to give some lemmas that play important roles in
proving Theorem 1.1.

Lemma 3.1. Let v ∈ H1(RN+1
+ ) and 2 < t < 2], then∫

RN
|v(x, 0)|tdx ≤ S −

2]
2 θ

∗ (
∫
RN
|v(x, 0)|2dx)1−θ(

"
RN+1

+

(|∇v|2 + m2v2)dxdy)
2]θ
2 ,

where θ =
(t−2)(N−1)

2 .

Proof. Since v ∈ H1(RN+1
+ ) and 2 < t < 2], by Hölder inequality and (2.5), we obtain∫

RN
|v(x, 0)|tdx =

∫
RN
|v(x, 0)|2(1−θ) · |v(x, 0)|2

]θdx

≤ (
∫
RN
|v(x, 0)|2dx)1−θ(

∫
RN
|v|2

]

dx)θ

≤ (
∫
RN
|v(x, 0)|2dx)1−θ(S −1

∗

∫ ∫
RN+1

+

(|∇v|2 + m2v2)dxdy)
2]θ
2

= S −
2]
2 θ

∗ (
∫
RN
|v(x, 0)|2dx)1−θ(

∫ ∫
RN+1

+

(|∇v|2 + m2v2)dxdy)
2]θ
2 ,

where θ =
(t−2)(N−1)

2 . Then we have completed the proof of Lemma 3.1.

We state the concentration-compactness principle for s = 1
2 in what follows.

Lemma 3.2 (Proposition 3.1 in [35]). Let {vk} be a bounded tight sequence in H1(RN+1
+ ), such that vk

converges weakly to v in H1(RN+1
+ ). Let µ, ν be two non-negative measures on RN+1

+ and RN respectively
and such that

lim
n→∞

(|∇vk|
2 + m2u2

k) =: µ

and
lim
n→∞
|vk(x, 0)|2

]

=: ν,

in the sense of measures. Then, there exist an at most countable set I and three families {xi}i∈I , {µi}i∈I ,

{νi}i∈I , with µi, νi ≥ 0 for all i ∈ I, such that

ν = |v(·, 0)|2
]

+
∑
i∈I

νiδxi ,

µ ≥ (|∇v|2 + m2v2) +
∑
i∈I

µiδ(xi,0),

µi ≥ S ∗ν
2
2]

i for all i ∈ I.
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Lemma 3.3. Let {vk} in be a sequence in H1(RN+1
+ ) as in Lemma 3.2 and define

µ∞ = lim
n→∞

lim sup
k→∞

"
Bc

R

(|∇vk|
2 + m2v2

k)dxdy, ν∞ = lim
n→∞

lim sup
k→∞

∫
Bc

R

|vk(·, 0)|2
]

dx. (3.1)

Then
lim
n→∞

lim sup
k→∞

"
RN+1

+

(|∇vk|
2 + m2v2

k)dxdy = µ(RN+1
+ ) + µ∞, (3.2)

lim
n→∞

lim sup
k→∞

∫
RN
|vk(·, 0)|2

]

dx = ν(RN) + ν∞, µ∞ ≥ S ∗ν
2
2]
∞ , (3.3)

where µ, ν are the finite non-negative measures in Lemma 3.2.

Proof. Fix a sequence {vk} in H1(RN+1
+ ), as in the statement of Lemma 3.2. Let η ∈ C∞c (RN+1

+ ) such that
0 ≤ η ≤ 1, η = 0 in B+

1 and η = 1 in (Bc
2)+. Take R > 0 and put ηR(x, y) = η( x

R ,
y
R ). We write"

RN+1
+

(|∇vk|
2 + m2v2

k)dxdy =

"
RN+1

+

(|∇vk|
2 + m2v2

k)η2
Rdxdy

+

"
RN+1

+

(|∇vk|
2 + m2v2

k)(1 − η2
R)dxdy. (3.4)

We first observe that"
(Bc

2R)+

(|∇vk|
2 + m2u2

k)dxdy ≤
"
RN+1

+

(|∇vk|
2 + m2v2

k)η2
Rdxdy

≤

"
(Bc

R)+

(|∇vk|
2 + m2v2

k)(1 − η2
R)dxdy.

So by (3.1),

µ∞ = lim
R→∞

lim sup
k→∞

"
RN+1

+

(|∇vk|
2 + m2v2

k)η2
Rdxdy. (3.5)

On the other hand, since µ is finite, 1−η2
R has compact support and ηR → 0 a.e. in RN+1

+ , by the definition
of µ and the Dominated convergence theorem, we have

lim
R→∞

lim sup
k→∞

"
RN+1

+

(|∇vk|
2 + m2v2

k)(1 − η2
R)dxdy

= lim
R→∞

"
RN+1

+

(1 − η2
R)dµ = µ(RN+1

+ ). (3.6)

Using (3.5)-(3.6) in (3.4), we can obtain (3.2). Arguing similarly for ν, we see that

lim
R→∞

lim sup
K→∞

∫
RN

(1 − η2]
R )|vk(·, 0)|2

]

dx = ν(RN).

Thus, the first part of (3.3) is proved.
In order to verify the last part of (3.3), we consider again the function ηR. Let K :=supp(ηR). By the

fact that

S ∗(
∫
RN
|vk(·, 0)|2

]

dx)
2
2] ≤

"
RN+1

+

|∇vk|
2dxdy
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≤

"
RN+1

+

(|∇vk|
2 + m2v2

k)dxdy (3.7)

and applying this to ηRuk in H1(RN+1
+ ), we get

S ∗(
∫
RN
|vk(·, 0)|2

]

η2]
R dx)

2
2] ≤

"
RN+1

+

(|∇(vkηR)|2 + m2(vkηR)2)dxdy (3.8)

for all k. On the other hand,"
RN+1

+

[|∇(ηRvk)|2 + m2(ηRvk)2] dxdy

=

"
RN+1

+

η2
R[|∇vk|

2 + m2v2
k] dxdy +

"
RN+1

+

v2
k |∇ηR|

2 dxdy

+ 2
"
RN+1

+

vkηR∇ηR · ∇vk dxdy. (3.9)

By the definition of ηR, we know

lim
R→∞

lim sup
k→∞

"
RN+1

+

v2
k |∇ηR|

2 dxdy→ 0. (3.10)

Using the Hölder inequality, the boundedness of {vk}k in H1(RN+1
+ ) and (3.10), we get∣∣∣∣∣∣

"
RN+1

+

vkηR∇ηR · ∇vk dxdy

∣∣∣∣∣∣
≤

("
RN+1

+

v2
k |∇ηR|

2 dxdy
) 1

2
("

RN+1
+

η2
R|∇vk|

2 dxdy
) 1

2

≤

("
RN+1

+

v2
k |∇ηR|

2 dxdy
) 1

2
("

RN+1
+

|∇vk|
2 dxdy

) 1
2

≤ C
("

RN+1
+

v2
k |∇ηR|

2 dxdy
) 1

2

. (3.11)

Therefore, together with (3.10) and taking R→ ∞, k → ∞ in (3.11), we obtain

lim
R→∞

lim sup
k→∞

"
RN+1

+

vkηR∇ηR · ∇vk dxdy = 0. (3.12)

Putting (3.10)-(3.12) into (3.8), we obtain the desired conclusion.

For v ∈ S(a), by Lemma 3.1 and (3.7), we have

J(v) =
1
2

"
RN+1

+

(|∇v|2 + m2v2)dxdy −
ϑ

p

∫
RN
|v(x, 0)|pdx −

1
2]

∫
RN
|v(x, 0)|2

]

dx

≥
1
2

"
RN+1

+

(|∇v|2 + m2v2)dxdy −
ϑ

p
S −

2]θ
2

∗ a1−θ‖v‖2
]θ −

1
2]

S −
2]
2

∗ ‖v‖2
]
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=
1
2
‖v‖2 −

ϑ

p
S −

2]θ
2

∗ a1−θ‖v‖2
]

−
1
2]

S −
2]
2

∗ ‖v‖2
]

:= K(‖v‖),

where

K(t) =
1
2

t2 −
ϑ

p
S −

2]θ
2

∗ a1−θt2]θ −
1
2]

S −
2]
2

∗ t2]

and θ =
(p−2)(N−1)

2 . By 2 < p < 2 + 2
N , we get that 0 < θ < 1 and there exists β > 0 such that ϑa1−θ ≤ β.

Thus, the function K has a positive local maximum. To be more precisely, there exist two numbers
0 < W1 < W2 < ∞ such that K < 0 in the intervals (0,W1) and (W2,∞), while K > 0 in (W1,W2).
Suppose that σ ∈ C∞(R+, [0, 1]) is a nonincreasing function such that σ(t) = 1 for t ≤ W1 and σ(t) = 0
for t ≥ W2.

We define the truncated functional by

Jσ(v) =
1
2

"
RN+1

+

(|∇v|2 + m2v2)dxdy −
ϑ

p

∫
RN
|v(x, 0)|pdx −

σ(‖v‖)
2]

∫
RN
|v(x, 0)|2

]

dx.

For v ∈ S(a), by Lemma 3.1 and (3.7), we get

Jσ(v) ≥
1
2
‖v‖2 −

ϑ

p
S −

2]θ
2

∗ a1−θ‖v‖2
]θ −

σ(‖v‖)

2]S 2]/2
∗

‖v‖2
]

:= K̃(‖v‖),

where

K̃(t) =
1
2

t2 −
ϑ

p
S −

2]θ
2

∗ a1−θt2]θ −
σ(t)

2]S 2]/2
∗

t2] .

Therefore, with the help of the definition of σ, we obtain K̃ < 0 in (0,W1) and K̃ > 0 in (W2,∞) when

a ∈
(
0,

(
β/ϑ

) 1
1−θ

]
. From now on, we assume that

a ∈
(
0,

(β
ϑ

) 1
1−θ

]
.

Without loss of generality, taking W1 > 0 small enough if necessary, we also assume

0 < W2
1 < S N

∗ , so that
r2

2
−

1

2]S 2]/2
∗

r2] ≥ 0 for all r ∈ [0,W1]. (3.13)

Lemma 3.4. (a) Jσ ∈ C1(Xrad(RN+1
+ ),R).

(b) Jσ is coercive and bounded from below on S(a). Furtheremore, if Jσ ≤ 0, then ‖v‖ ≤ W1 and
Jσ(v) = J(v).

(c) Jσ|S(a) satisfies the (PS )c condition for all c < 0.

Proof. (a) and (b) hold true with the aid of a standard argument.
For (a). As the proof of the Proposition B.10 in the book [36], conclusion (a) is satisfied.
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For (b). Let v ∈ S(a), by the definition of σ, we obtain σ(‖v‖2) = 0 when ‖v‖ → ∞. Thus,

Jσ(v) ≥
1
2
‖v‖2 −

ϑ

p
S −

2]θ
2

∗ a1−θ‖v‖2
]θ → +∞,

since N(p − 2) < 2 and θ =
(p−2)(N−1)

2 , that is Jσ is coercive. On the other hand, it follows from
the definition of K̃(t) that K̃ has a maximum value, and then Jσ(v) is bounded from below on S(a).
Furthermore, if Jσ(v) ≤ 0, so K̃ < 0. Also, by the definition of K̃ , we obtain ‖v‖ ≤ W1. Therefore,
from the definition of σ, we get σ = 1. This fact implies Jσ(v) = J(v).

For (c). Assume that {vk}k is a (PS )c sequence of Jσ restricted to S(a) with c < 0, that is,

Jσ(vk)→ c < 0 and ‖J ′σ|S(a)(vk)‖ → 0 as k → ∞.

By (b), ‖vk‖ ≤ W1 for k large enough. Therefore, {vk}k is bounded inXrad(RN+1
+ ). Then, up to subsequence,

there exists Xrad(RN+1
+ ) such that vk ⇀ v in Xrad(RN+1

+ ) and vk → v in Lp(RN) for all p ∈ (2, 2]) and
vk → v a.e. in RN . Due to the fact that 2 < p < 2 + 2

N < 2], we get

lim
n→∞

∫
RN
|vn(x, 0)|pdx =

∫
RN
|v(x, 0)|pdx.

Moreover, we claim v , 0. Otherwise, lim
k→∞

∫
RN |vk|

pdx = 0. Combining this and (3.13), we see that

0 > c = lim
k→∞
J(vk) = lim

k→∞

[1
2

"
RN+1

+

(|∇vk|
2 + m2v2

k)dxdy −
ϑ

p

∫
RN
|vk(x, 0)|pdx −

1
2]

∫
RN
|vk(x, 0)|2

]

dx
]

≥ lim
k→∞

[1
2

"
RN+1

+

(|∇vk|
2 + m2v2

k)dxdy −
ϑ

p

∫
RN
|vk(x, 0)|pdx −

1

2]S 2]/2
∗

‖v‖2
]
]

≥ lim
k→∞
−
ϑ

p

∫
RN
|vk(x, 0)|pdx = 0

which is impossible and proves the claim.
Let

Ψ(v) :=
1
2

∫
RN
|v(x, 0)|2dx, ∀ v ∈ X(RN+1

+ ).

Thus, S(a) = Ψ−1({ a
2

2 }). By the Lagrange multiplier, there exists λa ∈ R such that

J ′(v) = λaΨ
′(v)

in (H1(R+
N+1))∗. Therefore, using this fact, we have

−∆v + m2v = 0 in RN+1
+ ,

−∂v
∂y = ϑ|v(x, 0)|p−2v + |v(x, 0)|2

]−2v − λav(x, 0) on RN ,

v > 0,
∫
RN |v(x, 0)|2dx = a2.

(3.14)

With the help of Proposition 5.12 in [14], there exists λk ∈ R such that

‖J ′(vk) − λkΨ
′(vk)‖ → 0
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as k → ∞. Hence, for ϕ ∈ Xrad(RN+1
+ ),"

RN+1
+

(∇vk · ∇ϕ + m2vkϕ)dxdy − ϑ
∫
RN
|vk(x, 0)|p−2vk(x, 0)ϕdx −

∫
RN
|vk(x, 0)|2

]−2vk(x, 0)ϕdx

= λk

∫
RN

vkϕdx + o(1)‖ϕ‖. (3.15)

In particular,

‖vk‖
2 − ϑ

∫
RN
|vk(x, 0)|pdx −

∫
RN
|vk(x, 0)|2

]

dx = λka2 + o(1). (3.16)

The boundedness of {‖vk‖}k implies that {λk}k is also bounded in R. Therefore, up to a subsequence,
there exists λa ∈ R such that λk → λa as k → ∞. Therefore, by (3.15) and a standard argument, we
obtain that v satisfies problem (3.14). In fact, for any ϕ ∈ Xrad(RN+1

+ ), it follows from the definition of
weak convergence that"

RN+1
+

(∇vk∇ϕ + m2vkϕ)dxdy→
"
RN+1

+

(∇v∇ϕ + m2vϕ)dxdy

as k → ∞. Since λk → λa as k → ∞, we also obtain that

λk

∫
RN

vkϕdx→ λa

∫
RN

vϕdx (3.17)

as k → ∞. Moreover, since {|vk|
2]−2vk}k is bounded in L

2]

2]−1 (RN) and

|vk(x, 0)|2
]−2uk(x, 0)→ |v(x, 0)|2

]−2v(x, 0) a.e. in RN , (3.18)

then

|vk(x, 0)|2
]−2vk(x, 0) ⇀ |v(x, 0)|2

]−2v(x, 0) in L
2]

2]−1 (RN).

This implies that ∫
RN
|vk(x, 0)|2

]−2vkϕdx→
∫
RN
|v(x, 0)|2

]−2vϕdx

as k → ∞. Next, we show that λa < 0. Indeed, thanks to 2 < p < 2 + 2
N < 2], we have

0 > c = lim inf
k→∞

J(vk) = lim inf
k→∞

(
J(vk) −

1
2
‖J ′(vk) − λkΨ

′(vk)‖
)

= (
1
2
−

1
p

)ϑ
∫
RN
|v(x, 0)|pdx + (

1
2
−

1
2]

)
∫
RN
|v(x, 0)|2

]

dx +
1
2
λa

∫
RN
|v(x, 0)|2dx.

Therefore,

1
2
λa

∫
RN
|v(x, 0)|2dx < −(

1
2
−

1
p

)ϑ
∫
RN
|v(x, 0)|pdx − (

1
2
−

1
2]

)
∫
RN
|v(x, 0)|2

]

dx < 0

which shows λa < 0.
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In the following, we shall recover the compactness with an application of the concentration-
compactness principle [35]. Indeed, since ‖vk‖ ≤ W1 for k enough large, using the Prokhorov the-
orem [37, Theorem 8.6.2], there exist two positive measures µ, ν ∈ M(RN+1

+ ) such that

lim
k→∞

(|∇vk|
2dx + m2v2

k) =: µ and lim
k→∞
|vk(x, 0)|2

]

=: ν inM(RN+1
+ ). (3.19)

Hence, Lemma 3.2-Lemma 3.3 hold. Together with Lemma 3.2, either vk → v in L2](RN) or there exists
a (at most countable) set of distinct points {xi}i ⊂ R

N and positive numbers {νi}i such that

ν = |v+(x, 0)|2
]

+
∑
i∈I

νiδxi .

If the latter holds, we can also verify vk → v in L2](RN). We shall verify the following three claims hold.
Claim 1. We verify that µ(xi) ≤ νi for any i ∈ I.

Assume that xi ∈ R
N for some i ∈ I. For any ρ > 0, we define, ϕρ(x, y) = ϕ( x−xi

ρ
, y
ρ
), where

ϕ ∈ Cc(RN+1
+ ) such that ϕ = 1 in B+

1 and ϕ = 0 in (B+
2 )c, ϕ ∈ [0, 1] and ‖∇ϕ‖L∞(RN+1

+ ) ≤ 2. We suppose that
ρ > 0 such that supp(ϕρ(·, 0)) ⊂ RN+1

+ . By the boundedness of {vk} in Xrad(RN+1
+ ), we know that {ϕρvk} is

also bounded in Xrad(RN+1
+ ). Therefore,

o(1) =
(
J ′(vk), vkϕρ

)
=

"
RN+1

+

(|∇vk|
2 + m2v2

k)ϕρdxdy +

"
RN+1

+

vk∇vk · ∇ϕρdxdy

− ϑ

∫
RN
ϕρ|vk(x, 0)|pdx −

∫
RN
ϕρ|vk(x, 0)|2

]

dx. (3.20)

That means"
RN+1

+

(
|∇vk|

2 + m2v2
k
)
ϕρdxdy = ϑ

∫
RN
ϕρ|vk(x, 0)|pdx −

"
RN+1

+

vk∇vk · ∇ϕρdxdy

+

∫
RN
ϕρ|vk(x, 0)|2

]

dx + o(1).

Consequently,

lim
ρ→0+

lim
k→∞

"
RN+1

+

(
|∇vk|

2 + m2v2
k
)
ϕρdxdy = lim

ρ→0+
lim
k→∞

"
RN+1

+

ϕρdµ ≥ µ j. (3.21)

Together with the definition of ϕρ, we obtain

lim
ρ→0+

lim
k→∞

∫
RN
ϕρ|vk(x, 0)|pdx = lim

ρ→0+

∫
RN
ϕρ|v(x, 0)|pdx = lim

ρ→0+

∫
B+

2ρ

ϕρ|v(x, 0)|pdx = 0. (3.22)

Moreover, (3.19) implies

lim
ρ→0+

lim
k→∞

∫
RN
ϕρ|vk(x, 0)|2

]

dx = lim
ρ→0+

∫
RN
ϕρdν = νi. (3.23)

In the following, we show that

lim
ρ→0+

lim sup
k→∞

"
RN+1

+

vk∇vk · ∇ϕρdxdy = 0. (3.24)
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In fact, by the Hölder inequality, the boundedness of {vk}k in Xrad(RN+1
+ ), the fact that ‖∇ϕρ‖L∞(RN+1

+ ) ≤
C
ρ

and X(RN+1
+ ) is compactly embedded into L2(B+

ρ (xi, 0), y1−2s) with s = 1
2 , we obtain

lim sup
k→∞

|

"
RN+1

+

vk∇vk · ∇ϕρdxdy|

≤ lim sup
k→∞

("
RN+1

+

|∇vk|
2dxdy

) 1
2
("

B+
ρ (xi,0)

|vk|
2|∇ϕρ|

2dxdy
) 1

2

≤
C
ρ

("
B+
ρ (xi,0)

|vk|
2dxdy

) 1
2
.

By Hölder inequality with 1
r + r−1

r = 1 and (2.1), we have

C
ρ

("
B+
ρ (xi,0)

|vk|
2dxdy

) 1
2

≤
C
ρ

("
B+
ρ (xi,0)

|vk|
2rdxdy

) 1
2r
("

B+
ρ (xi,0)

dxdy
) r−1

2r

≤ C
("

B+
ρ (xi,0)

|vk|
2rdxdy

) 1
2r
→ 0 as ρ→ 0+

which shows that (3.24) holds. Therefore, inserting (3.21)-(3.24) into (3.20), taking k → ∞ and ρ→ 0+,
we obtain

µ(xi) ≤ νi

and the claim holds.
Claim 2. We claim that µ∞ ≤ ν∞.

Let φ ∈ C∞c (RN+1
+ ) such that 0 ≤ φ ≤ 1, φ = 0 in B+

1 and φ = 1 in (Bc
2)+. Take R > 0 and put

φR(x) = φ( x−xi
R , y

R). Again, by the boundedness of {vk}k in Xrad(RN+1
+ ), we know that {vkφR}k is also

bounded in Xrad(RN+1
+ ). Hence,

o(1) =
(
J ′(vk), vkφR

)
=

"
RN+1

+

(|∇vk|
2 + m2v2

k)φRdxdy +

"
RN+1

+

vk∇vk∇φRdxdy

− ϑ

∫
RN
φR|vk(x, 0)|pdx −

∫
RN
φR|vk(x, 0)|2

]

dx. (3.25)

From the aforementioned proof, we obtain

lim
R→∞

lim
k→∞

"
RN+1

+

(|∇vk|
2 + m2v2

k)φRdxdy =

"
RN+1

+

φRdµ ≥ µ∞.

By Hölder’s inequality, 0 ≤ φR ≤ 1 and {vk} is bounded in Xrad(RN+1
+ ), we have

|

"
RN+1

+

vk∇vk∇φRdxdy| ≤
C
R

"
RN+1

+

vk|∇vk|dxdy

≤
C
R

("
RN+1

+

|vk|
2dxdy

) 1
2
("

RN+1
+

|∇vk|
2dxdy

) 1
2
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≤
C
R
→ 0

as R→ ∞. Therefore,

lim
R→∞

lim sup
k→∞

"
RN+1

+

vk∇vk∇φRdxdy→ 0.

By the proof of Lemma 3.3 in [38], we obtain

lim
R→∞

lim
k→∞

∫
RN
φR|vk(x, 0)|pdx = lim

R→∞

∫
RN
φR|v(x, 0)|pdx = lim

R→∞

∫
|x|≥R

φR|v(x, 0)|pdx = 0

and

lim
R→∞

lim
k→∞

∫
RN
φR|vk(x, 0)|2

]

dx = ν∞.

Therefore, it follows from (3.25) that
µ∞ ≤ ν∞

and this proves Claim 2.

Claim 3. We shall veify that νi = 0 for any i ∈ I and ν∞ = 0.
By contradiction, we suppose that there exists i ∈ I such that νi > 0. Steps 1 implies that

νi ≤ (S −1
∗ µ(xi))

2]
2 ≤ (S −1

∗ νi)
2]
2 .

It implies that νi ≥ S N
∗ . If this case is valid, we get

W2
1 ≥ lim

ρ→0+
lim
k→∞
‖vk‖

2 ≥ S ∗ lim
ρ→0+

lim
k→∞
|vk(x, 0)|22]

≥ lim
ρ→0+

lim
k→∞

S ∗
( ∫
RN
ϕρ|vk(x, 0)|2

]

dx
) 2

2] = S ∗ lim
k→∞

( ∫
RN
φρdν

) 2
2]

= S ∗ · ν
2
2]

i ≥ S N
∗

which is impossible by (3.13). If the latter holds, by the same discussion above, we get

W2
1 ≥ lim

R→∞
lim
k→∞
‖vk‖

2 ≥ µ∞ ≥ S ∗ · ν
2
2]
∞ ≥ S N

∗

which contradicts with (3.13), and together with Lemma 3.2 implies vk → v in L2]
loc(R

N) Moreover,
combining with Lemma 3.3, we obtain vk → v in L2](RN). Taking into account (3.15)–(3.17), we obtain

lim
k→∞

[
‖vk‖

2 − λa|vk(x, 0)|22
]

= lim
k→∞

[
ϑ|vk(x, 0)|pp + |vk(x, 0)|2

]

2] + o(1)
]

= ϑ|v(x, 0)|pp + |v(x, 0)|2
]

2] = ‖v‖2 − λa|v(x, 0)|22.

(3.26)
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Since λa < 0,

−λa|v(x, 0)|22 ≤ lim inf
k→∞

−λa|vk(x, 0)|22 ≤ lim sup
k→∞

−λa|vk(x, 0)|22

≤ lim sup
k→∞

−λa|vk(x, 0)|22 + lim inf
k→∞

‖vk‖
2 − ‖v‖2

≤ lim sup
k→∞

[
‖vk‖

2 − λa|vk(x, 0)|22
]
− ‖v‖2

= −λa|v(x, 0)|22.

Hence,
lim
k→∞
−λa|vk(x, 0)|22 = −λa|v(x, 0)|22.

Moreover, we obtain
lim
k→∞
|vk(x, 0)|22 = |v(x, 0)|22.

By (3.26), we get
lim
k→∞
‖vk‖

2 = ‖v‖2.

Then vk → v in Xrad(RN+1
+ ) and |vk(x, 0)|2 = a. The proof of Lemma 3.4 is completed.

Set
J−εσ = {v ∈ Xrad(RN+1

+ ) ∩ S(a) : Jσ(v) ≤ −ε} ⊂ Xrad(RN+1
+ )

for ε > 0. By the fact that Jσ is even and continuous on Xrad(RN+1
+ ), gives that J−εσ is closed and

symmetric. Consequently, the following lemma is true and its proof is the same as that of Lemma 3.2
in [28].

Lemma 3.5. Given k ∈ N, there exist εk := ε(k) and ϑk := ϑ(k) such that whenever 0 < ε ≤ εk and
ϑ ≥ ϑk, γ(J−εσ ) ≥ k.

Set
Σk := {E ⊂ Xrad(RN+1

+ ) ∩ S(a) : E is closed and symmetric, γ(E) ≥ k}

and
ck := inf

E∈Σk
sup
u∈E
Jσ(v) > −∞

for all k ∈ E by Lemma 3.4 (b). In order to verify Theorem 1.1, we given by

Kc = {v ∈ Xrad(Ω) ∩ S(a) : J ′σ(v) = 0,Jσ(v) = c}.

Therefore, we obtain that the following result holds.

Lemma 3.6. If c = ck = ck+1 = · · · = ck+m, then γ(Kc) ≥ m + 1. Especially, Jσ has at least m + 1
nontrivial critical points.

Proof. For ε > 0, we know that J−εσ ∈ Σ. With the help of Lemma 3.5, for any k ∈ N, there exists
εk = ε(k) > 0 and ϑk = ϑ(k) such that if 0 < ε ≤ εk and ϑ ≥ ϑk, we have γ(J−εσ ) ≥ k. Therefore,
J
−εk
σ ∈ Σk, and

ck ≤ sup
v∈J

−εk
σ

Jσ(v) = −εk < 0.
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Let 0 > c = ck = ck+1 = · · · = ck+m are satisfied. Therefore, Lemma 3.4 (c) shows that Jσ satisfies the
(PS )c condition. Consequently, Kc is a compact set. Theorem 2.1 in [39] yields that Jσ|S(a) has at least
m + 1 critical points.

Proof of Theorem 1.1. By Lemma 3.4 (b) the critical points of Jσ obtained in Lemma 3.6 are the
critical points of J . Hence, we complete the proof.
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