Research article

Fixed points of non-linear set-valued $\left(\alpha_{*}, \phi_{M}\right)$-contraction mappings and related applications

Muhammad Tariq ${ }^{1, *}$, Mujahid Abbas ${ }^{2}$, Aftab Hussain ${ }^{3}$, Muhammad Arshad ${ }^{1}$, Amjad Ali ${ }^{1}$ and Hamid Al-Sulami ${ }^{3}$
${ }^{1}$ Department of Mathematics and Statistics, Internatioal Islamic University, Islamabad, Pakistan
${ }^{2}$ Department of Mathematics GC University Lahore, Pakistan
${ }^{3}$ Department of Mathematics, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia

* Correspondence: Email: mtariq125a@gmail.com.

Abstract

The aim of this manuscript is to prove some fixed point results for non-linear set-valued maps with new approach of $\left(\alpha_{*}, \phi_{M}\right)$-contraction in complete M-metric space. Also, we prove some fixed point results in ordered M-metric space. As an presented work which are the extension and improves the current study of set-valued mappings. Finally, we also give an non-trivial extensive examples and application to homotopy theory and the existence solution of functional equations to show that our concepts are meaningful and to support our results.

Keywords: $\left(\alpha_{*}, \phi_{M}\right)$-contractions; M-metric space; homotopy fixed point results; functional equation Mathematics Subject Classification: 47H10, 54H25

1. Introduction and preliminaries

In 1922, S. Banach [15] provided the concept of Contraction theorem in the context of metric space. After, Nadler [28] introduced the concept of set-valued mapping in the module of Hausdroff metric space which is one of the potential generalizations of a Contraction theorem. Let (X, d) is a complete metric space and a mapping $T: X \rightarrow C B(X)$ satisfying

$$
H(T(x), T(y)) \leq \gamma d(x, y)
$$

for all $x, y \in X$, where $0 \leq \gamma<1, H$ is a Hausdorff with respect to metric d and $C B(X)=$ $\{\mathbf{S} \subseteq X: S$ is closed and bounded subset of X equipped with a metric $d\}$. Then T has a fixed point in X.

In the recent past, Matthews [26] initiate the concept of partial metric spaces which is the classical extension of a metric space. After that, many researchers generalized some related results in the frame of partial metric spaces. Recently, Asadi et al. [4] introduced the notion of an M-metric space which is the one of interesting generalizations of a partial metric space. Later on, Samet et al. [33] introduced the class of mappings which known as (α, ψ)-contractive mapping. The notion of (α, ψ)-contractive mapping has been generalized in metric spaces (see more [10, 12, 14, 17, 19, 25, 29, 30, 32]).

Throughout this manuscript, we denote the set of all positive integers by \mathbb{N} and the set of real numbers by \mathbb{R}. Let us recall some basic concept of an M-metric space as follows:

Definition 1.1. [4] Let $m: X \times X \rightarrow \mathbb{R}^{+}$be a mapping on nonempty set X is said to be an M-metric if for any x, y, z in X, the following conditions hold:
(i) $m(x, x)=m(y, y)=m(x, y)$ if and only if $x=y$;
(ii) $m_{x y} \leq m(x, y)$;
(iii) $m(x, y)=m(y, x)$;
(iv) $m(x, y)-m_{x y} \leq\left(m(x, z)-m_{x z}\right)+\left(m(z, y)-m_{z, y}\right)$ for all $x, y, z \in X$. Then a pair (X, m) is called M-metric space. Where

$$
m_{x y}=\min \{m(x, x), m(y, y)\}
$$

and

$$
M_{x y}=\max \{m(x, x), m(y, y)\} .
$$

Remark 1.2. [4] For any x, y, z in M-metric space X, we have
(i) $0 \leq M_{x y}+m_{x y}=m(x, x)+m(y, y)$;
(ii) $0 \leq M_{x y}-m_{x y}=|m(x, x)-m(y, y)|$;
(iii) $M_{x y}-m_{x y} \leq\left(M_{x z}-m_{x z}\right)+\left(M_{z y}-m_{z y}\right)$.

Example 1.3. [4] Let (X, m) be an M-metric space. Define $m^{w}, m^{s}: X \times X \rightarrow \mathbb{R}^{+}$by:
(i)

$$
m^{w}(x, y)=m(x, y)-2 m_{x, y}+M_{x, y},
$$

(ii)

$$
m^{s}=\left\{\begin{array}{l}
m(x, y)-m_{x, y}, \text { if } x \neq y \\
0, \text { if } x=y .
\end{array}\right.
$$

Then m^{w} and m^{s} are ordinary metrics. Note that, every metric is a partial metric and every partial metric is an M-metric. However, the converse does not hold in general. Clearly every M-metric on X generates a T_{0} topology τ_{m} on X whose base is the family of open M-balls

$$
\left\{B_{m}(x, \epsilon): x \in X, \epsilon>0\right\},
$$

where

$$
B_{m}(x, \epsilon)=\left\{y \in X: m(x, y)<m_{x y}+\epsilon\right\}
$$

for all $x \in X, \varepsilon>0$. (see more $[3,4,23]$).
Definition 1.4. [4] Let (X, m) be an M-metric space. Then,
(i) A sequence $\left\{x_{n}\right\}$ in (X, m) is said to be converges to a point x in X with respect to τ_{m} if and only if

$$
\lim _{n \rightarrow \infty}\left(m\left(x_{n}, x\right)-m_{x_{n} x}\right)=0
$$

(ii) Furthermore, $\left\{x_{n}\right\}$ is said to be an M-Cauchy sequence in (X, m) if and only if

$$
\lim _{n, m \rightarrow \infty}\left(m\left(x_{n}, x_{m}\right)-m_{x_{n} x_{m}}\right) \text {, and } \lim _{n, m \rightarrow \infty}\left(M_{x_{n}, x_{m}}-m_{x_{n} x_{m}}\right)
$$

exist (and are finite).
(iii) An M-metric space (X, m) is said to be complete if every M-Cauchy sequence $\left\{x_{n}\right\}$ in (X, m) converges with respect to τ_{m} to a point $x \in X$ such that

$$
\lim _{n \rightarrow \infty} m\left(x_{n}, x\right)-m_{x_{n} x}=0, \text { and } \lim _{n \rightarrow \infty}\left(M_{x_{n}, x}-m_{x_{n} x}\right)=0
$$

Lemma 1.5. [4] Let (X, m) be an M-metric space. Then:
(i) $\left\{x_{n}\right\}$ is an M-Cauchy sequence in (X, m) if and only if $\left\{x_{n}\right\}$ is a Cauchy sequence in a metric space (X, m^{w}).
(ii) An M-metric space (X, m) is complete if and only if the metric space (X, m^{w}) is complete. Moreover,

$$
\lim _{n \rightarrow \infty} m^{w}\left(x_{n}, x\right)=0 \text { if and only if }\left(\lim _{n \rightarrow \infty}\left(m\left(x_{n}, x\right)-m_{x_{n} x} x\right)=0, \lim _{n \rightarrow \infty}\left(M_{x_{n} x}-m_{x_{n} x}\right)=0\right) .
$$

Lemma 1.6. [4] Suppose that $\left\{x_{n}\right\}$ converges to x and $\left\{y_{n}\right\}$ converges to y as n approaches to ∞ in M-metric space (X, m). Then we have

$$
\lim _{n \rightarrow \infty}\left(m\left(x_{n}, y_{n}\right)-m_{x_{n} y_{n}}\right)=m(x, y)-m_{x y} .
$$

Lemma 1.7. [4] Suppose that $\left\{x_{n}\right\}$ converges to x as n approaches to ∞ in M-metric space (X, m). Then we have

$$
\lim _{n \rightarrow \infty}\left(m\left(x_{n}, y\right)-m_{x_{n} y}\right)=m(x, y)-m_{x y} \text { for all } y \in X .
$$

Lemma 1.8. [4] Suppose that $\left\{x_{n}\right\}$ converges to x and $\left\{x_{n}\right\}$ converges to y as n approaches to ∞ in M-metric space (X, m). Then $m(x, y)=m_{x y}$ moreover if $m(x, x)=m(y, y)$, then $x=y$.
Definition 1.9. Let $\alpha: X \times X \rightarrow[0, \infty)$. A mapping $T: X \rightarrow X$ is said to be an α-admissible mapping if for all $x, y \in X$

$$
\alpha(x, y) \geq 1 \Rightarrow \alpha(T(x), T(y)) \geq 1
$$

Let Ψ be the family of the (c)-comparison functions $\psi: \mathbb{R}^{+} \cup\{0\} \rightarrow \mathbb{R}^{+} \cup\{0\}$ which satisfy the following properties:
(i) ψ is nondecreasing,
(ii) $\sum_{n=0}^{\infty} \psi^{n}(t)<\infty$ for all $t>0$, where ψ^{n} is the n-iterate of ψ (see $[7,8,10,11]$).

Definition 1.10. [33] Let (X, d) be a metric space and $\alpha: X \times X \rightarrow[0, \infty)$. A mapping $T: X \rightarrow X$ is called (α, ψ)-contractive mapping if for all $x, y \in X$, we have

$$
\alpha(x, y) d(T(x), T(x)) \leq \psi(d(x, y))
$$

where $\psi \in \Psi$.

A subset K of an M-metric space X is called bounded if for all $x \in K$, there exist $y \in X$ and $r>0$ such that $x \in B_{m}(y, r)$. Let \bar{K} denote the closure of K. The set K is closed in X if and only if $\bar{K}=K$.

Definition 1.11. [31] Define $H_{m}: C B_{m}(X) \times C B_{m}(X) \rightarrow[0, \infty)$ by

$$
H_{m}(K, L)=\max \left\{\nabla_{m}(K, L), \nabla_{m}(L, K)\right\},
$$

where

$$
\begin{aligned}
m(x, L) & =\inf \{m(x, y): y \in L\} \text { and } \\
\nabla_{m}(L, K) & =\sup \{m(x, L): x \in K\} .
\end{aligned}
$$

Lemma 1.12. [31] Let F be any nonempty set in M-metric space (X, m), then

$$
x \in \bar{F} \text { if and only if } m(x, F)=\sup _{a \in F}\left\{m_{x a}\right\} .
$$

Proposition 1.13. [31] Let $A, B, C \in C B_{m}(X)$, then
(i) $\nabla_{m}(A, A)=\sup _{x \in A}\left\{\sup _{y \in A} m_{x y}\right\}$,
(ii) $\left(\nabla_{m}(A, B)-\sup _{x \in A} \sup _{y \in B} m_{x y}\right) \leq\left(\nabla_{m}(A, C)-\inf _{x \in A} \inf _{z \in C} m_{x z}\right)+$ $\left(\nabla_{m}(C, B)-\inf _{z \in C} \inf _{y \in B} m_{z y}\right)$.

Proposition 1.14. [31] Let $A, B, C \in C B_{m}(X)$ following are hold
(i) $H_{m}(A, A)=\nabla_{m}(A, A)=\sup _{x \in A}\left\{\sup _{y \in A} m_{x y}\right\}$,
(ii) $H_{m}(A, B)=H_{m}(B, A)$,
(iii) $\left.H_{m}(A, B)-\sup _{x \in A} \sup _{y \in A} m_{x y}\right) \leq H_{m}(A, C)+H_{m}(B, C)-\inf _{x \in A} \inf _{z \in C} m_{x z}-\inf _{z \in C} \inf _{y \in B} m_{z y}$.

Lemma 1.15. [31] Let $A, B \in C B_{m}(X)$ and $h>1$. Then for each $x \in A$, there exist at the least one $y \in B$ such that

$$
m(x, y) \leq h H_{m}(A, B) .
$$

Lemma 1.16. [31] Let $A, B \in C B_{m}(X)$ and $l>0$. Then for each $x \in A$, there exist at least one $y \in B$ such that

$$
m(x, y) \leq H_{m}(A, B)+l .
$$

Theorem 1.17. [31] Let (X, m) be a complete M-metric space and $T: X \rightarrow C B_{m}(X)$. Assume that there exist $h \in(0,1)$ such that

$$
\begin{equation*}
H_{m}(T(x), T(y)) \leq h m(x, y), \tag{1.1}
\end{equation*}
$$

for all $x, y \in X$. Then T has a fixed point.
Proposition 1.18. [31] Let $T: X \rightarrow C B_{m}(X)$ be a set-valued mapping satisfying (1.1) for all x, y in an M-metric space X. If $z \in T(z)$ for some z in X such that $m(x, x)=0$ for $x \in T(z)$.

2. Main results

We start with the following definition:
Definition 2.1. Assume that Ψ is a family of non-decreasing functions $\phi_{M}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that
(i) $\sum_{n}^{+\infty} \phi_{M}^{n}(x)<\infty$ for every $x>0$ where ϕ_{M}^{n} is a $n^{\text {th }}$-iterate of ϕ_{M},
(ii) $\phi_{M}(x+y) \leq \phi_{M}(x)+\phi_{M}(y)$ for all $x, y \in \mathbb{R}^{+}$,
(iii) $\phi_{M}(x)<x$, for each $x>0$.

Remark 2.2. If $\left.\sum \alpha_{n}\right|_{n=\infty}=0$ is a convergent series with positive terms then there exists a monotonic sequence $\left.\left(\beta_{n}\right)\right|_{n=\infty}$ such that $\left.\beta_{n}\right|_{n=\infty}=\infty$ and $\left.\sum \alpha_{n} \beta_{n}\right|_{n=\infty}=0$ converges.

Definition 2.3. Let (X, m) be an M-metric pace. A self mapping $T: X \rightarrow X$ is called $\left(\alpha_{*}, \phi_{M}\right)$ contraction if there exist two functions $\alpha_{*}: X \times X \rightarrow[0, \infty)$ and $\phi_{M} \in \Psi$ such that

$$
\alpha_{*}(x, y) m(T(x), T(y)) \leq \phi_{M}(m(x, y)),
$$

for all $x, y \in X$.
Definition 2.4. Let (X, m) be an M-metric space. A set-valued mapping $T: X \rightarrow C B_{m}(X)$ is said to be (α_{*}, ϕ_{M})-contraction if for all $x, y \in X$, we have

$$
\begin{equation*}
\alpha_{*}(x, y) H_{m}(T(x), T(x)) \leq \phi_{M}(m(x, y)), \tag{2.1}
\end{equation*}
$$

where $\phi_{M} \in \Psi$ and $\alpha_{*}: X \times X \rightarrow[0, \infty)$.
A mapping T is called α_{*}-admissible if

$$
\alpha_{*}(x, y) \geq 1 \Rightarrow \alpha_{*}\left(a_{1}, b_{1}\right) \geq 1
$$

for each $a_{1} \in T(x)$ and $b_{1} \in T(y)$.
Theorem 2.5. Let (X, m) be a complete M-metric space. Suppose that $\left(\alpha_{*}, \phi_{M}\right)$ contraction and $\alpha_{*}{ }^{-}$ admissible mapping $T: X \rightarrow C B_{m}(X)$ satisfies the following conditions:
(i) there exist $x_{0} \in X$ such that $\alpha_{*}\left(x_{0}, a_{1}\right) \geq 1$ for each $a_{1} \in T\left(x_{0}\right)$,
(ii) if $\left\{x_{n}\right\} \in X$ is a sequence such that $\alpha_{*}\left(x_{n}, x_{n+1}\right) \geq 1$ for all n and $\left\{x_{n}\right\} \rightarrow x \in X$ as $n \rightarrow \infty$, then $\alpha_{*}\left(x_{n}, x\right) \geq 1$ for all $n \in \mathbb{N}$. Then T has a fixed point.

Proof. Let $x_{1} \in T\left(x_{0}\right)$ then by the hypothesis (i) $\alpha_{*}\left(x_{0}, x_{1}\right) \geq 1$. From Lemma 1.16, there exist $x_{2} \in$ $T\left(x_{1}\right)$ such that

$$
m\left(x_{1}, x_{2}\right) \leq H_{m}\left(T\left(x_{0}\right), T\left(x_{1}\right)\right)+\phi_{M}\left(m\left(x_{0}, x_{1}\right)\right) .
$$

Similarly, there exist $x_{3} \in T\left(x_{2}\right)$ such that

$$
m\left(x_{2}, x_{3}\right) \leq H_{m}\left(T\left(x_{1}\right), T\left(x_{2}\right)\right)+\phi_{M}^{2}\left(m\left(x_{0}, x_{1}\right)\right) .
$$

Following the similar arguments, we obtain a sequence $\left\{x_{n}\right\} \in X$ such that there exist $x_{n+1} \in T\left(x_{n}\right)$ satisfying the following inequality

$$
m\left(x_{n}, x_{n+1}\right) \leq H_{m}\left(T\left(x_{n-1}\right), T\left(x_{n}\right)\right)+\phi_{M}^{n}\left(m\left(x_{0}, x_{1}\right)\right) .
$$

Since T is α_{*}-admissible, therefore $\alpha_{*}\left(x_{0}, x_{1}\right) \geq 1 \Rightarrow \alpha_{*}\left(x_{1}, x_{2}\right) \geq 1$. Using mathematical induction, we get

$$
\begin{equation*}
\alpha_{*}\left(x_{n}, x_{n+1}\right) \geq 1 . \tag{2.2}
\end{equation*}
$$

By (2.1) and (2.2), we have

$$
\begin{aligned}
& m\left(x_{n}, x_{n+1}\right) \leq H_{m}\left(T\left(x_{n-1}\right), T\left(x_{n}\right)\right)+\phi_{M}^{n}\left(m\left(x_{0}, x_{1}\right)\right) \\
& \leq \alpha_{*}\left(x_{n}, x_{n+1}\right) H_{m}\left(T\left(x_{n-1}\right), T\left(x_{n}\right)\right) \\
&+\phi_{M}^{n}\left(m\left(x_{0}, x_{1}\right)\right) \\
& \leq \phi_{M}\left(m\left(x_{n-1}, x_{n}\right)\right)+\phi_{M}^{n}\left(m\left(x_{0}, x_{1}\right)\right) \\
&= \phi_{M}\left[\left(m\left(x_{n-1}, x_{n}\right)\right)+\phi_{M}^{n-1}\left(m\left(x_{0}, x_{1}\right)\right)\right] \\
& \leq \phi_{M}\left[H_{m}\left(T\left(x_{n-2}\right), T\left(x_{n-1}\right)\right)+\phi_{M}^{n-1}\left(m\left(x_{0}, x_{1}\right)\right)\right] \\
& \leq \phi_{M}\left[\alpha_{*}\left(x_{n-1}, x_{n}\right) H_{m}\left(T\left(x_{n-1}\right), T\left(x_{n}\right)\right)+\phi_{M}^{n-1}\left(m\left(x_{0}, x_{1}\right)\right)\right] \\
& \leq \phi_{M}\left[\phi_{M}\left(m\left(x_{n-2}, x_{n-1}\right)\right)+\phi_{M}^{n-1}\left(m\left(x_{0}, x_{1}\right)\right)+\phi_{M}^{n-1}\left(m\left(x_{0}, x_{1}\right)\right)\right] \\
& \leq \phi_{M}^{2}\left(m\left(x_{n-2}, x_{n-1}\right)\right)+2 \phi_{M}^{n}\left(m\left(x_{0}, x_{1}\right)\right) \\
& \ldots \\
& m\left(x_{n}, x_{n+1}\right) \leq \phi_{M}^{n}\left(m\left(x_{0}, x_{1}\right)\right)+n \phi_{M}^{n}\left(m\left(x_{0}, x_{1}\right)\right) \\
& m\left(x_{n}, x_{n+1}\right) \leq(n+1) \phi_{M}^{n}\left(m\left(x_{0}, x_{1}\right)\right) .
\end{aligned}
$$

Let us assume that $\epsilon>0$, then there exist $n_{0} \in N$ such that

$$
\sum_{n \geq n_{0}}(n+1) \phi_{M}^{n}\left(m\left(x_{0}, x_{1}\right)\right)<\epsilon .
$$

By the Remarks (1.2) and (2.2), we get

$$
\lim _{n \rightarrow \infty} m\left(x_{n}, x_{n+1}\right)=0 .
$$

Using the above inequality and $\left(m_{2}\right)$, we deduce that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} m\left(x_{n}, x_{n}\right) & =\lim _{n \rightarrow \infty} \min \left\{m\left(x_{n}, x_{n}\right), m\left(x_{n+1}, x_{n+1}\right)\right\} \\
& =\lim _{n \rightarrow \infty} m_{x_{n} x_{n+1}} \\
& \leq \lim _{n \rightarrow \infty} m\left(x_{n}, x_{n+1}\right)=0 .
\end{aligned}
$$

Owing to limit, we have $\lim _{n \rightarrow \infty} m\left(x_{n}, x_{n}\right)=0$,

$$
\lim _{n, m \rightarrow \infty} m_{x_{n} x_{m}}=0
$$

Now, we prove that $\left\{x_{n}\right\}$ is M-Cauchy in X. For m, n in N with $m>n$ and using the triangle inequality of an M-metric we get

$$
\begin{aligned}
m\left(x_{n}, x_{m}\right)-m_{x_{n} x_{m}} \leq & m\left(x_{n}, x_{n+1}\right)-m_{x_{n} x_{n+1}}+m\left(x_{n+1}, x_{m}\right)-m_{x_{n+1} x_{m}} \\
\leq & m\left(x_{n}, x_{n+1}\right)-m_{x_{n} x_{n+1}}+m\left(x_{n+1}, x_{n+2}\right)-m_{x_{n+1} x_{n+1}} \\
& +m\left(x_{n+2}, x_{m}\right)-m_{x_{n+2} x_{m}} \\
\leq & m\left(x_{n}, x_{n+1}\right)-m_{x_{n} x_{n+1}}+m\left(x_{n+1}, x_{n+2}\right)-m_{x_{n+1} x_{n+2}} \\
& +\cdots+m\left(x_{m-1}, x_{m}\right)-m_{x_{m-1} x_{m}} \\
\leq & m\left(x_{n}, x_{n+1}\right)+m\left(x_{n+1}, x_{n+2}\right)+\cdots+m\left(x_{m-1}, x_{m}\right) \\
= & \sum_{r=n}^{m-1} m\left(x_{r}, x_{r+1}\right) \\
\leq & \sum_{r=n}^{m-1}(r+1) \phi_{M}^{r}\left(m\left(x_{0}, x_{1}\right)\right) \\
\leq & \sum_{r \geq n_{0}}^{m-1}(r+1) \phi_{M}^{r}\left(m\left(x_{0}, x_{1}\right)\right) \\
\leq & \sum_{r \geq n_{0}}^{m-1}(r+1) \phi_{M}^{r}\left(m\left(x_{0}, x_{1}\right)\right)<\epsilon .
\end{aligned}
$$

$m\left(x_{n}, x_{m}\right)-m_{x_{n} x_{m}} \rightarrow 0$, as $n \rightarrow \infty$, we obtain $\lim _{m, n \rightarrow \infty}\left(M_{x_{n} x_{m}}-m_{x_{n} x_{m}}\right)=0$. Thus $\left\{x_{n}\right\}$ is a M-Cauchy sequence in X. Since (X, m) is M-complete, there exist $x^{\star} \in X$ such that

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(m\left(x_{n}, x^{\star}\right)-m_{x_{n} x^{\star}}\right) & =0 \text { and } \\
\lim _{n \rightarrow \infty}\left(M_{x_{n} x^{\star}}-m_{x_{n} x^{\star}}\right) & =0 .
\end{aligned}
$$

Also, $\lim _{n \rightarrow \infty} m\left(x_{n}, x_{n}\right)=0$ gives that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} m\left(x_{n}, x^{\star}\right)=0 \text { and } \lim _{n \rightarrow \infty} M_{x_{n} x^{\star}}=0, \tag{2.3}\\
& \lim _{n \rightarrow \infty}\left\{\max \left(m\left(x_{n}, x^{\star}\right), m\left(x^{\star}, x^{\star}\right)\right)\right\}=0,
\end{align*}
$$

which implies that $m\left(x^{\star}, x^{\star}\right)=0$ and hence we obtain $m_{x^{\star} T\left(x^{\star}\right)}=0$. By using (2.1) and (2.3) with

$$
\lim _{n \rightarrow \infty} \alpha_{*}\left(x_{n}, x^{\star}\right) \geq 1 .
$$

Thus,

$$
\begin{gather*}
\lim _{n \rightarrow \infty} H_{m}\left(T\left(x_{n}\right), T\left(x^{\star}\right)\right) \leq \lim _{n \rightarrow \infty} \phi_{M}\left(m\left(x_{n}, x^{\star}\right)\right) \leq \lim _{n \rightarrow \infty} m\left(x_{n}, x^{\star}\right) . \\
\lim _{n \rightarrow \infty} H_{m}\left(T\left(x_{n}\right), T\left(x^{\star}\right)\right)=0 . \tag{2.4}
\end{gather*}
$$

Now from (2.3), (2.4), and $x_{n+1} \in T\left(x_{n}\right)$, we have

$$
m\left(x_{n+1}, T\left(x^{\star}\right)\right) \leq H_{m}\left(T\left(x_{n}\right), T\left(x^{\star}\right)\right)=0 .
$$

Taking limit as $n \rightarrow \infty$ and using (2.4), we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} m\left(x_{n+1}, T\left(x^{\star}\right)\right)=0 . \tag{2.5}
\end{equation*}
$$

Since $m_{x_{n+1} T\left(x^{\star}\right)} \leq m\left(x_{n+1}, T\left(x^{\star}\right)\right)$ which gives

$$
\begin{equation*}
\lim _{n \rightarrow \infty} m_{x_{n+1} T\left(x^{\star}\right)}=0 . \tag{2.6}
\end{equation*}
$$

Using the condition $\left(m_{4}\right)$, we obtain

$$
\begin{aligned}
m\left(x^{\star}, T\left(x^{\star}\right)\right)-\sup _{y \in T\left(x^{\star}\right)} m_{x^{\star} y} \leq & m\left(x^{\star}, T\left(x^{\star}\right)\right)-m_{x^{\star}, T\left(x^{\star}\right)} \\
\leq & m\left(x^{\star}, x_{n+1}\right)-m_{x^{\star} x_{n+1}} \\
& +m\left(x_{n+1}, T\left(\left(x^{\star}\right)\right)-m_{x_{n+1} T\left(x^{\star}\right) .} .\right.
\end{aligned}
$$

Applying limit as $n \rightarrow \infty$ and using (2.3) and (2.6), we have

$$
\begin{equation*}
m\left(x^{\star}, T\left(x^{\star}\right)\right) \leq \sup _{y \in T\left(x^{\star}\right)} m_{x^{\star} y} . \tag{2.7}
\end{equation*}
$$

From $\left(m_{2}\right), m_{x^{\star} y} \leq m\left(x^{\star} y\right)$ for each $y \in T\left(x^{\star}\right)$ which implies that

$$
m_{x^{\star} y}-m\left(x^{\star}, y\right) \leq 0 .
$$

Hence,

$$
\sup \left\{m_{x^{\star} y}-m\left(x^{\star}, y\right): y \in T\left(x^{\star}\right)\right\} \leq 0
$$

Then

$$
\sup _{y \in T\left(x^{\star}\right)} m_{x^{\star} y}-\inf _{y \in T\left(x^{\star}\right)} m\left(x^{\star}, y\right) \leq 0 .
$$

Thus

$$
\begin{equation*}
\sup _{y \in T\left(x^{\star}\right)} m_{x^{\star} y} \leq m\left(x^{\star}, T\left(x^{\star}\right)\right) . \tag{2.8}
\end{equation*}
$$

Now, from (2.7) and (2.8), we obtain

$$
m\left(T\left(x^{\star}\right), x^{\star}\right)=\sup _{y \in T\left(x^{\star}\right)} m_{x^{\star} y} .
$$

Consequently, owing to Lemma (1.12), we have $x^{\star} \in \overline{T\left(x^{\star}\right)}=T\left(x^{\star}\right)$.
Corollary 2.6. Let (X, m) be a complete M-metric space and an self mapping $T: X \rightarrow X$ an α_{*} admissible and $\left(\alpha_{*}, \phi_{M}\right)$-contraction mapping. Assume that the following properties hold:
(i) there exists $x_{0} \in X$ such that $\alpha_{*}\left(x_{0}, T\left(x_{0}\right)\right) \geq 1$,
(ii) either T is continuous or for any sequence $\left\{x_{n}\right\} \in X$ with $\alpha_{*}\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \in \mathbb{N}$ and $\left\{x_{n}\right\} \rightarrow x$ as $n \rightarrow \infty$, we have $\alpha_{*}\left(x_{n}, x\right) \geq 1$ for all $n \in \mathbb{N}$. Then T has a fixed point.

Some fixed point results in ordered M-metric space.

Definition 2.7. Let (X, \leq) be a partially ordered set. A sequence $\left\{x_{n}\right\} \subset X$ is said to be non-decreasing if $x_{n} \leq x_{n+1}$ for all n.

Definition 2.8. [16] Let F and G be two nonempty subsets of partially ordered set (X, \leq). The relation between F and G is defined as follows: $F<_{1} G$ if for every $x \in F$, there exists $y \in G$ such that $x \leq y$.

Definition 2.9. Let (X, m, \leq) be a partially ordered set on M-metric. A set-valued mapping $T: X \rightarrow$ $C B_{m}(X)$ is said to be ordered $\left(\alpha_{*}, \phi_{M}\right)$-contraction if for all $x, y \in X$, with $x \leq y$ we have

$$
H_{m}(T(x), T(y)) \leq \phi_{M}(m(x, y))
$$

where $\phi_{M} \in \Psi$. Suppose that $\alpha_{*}: X \times X \rightarrow[0, \infty)$ is defined by

$$
\alpha_{*}(x, y)=\left\{\begin{array}{rr}
1 & \text { if } T x<_{1} T y \\
0 & \text { otherwise } .
\end{array}\right.
$$

A mapping T is called α_{*}-admissible if

$$
\alpha(x, y) \geq 1 \Rightarrow \alpha_{*}\left(a_{1}, b_{1}\right) \geq 1
$$

for each $a_{1} \in T(x)$ and $b_{1} \in T(y)$.
Theorem 2.10. Let (X, m, \leq) be a partially ordered complete M-metric space and $T: X \rightarrow C B_{m}(X)$ an α_{*}-admissible ordered $\left(\alpha_{*}, \phi_{M}\right)$-contraction mapping satisfying the following conditions:
(i) there exist $x_{0} \in X$ such that $\left\{x_{0}\right\}<_{1}\left\{T\left(x_{0}\right)\right\}, \alpha_{*}\left(x_{0}, a_{1}\right) \geq 1$ for each $a_{1} \in T\left(x_{0}\right)$,
(ii) for every $x, y \in X, x \leq y$ implies $T(x)<_{1} T(y)$,
(iii) If $\left\{x_{n}\right\} \in X$ is a non-decreasing sequence such that $x_{n} \leq x_{n+1}$ for all n and $\left\{x_{n}\right\} \rightarrow x \in X$ as $n \rightarrow \infty$ gives $x_{n} \leq x$ for all $n \in \mathbb{N}$. Then T has a fixed point.

Proof. By assumption (i) there exist $x_{1} \in T\left(x_{0}\right)$ such that $x_{0} \leq x_{1}$ and $\alpha_{*}\left(x_{0}, x_{1}\right) \geq 1$. By hypothesis (ii), $T\left(x_{0}\right)<_{1} T\left(x_{1}\right)$. Let us assume that there exist $x_{2} \in T\left(x_{1}\right)$ such that $x_{1} \leq x_{2}$ and we have the following

$$
m\left(x_{1}, x_{2}\right) \leq H_{m}\left(T\left(x_{0}\right), T\left(x_{1}\right)\right)+\phi_{M}\left(m\left(x_{0}, x_{1}\right)\right) .
$$

In the same way, there exist $x_{3} \in T\left(x_{2}\right)$ such that $x_{2} \leq x_{3}$ and

$$
m\left(x_{2}, x_{3}\right) \leq H_{m}\left(T\left(x_{1}\right), T\left(x_{2}\right)\right)+\phi_{M}^{2}\left(m\left(x_{0}, x_{1}\right)\right) .
$$

Following the similar arguments, we have a sequence $\left\{x_{n}\right\} \in X$ and $x_{n+1} \in T\left(x_{n}\right)$ for all $n \geq 0$ satisfying $x_{0} \leq x_{1} \leq x_{2} \leq x_{3} \leq \ldots x_{n} \leq x_{n+1}$. The proof is complete follows the arguments given in Theorem 2.5.

Example 2.11. Let $X=\left[\frac{1}{6}, 1\right]$ be endowed with an M-metric given by $m(x, y)=\frac{x+y}{2}$. Define $T: X \rightarrow$ $C B_{m}(X)$ by

$$
T(x)= \begin{cases}\left\{\frac{1}{2} x+\frac{1}{6}, \frac{1}{4}\right\}, & \text { if } x=\frac{1}{6} \\ \left\{\frac{x}{2}, \frac{x}{3}\right\}, & \text { if } \frac{1}{4} \leq x \leq \frac{1}{3} \\ \left\{\frac{2}{3}, \frac{5}{6}\right\}, & \text { if } \frac{1}{2} \leq x \leq 1 .\end{cases}
$$

Define a mapping $\alpha_{*}: X \times X \rightarrow[0, \infty)$ by

$$
\alpha_{*}(x, y)=\left\{\begin{array}{cc}
1 & \text { if } x, y \in\left[\frac{1}{4}, \frac{1}{3}\right] \\
0 & \text { otherwise } .
\end{array}\right.
$$

Let $\phi_{M}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be given by $\phi_{M}(t)=\frac{17}{10}$ where $\phi_{M} \in \Psi$, for $x, y \in X$. If $x=\frac{1}{6}, y=\frac{1}{4}$ then $m(x, y)=\frac{5}{24}$, and

$$
\begin{aligned}
H_{m}(T(x), T(y)) & =H_{m}\left(\left\{\frac{3}{12}, \frac{1}{4}\right\},\left\{\frac{1}{8}, \frac{1}{12}\right\}\right) \\
& =\max \left(\nabla_{m}\left(\left\{\frac{3}{12}, \frac{1}{4}\right\},\left\{\frac{1}{8}, \frac{1}{12}\right\}\right), \nabla_{m}\left(\left\{\frac{1}{8}, \frac{1}{12}\right\},\left\{\frac{3}{12}, \frac{1}{4}\right\}\right)\right) \\
& =\max \left\{\frac{3}{16}, \frac{2}{12}\right\}=\frac{3}{16} \\
& \leq \phi_{M}(t) m(x, y) .
\end{aligned}
$$

If $x=\frac{1}{3}, y=\frac{1}{2}$ then $m(x, y)=\frac{5}{12}$, and

$$
\begin{aligned}
H_{m}(T(x), T(y)) & =H_{m}\left(\left\{\frac{1}{6}, \frac{1}{9}\right\},\left\{\frac{2}{3}, 1\right\}\right) \\
& =\max \left(\nabla_{m}\left(\left\{\frac{1}{6}, \frac{1}{9}\right\},\left\{\frac{2}{3}, 1\right\}\right), \nabla_{m}\left(\left\{\frac{2}{3}, 1\right\},\left\{\frac{1}{6}, \frac{1}{9}\right\}\right)\right) \\
& =\max \left\{\frac{17}{36}, \frac{7}{18}\right\}=\frac{17}{36} \\
& \leq \phi_{M}(t) m(x, y) .
\end{aligned}
$$

If $x=\frac{1}{6}, y=1$, then $m(x, y)=\frac{7}{12}$ and

$$
\begin{aligned}
H_{m}(T(x), T(y)) & =H_{m}\left(\left\{\frac{3}{12}, \frac{1}{4}\right\},\left\{\frac{2}{3}, \frac{5}{6}\right\}\right) \\
& =\max \left(\nabla_{m}\left(\left\{\frac{3}{12}, \frac{1}{4}\right\},\left\{\frac{2}{3}, \frac{5}{6}\right\}\right), \nabla_{m}\left(\left\{\frac{2}{3}, \frac{5}{6}\right\},\left\{\frac{3}{12}, \frac{1}{4}\right\}\right)\right) \\
& =\max \left\{\frac{11}{24}, \frac{13}{24}\right\}=\frac{13}{24} \\
& \leq \phi_{M}(t) m(x, y) .
\end{aligned}
$$

In all cases, T is $\left(\alpha_{*}, \phi_{M}\right)$-contraction mapping. If $x_{0}=\frac{1}{3}$, then $T\left(x_{0}\right)=\left\{\frac{x}{2}, \frac{x}{3}\right\}$.Therefore $\alpha_{*}\left(x_{0}, a_{1}\right) \geq 1$ for every $a_{1} \in T\left(x_{0}\right)$. Let $x, y \in X$ be such that $\alpha_{*}(x, y) \geq 1$, then $x, y \in\left[\frac{x}{2}, \frac{x}{3}\right]$ and $T(x)=\left\{\frac{x}{2}, \frac{x}{3}\right\}$ and $T(y)=\left\{\frac{x}{2}, \frac{x}{3}\right\}$ which implies that $\alpha_{*}\left(a_{1}, b_{1}\right) \geq 1$ for every $a_{1} \in T(x)$ and $b_{1} \in T(x)$. Hence T is α_{*}-admissble.

Let $\left\{x_{n}\right\} \in X$ be a sequence such that $\alpha_{*}\left(x_{n}, x_{n+1}\right) \geq 1$ for all n in \mathbb{N} and x_{n} converges to x as n converges to ∞, then $x_{n} \in\left[\frac{x}{2}, \frac{x}{3}\right]$. By definition of α_{*}-admissblity, therefore $x \in\left[\frac{x}{2}, \frac{x}{3}\right]$ and hence $\alpha_{*}\left(x_{n}, x\right) \geq 1$. Thus all the conditions of Theorem 2.3 are satisfied. Moreover, T has a fixed point.

Example 2.12. Let $X=\left\{(0,0),\left(0,-\frac{1}{5}\right),\left(-\frac{1}{8}, 0\right)\right\}$ be the subset of \mathbb{R}^{2} with order \leq defined as: For $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X,\left(x_{1}, y_{1}\right) \leq\left(x_{2}, y_{2}\right)$ if and only if $x_{1} \leq x_{2}, y_{1} \leq y_{2}$. Let $m: X \times X \rightarrow \mathbb{R}^{+}$be defined by

$$
m\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|\frac{x_{1}+x_{2}}{2}\right|+\left|\frac{y_{1}+y_{2}}{2}\right|, \text { for } x=\left(x_{1}, y_{1}\right), y=\left(x_{2}, y_{2}\right) \in X .
$$

Then (X, m) is a complete M-metric space. Let $T: X \rightarrow C B_{m}(X)$ be defined by

$$
T(x)=\left\{\begin{array}{l}
\{(0,0)\}, \text { if } x=(0,0), \\
\left\{(0,0),\left(-\frac{1}{8}, 0\right)\right\}, \text { if } x \in\left(0,-\frac{1}{5}\right) \\
\{(0,0)\}, \text { if } x \in\left(-\frac{1}{8}, 0\right)
\end{array}\right.
$$

Define a mapping $\alpha_{*}: X \times X \rightarrow[0, \infty)$ by

$$
\alpha_{*}(x, y)=\left\{\begin{array}{cc}
1 & \text { if } x, y \in X \\
0 & \text { otherwise } .
\end{array}\right.
$$

Let $\phi_{M}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be given by $\phi_{M}(t)=\frac{1}{2}$. Obviously, $\phi_{M} \in \Psi$. For $x, y \in X$,
if $x=\left(0,-\frac{1}{5}\right)$ and $y=(0,0)$, then $H_{m}(T(x), T(y))=0$ and $m(x, y)=\frac{1}{10}$ gives that

$$
\begin{aligned}
H_{m}(T(x), T(y)) & =H_{m}\left(\left\{(0,0),\left(-\frac{1}{8}, 0\right)\right\},\{(0,0)\}\right) \\
& =\max \binom{\nabla_{m}\left(\left\{(0,0),\left(-\frac{1}{8}, 0\right)\right\},\{(0,0)\}\right),}{\nabla_{m}\left(\{(0,0)\},\left\{(0,0),\left(-\frac{1}{8}, 0\right)\right\}\right)} \\
& =\max \{0,0\}=0 \\
& \leq \phi_{M}(t) m(x, y) .
\end{aligned}
$$

If $x=\left(-\frac{1}{8}, 0\right)$ and $y=(0,0)$ then $H_{m}(T(x), T(y))=0$, and $m(x, y)=\frac{1}{16}$ implies that

$$
H_{m}(T(x), T(y)) \leq \phi_{M}(t) m(x, y) .
$$

If $x=(0,0)$ and $y=(0,0)$ then $H_{m}(T(x), T(y))=0$, and $m(x, y)=0$ gives

$$
H_{m}(T(x), T(y)) \leq \phi_{M}(t) m(x, y) .
$$

If $x=\left(0,-\frac{1}{5}\right)$ and $y=\left(0,-\frac{1}{5}\right)$ then $H_{m}(T(x), T(y))=0$, and $m(x, y)=\frac{1}{5}$ implies that

$$
H_{m}(T(x), T(y)) \leq \phi_{M}(t) m(x, y) .
$$

If $x=\left(0,-\frac{1}{8}\right)$ and $y=\left(0,-\frac{1}{8}\right)$ then $H_{m}(T(x), T(y))=0$, and $m(x, y)=\frac{1}{8}$ gives that

$$
H_{m}(T(x), T(y)) \leq \phi_{M}(t) m(x, y)
$$

Thus all the condition of Theorem 2.10 satisfied. Moreover, $(0,0)$ is the fixed point of T.

3. Application

In this section, we present an application of our result in homotopy theory. We use the fixed point theorem proved for set-valued $\left(\alpha_{*}, \phi_{M}\right)$-contraction mapping in the previous section, to establish the result in homotopy theory. For further study in this direction, we refer to $[6,35]$.

Theorem 3.1. Suppose that (X, m) is a complete M-metric space and A and B are closed and open subsets of X respectively, such that $A \subset B$. For $a, b \in \mathbb{R}$, let $T: B \times[a, b] \rightarrow C B_{m}(X)$ be a set-valued mapping satisfying the following conditions:
(i) $x \notin T(y, t)$ for each $y \in B / A$ and $t \in[a, b]$,
(ii) there exist $\phi_{M} \in \Psi$ and $\alpha_{*}: X \times X \rightarrow[0, \infty)$ such that

$$
\alpha_{*}(x, y) H_{m}(T(x, t), T(y, t)) \leq \phi_{M}(m(x, y)),
$$

for each pair $(x, y) \in B \times B$ and $t \in[a, b]$,
(iii) there exist a continuous function $\Omega:[a, b] \rightarrow \mathbb{R}$ such that for each $s, t \in[a, b]$ and $x \in B$, we get

$$
H_{m}(T(x, s), T(y, t)) \leq \phi_{M}|\Omega(s)-\Omega(t)|,
$$

(iv) if $x^{\star} \in T\left(x^{\star}, t\right)$, then $T\left(x^{\star}, t\right)=\left\{x^{\star}\right\}$,
(v) there exist x_{0} in X such that $x_{0} \in T\left(x_{0}, t\right)$,
(vi) a function $\mathfrak{R}:[0, \infty) \rightarrow[0, \infty)$ defined by $\mathfrak{R}(x)=x-\phi_{M}(x)$ is strictly increasing and continuous if $T\left(., t^{\top}\right)$ has a fixed point in B for some $t^{\top} \in[a, b]$, then $T(., t)$ has a fixed point in A for all $t \in[a, b]$. Moreover, for a fixed $t \in[a, b]$, fixed point is unique provided that $\phi_{M}(t)=\frac{1}{2} t$ where $t>0$.

Proof. Define a mapping $\alpha_{*}: X \times X \rightarrow[0, \infty)$ by

$$
\alpha_{*}(x, y)=\left\{\begin{array}{lc}
1 & \text { if } x \in T(x, t), y \in T(y, t) \\
0 & \text { otherwise } .
\end{array}\right.
$$

We show that T is α_{*}-admissible. Note that $\alpha_{*}(x, y) \geq 1$ implies that $x \in T(x, t)$ and $y \in T(y, t)$ for all $t \in[a, b]$. By hypothesis (iv), $T(x, t)=\{x\}$ and $T(y, t)=\{y\}$. It follows that T is α_{*}-admissible. By hypothesis (v), there exist $x_{0} \in X$ such that $x_{0} \in\left(x_{0}, t\right)$ for all t, that is $\alpha_{*}\left(x_{0}, x_{0}\right) \geq 1$. Suppose that $\alpha_{*}\left(x_{n}, x_{n+1}\right) \geq 1$ for all n and x_{n} converges to q as n approaches to ∞ and $x_{n} \in T\left(x_{n}, t\right)$ and $x_{n+1} \in T\left(x_{n+1}, t\right)$ for all n and $t \in[a, b]$ which implies that $q \in T(q, t)$ and thus $\alpha_{*}\left(x_{n}, q\right) \geq 1$. Set

$$
D=\{t \in[a, b]: x \in T(x, t) \text { for } x \in A\} .
$$

So $T\left(., t^{\top}\right)$ has a fixed point in B for some $t^{\top} \in[a, b]$, there exist $x \in B$ such that $x \in T(x, t)$. By hypothesis $(i) x \in T(x, t)$ for $t \in[a, b]$ and $x \in A$ so $D \neq \phi$. Now we now prove that D is open and close in $[a, b]$. Let $t_{0} \in D$ and $x_{0} \in A$ with $x_{0} \in T\left(x_{0}, t_{0}\right)$. Since A is open subset of $X, \overline{B_{m}\left(x_{0}, r\right)} \subseteq A$ for some $r>0$. For $\epsilon=r+m_{x x_{0}}-\phi\left(r+m_{x x_{0}}\right)$ and a continuous function Ω on $[a, b]$, there exist $\delta>0$ such that

$$
\phi_{M}\left|\Omega(t)-\Omega\left(t_{0}\right)\right|<\epsilon \text { for all } t \in\left(t_{0}-\delta, t_{0}+\delta\right) .
$$

If $t \in\left(t_{0}-\delta, t_{0}+\delta\right)$ for $x \in B_{m}\left(x_{0}, r\right)=\left\{x \in X: m\left(x_{0}, x\right) \leq m_{x_{0} x}+r\right\}$ and $l \in T(x, t)$, we obtain

$$
\begin{aligned}
m\left(l, x_{0}\right) & =m\left(T(x, t), x_{0}\right) \\
& =H_{m}\left(T(x, t), T\left(x_{0}, t_{0}\right)\right) .
\end{aligned}
$$

Using the condition (iii) of Proposition 1.13 and Proposition 1.18, we have

$$
\begin{equation*}
m\left(l, x_{0}\right) \leq H_{m}\left(T(x, t), T\left(x_{0}, t_{0}\right)\right)+H_{m}\left(T(x, t), T\left(x_{0}, t_{0}\right)\right) \tag{2.9}
\end{equation*}
$$

as $x \in T\left(x_{0}, t_{0}\right)$ and $x \in B_{m}\left(x_{0}, r\right) \subseteq A \subseteq B, t_{0} \in[a, b]$ with $\alpha_{*}\left(x_{0}, x_{0}\right) \geq 1$. By hypothesis (ii), (iii) and (2.9)

$$
\begin{aligned}
m\left(l, x_{0}\right) & \leq \phi_{M}\left|\Omega(t)-\Omega\left(t_{0}\right)\right|+\alpha_{*}\left(x_{0}, x_{0}\right) H_{m}\left(T(x, t), T\left(x_{0}, t_{0}\right)\right) \\
& \leq \phi_{M}\left|\Omega(t)-\Omega\left(t_{0}\right)\right|+\phi_{M}\left(m\left(x, x_{0}\right)\right) \\
& \leq \phi_{M}(\epsilon)+\phi_{M}\left(m_{x x_{0}}+r\right) \\
& \leq \phi_{M}\left(r+m_{x x_{0}}-\phi_{M}\left(r+m_{x x_{0}}\right)\right)+\phi_{M}\left(m_{x x_{0}}+r\right) \\
& <r+m_{x x_{0}}-\phi_{M}\left(r+m_{x x_{0}}\right)+\phi_{M}\left(m_{x x_{0}}+r\right)=r+m_{x x_{0}} .
\end{aligned}
$$

Hence $l \in \overline{B_{m}\left(x_{0}, r\right)}$ and thus for each fixed $t \in\left(t_{0}-\delta, t_{0}+\delta\right)$, we obtain $T(x, t) \subset \overline{B_{m}\left(x_{0}, r\right)}$ therefore $T: \overline{B_{m}\left(x_{0}, r\right)} \rightarrow C B_{m}\left(\overline{B_{m}\left(x_{0}, r\right)}\right)$ satisfies all the assumption of Theorem (3.1) and $T(., t)$ has a fixed point $\overline{B_{m}\left(x_{0}, r\right)}=B_{m}\left(x_{0}, r\right) \subset B$. But by assumption of (i) this fixed point belongs to A. So $\left(t_{0}-\delta, t_{0}+\delta\right) \subseteq D$, thus D is open in $[a, b]$. Next we prove that D is closed. Let a sequence $\left\{t_{n}\right\} \in D$ with t_{n} converges to $t_{0} \in[a, b]$ as n approaches to ∞. We will prove that t_{0} is in D.

Using the definition of D, there exist $\left\{t_{n}\right\}$ in A such that $x_{n} \in T\left(x_{n}, t_{n}\right)$ for all n. Using Assumption (iii)-(v), and the condition (iii) of Proposition 1.13, and an outcome of the Proposition 1.18, we have

$$
\begin{aligned}
m\left(x_{n}, x_{m}\right) & \leq H_{m}\left(T\left(x_{n}, t_{n}\right), T\left(x_{m}, t_{m}\right)\right) \\
& \leq H_{m}\left(T\left(x_{n}, t_{n}\right), T\left(x_{n}, t_{m}\right)\right)+H_{m}\left(T\left(x_{n}, t_{m}\right), T\left(x_{m}, t_{m}\right)\right) \\
& \leq \phi_{M}\left|\Omega\left(t_{n}\right)-\Omega\left(t_{m}\right)\right|+\alpha_{*}\left(x_{n}, x_{m}\right) H_{m}\left(T\left(x_{n}, t_{m}\right), T\left(x_{m}, t_{m}\right)\right) \\
& \leq \phi_{M}\left|\Omega\left(t_{n}\right)-\Omega\left(t_{m}\right)\right|+\phi_{M}\left(m\left(x_{n}, x_{m}\right)\right) \\
& \Rightarrow \\
m\left(x_{n}, x_{m}\right)-\phi_{M}\left(m\left(x_{n}, x_{m}\right)\right) & \leq \phi_{M}\left|\Omega\left(t_{n}\right)-\Omega\left(t_{m}\right)\right| \\
& \Rightarrow \\
\mathfrak{R}\left(m\left(x_{n}, x_{m}\right)\right) & \leq \phi_{M}\left|\Omega\left(t_{n}\right)-\Omega\left(t_{m}\right)\right| \\
\mathfrak{R}\left(m\left(x_{n}, x_{m}\right)\right) & <\left|\Omega\left(t_{n}\right)-\Omega\left(t_{m}\right)\right| \\
m\left(x_{n}, x_{m}\right) & <\frac{1}{\mathfrak{R}\left|\Omega\left(t_{n}\right)-\Omega\left(t_{m}\right)\right| .}
\end{aligned}
$$

So, continuity of $\frac{1}{\mathfrak{R}}, \mathfrak{R}$ and convergence of $\left\{t_{n}\right\}$, taking the limit as $m, n \rightarrow \infty$ in the last inequality, we obtain that

$$
\lim _{m, n \rightarrow \infty} m\left(x_{n}, x_{m}\right)=0 .
$$

Sine $m_{x_{n} x_{m}} \leq m\left(x_{n}, x_{m}\right)$, therefore

$$
\lim _{m, n \rightarrow \infty} m_{x_{n} x_{m}}=0 .
$$

Thus, we have $\lim _{n \rightarrow \infty} m\left(x_{n}, x_{n}\right)=0=\lim _{m \rightarrow \infty} m\left(x_{m}, x_{m}\right)$. Also,

$$
\lim _{m, n \rightarrow \infty}\left(m\left(x_{n}, x_{m}\right)-m_{x_{n} x_{m}}\right)=0, \lim _{m, n \rightarrow \infty}\left(M_{x_{n} x_{m}}-m_{x_{n} x_{m}}\right) .
$$

Hence $\left\{x_{n}\right\}$ is an M-Cauchy sequence. Using Definition 1.4, there exist x^{*} in X such that

$$
\lim _{n \rightarrow \infty}\left(m\left(x_{n}, x^{*}\right)-m_{x_{n} x^{*}}\right)=0 \text { and } \lim _{n \rightarrow \infty}\left(M_{x_{n} x^{*}}-m_{x_{n} x^{*}}\right)=0 .
$$

As $\lim _{n \rightarrow \infty} m\left(x_{n}, x_{n}\right)=0$, therefore

$$
\lim _{n \rightarrow \infty} m\left(x_{n}, x^{*}\right)=0 \text { and } \lim _{n \rightarrow \infty} M_{x_{n} x^{*}}=0 .
$$

Thus, we have $m\left(x, x^{*}\right)=0$. We now show that $x^{*} \in T\left(x^{*}, t^{*}\right)$. Note that

$$
\begin{aligned}
m\left(x_{n}, T\left(x^{*}, t^{*}\right)\right) & \leq H_{m}\left(T\left(x_{n}, t_{n}\right), T\left(x^{*}, t^{*}\right)\right) \\
& \leq H_{m}\left(T\left(x_{n}, t_{n}\right), T\left(x_{n}, t^{*}\right)\right)+H_{m}\left(T\left(x_{n}, t^{*}\right), T\left(x^{*}, t^{*}\right)\right) \\
& \leq \phi_{M}\left|\Omega\left(t_{n}\right)-\Omega\left(t^{*}\right)\right|+\alpha_{*}\left(x_{n}, t^{*}\right) H_{m}\left(T\left(x_{n}, t^{*}\right), T\left(x^{*}, t^{*}\right)\right) \\
& \leq \phi_{M}\left|\Omega\left(t_{n}\right)-\Omega\left(t^{*}\right)\right|+\phi_{M}\left(m\left(x_{n}, t^{*}\right)\right) .
\end{aligned}
$$

Applying the limit $n \rightarrow \infty$ in the above inequality, we have

$$
\lim _{n \rightarrow \infty} m\left(x_{n}, T\left(x^{*}, t^{*}\right)\right)=0 .
$$

Hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} m\left(x_{n}, T\left(x^{*}, t^{*}\right)\right)=0 . \tag{2.10}
\end{equation*}
$$

Since $m\left(x^{*}, x^{*}\right)=0$, we obtain

$$
\begin{equation*}
\sup _{y \in T\left(x^{*}, t^{*}\right)} m_{x^{*} y}=\sup _{y \in T\left(x^{*}, t^{*}\right)} \min \left\{m\left(x^{*}, x^{*}\right), m(y, y)\right\}=0 . \tag{2.11}
\end{equation*}
$$

From above two inequalities, we get

$$
m\left(x^{*}, T\left(x^{*}, t^{*}\right)\right)=\sup _{y \in T\left(x^{*}, t^{*}\right)} m_{x^{*} y}
$$

Thus using Lemma 1.12 we get $x^{*} \in T\left(x^{*}, t^{*}\right)$. Hence $x^{*} \in A$. Thus $x^{*} \in D$ and D is closed in $[a, b]$, $D=[a, b]$ and D is open and close in $[a, b]$. Thus $T(., t)$ has a fixed point in A for all $t \in[a, b]$. For uniqueness, $t \in[a, b]$ is arbitrary fixed point, then there exist $x \in A$ such that $x \in T(x, t)$. Assume that y is an other point of $T(x, t)$, then by applying condition 4 , we obtain

$$
\begin{aligned}
m(x, y) & =H_{m}(T(x, t), T(y, t)) \\
& \leq \alpha_{M}(x, y) H_{m}(T(x, t), T(y, t)) \leq \phi_{M}(m(x, y))
\end{aligned}
$$

For $\phi_{M}(t)=\frac{1}{2} t$, where $t>0$, the uniqueness follows.

4. Application to integral equation

In this section we will apply the previous theoretical results to show the existence of solution for some integral equation. For related results (see $[13,20]$). We see for non-negative solution of (3.1) in $X=C([0, \delta], \mathbb{R})$. Let $X=C([0, \delta], \mathbb{R})$ be a set of continuous real valued functions defined on $[0, \delta]$ which is endowed with a complete M-metric given by

$$
m(x, y)=\sup _{t \in[0, \delta]}\left(\left\lfloor\left.\frac{x(t)+x(t)}{2} \right\rvert\,\right) \text { for all } x, y \in X .\right.
$$

Consider an integral equation

$$
\begin{equation*}
v_{1}(t)=\rho(t)+\int_{0}^{\delta} h(t, s) J\left(s, v_{1}(s)\right) d s \text { for all } 0 \leq t \leq \delta \tag{3.1}
\end{equation*}
$$

Define $g: X \rightarrow X$ by

$$
g(x)(t)=\rho(t)+\int_{0}^{\delta} h(t, s) J(s, x(s)) d s
$$

where
(i) for $\delta>0$, (a) $J:[0, \delta] \times \mathbb{R} \rightarrow \mathbb{R}$, (b) $h:[0, \delta] \times[0, \delta] \rightarrow[0, \infty),(c) \rho:[0, \delta] \rightarrow \mathbb{R}$ are all continuous functions
(ii) Assume that $\sigma: X \times X \rightarrow \mathbb{R}$ is a function with the following properties,
(iii) $\sigma(x, y) \geq 0$ implies that $\sigma(T(x), T(y)) \geq 0$,
(iv) there exist $x_{0} \in X$ such that $\sigma\left(x_{0}, T\left(x_{0}\right)\right) \geq 0$,
(v) if $\left\{x_{n}\right\} \in X$ is a sequence such that $\sigma\left(x_{n}, x_{n+1}\right) \geq 0$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow x$ as $n \rightarrow \infty$, then $\sigma(x, T(x)) \geq 0$
(vi)

$$
\sup _{t \in[0, \delta]} \int_{0}^{\delta} h(t, s) d s \leq 1
$$

where $t \in[0, \delta], s \in \mathbb{R}$,
(vii) there exist $\phi_{M} \in \Psi, \sigma(y, T(y)) \geq 1$ and $\sigma(x, T(x)) \geq 1$ such that for each $t \in[0, \delta]$, we have

$$
\begin{equation*}
|J(s, x(t))+J(s, y(t))| \leq \phi_{M}(|x+y|) . \tag{3.3}
\end{equation*}
$$

Theorem 4.1. Under the assumptions (i) - (vii) the integral Eq (3.1) has a solution in $\{X=C([0, \delta], \mathbb{R})$ for all $t \in[0, \delta]\}$.
Proof. Using the condition (vii), we obtain that

$$
\begin{aligned}
m(g(x), g(y)) & =\left|\frac{g(x)(t)+g(y)(t)}{2}\right|=\left|\int_{0}^{\delta} h(t, s)\left[\frac{J(s, x(s))+J(s, y(s))}{2}\right] d s\right| \\
& \leq \int_{0}^{\delta} h(t, s)\left|\frac{J(s, x(s))+J(s, y(s))}{2}\right| d s \\
& \leq \int_{0}^{\delta} h(t, s)\left[\phi_{M}\left|\frac{x(s)+y(s)}{2}\right|\right] d s
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left(\sup _{t \in[0, \delta]} \int_{0}^{\delta} h(t, s) d s\right)\left(\phi_{M}\left|\frac{x(s)+y(s)}{2}\right|\right) \\
& \leq \phi_{M}\left(\left|\frac{x(s)+y(s)}{2}\right|\right) \\
& \quad m(g(x), g(y)) \leq \phi(m(x, y))
\end{aligned}
$$

Define $\alpha_{*}: X \times X \rightarrow[0,+\infty)$ by

$$
\alpha_{*}(x, y)=\left\{\begin{array}{lc}
1 & \text { if } \sigma(x, y) \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

which implies that

$$
m(g(x), g(y)) \leq \phi_{M}(m(x, y)) .
$$

Hence all the assumption of the Corollary 2.6 are satisfied, the mapping g has a fixed point in $X=$ $C([0, \delta], \mathbb{R})$ which is the solution of integral Eq (3.1).

5. Conclusions

In this study we develop some set-valued fixed point results based on (α_{*}, ϕ_{M})-contraction mappings in the context of M-metric space and ordered M-metric space. Also, we give examples and applications to the existence of solution of functional equations and homotopy theory.

Conflict of interest

The authors declare that they have no competing interests.

References

1. K. Abodayeh, N. Mlaiki, T. Abdeljawad, W. Shatanawi, Relations between partial metric spaces and M-metric spaces, Caristi Kirk's theorem in M-metric type spaces. J. Math. Anal., 7 (2016), 1-12.
2. M. Arshad, A. Hussain, A. Azam, Fixed point of α-Geraghty contraction with applications, U. P. B. Bull. Sci., 79 (2016), 67-78.
3. M. Asadi, M. Azhini, E. Karapinar, H. Monfared, Simulation functions over M-metric spaces, East Asian Math. J., 33 (2017), 559-570. https://doi.org/10.7858/eamj.2017.039
4. M. Asadi, E. Karapinar, P. Salimi, New extension of p-metric spaces with fixed points results on M-metric spaces, J. Inequal. Appl., 18 (2014), 2014. https://doi.org/ 10.1186/1029-242X-2014-18
5. H. Aydi, M. Abbas, C. Vetro, Partial hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topol. Appl., 159 (2012), 3234-3242. https://doi.org/10.1016/j.topol.2012.06.012
6. M. Abbas, H. Iqbal, A. Petrusel, Fixed points for multivalued Suzuki type $(\theta-R)$-contraction mapping with applications, J. Funct. Space., 2019, 1-13. https://doi.org/10.1155/2019/9565804
7. M. U. Ali, T. Kamran, E. Karapınar, Discussion on α-strictly contractive nonself multivalued maps, Vietnam J. Math., 44 (2016), 441-447. https://doi.org/10.1007/s10013-016-0191-1
8. M. U. Ali, T. Kamran, E. Karapınar, New approach to (α, ψ)-contractive nonself multivalued mappings, J. Inequal. Appl., 2014. https://doi.org/10.1186/1029-242X-2014-71
9. A. Ali, M. Arshad1, A. Asif, E. Savas, C. Park, D. Y. Shin, On multivalued maps for φ-contractions involving orbits with application, AIMS Math., 6 (2021), 7532-7554
10. M. U. Ali, T. Kamran, E. Karapınar, Fixed point of (α, ψ)-contractive type mappings in uniform space, J. Inequal. Appl., 2014. https://doi.org/10.1186/1687-1812-2014-150
11. M. U. Ali, T. Kamran, E. Karapınar, An approach to existence of fixed points of generalized contractive multivalued mappings of integral type via admissible mapping, Abstr. Appl. Anal., 2014. https://doi.org/10.1155/2014/141489
12. A. Ali, F. Uddin, M. Arshad, M. Rashid, Hybrid fixed point results via generalized dynamic process for F-HRS type contractions with application, Physica A., 2020, 538.
13. R. P. Agarwal, U. Aksoy, E. Karapınar, L. M. Erhan, F-contraction type mappings on metric like spaces in conection with integral equation on time scale, RACAM, 2020. https://doi.org/ 10.1007/s13398-020-00877-5
14. A. Ali, H. Işık, H. Aydi, E. Ameer, J. R. Lee, M. Arshad, On multivalued θ-contraction maps and related applications, Open Math., 2020, 1-14.
15. S. Banach, Sur les operations dans les ensembles abstraits et leurs applications aux equations integrales, Fund. Math., 3 (1922), 133-181.
16. I. Beg, A. R. Butt, Common fixed point for generalized set valued contractions satisfying an implicit relation in partially ordered metric spaces, Math. Commun., 15 (2010), 65-76.
17. L. Budhia, H. Aydib, A. H. Ansarid, D. Gopal, Some new fixed point results in rectangular metric spaces with an application to fractional-order functional differential equations, Nonlinear Anal.Model., 25 (2020). https://doi.org/10.15388/namc.2020.25.17928
18. K. P. Chi, E. Karapınar, T. D. Thanh, A generalized contraction principle in partial metric spaces, Math. Comput. Model., 55 (2012), 1673-1681. https://doi.org/10.1016/j.mcm.2011.11.005
19. D. Gopal, M. Abbas, D. K. Patel, Fixed points of α-type F-contractive mapping with an application to nonlinear fractional differential equation, Acta Math. Sci., 36 (2016), 957-970. https://doi.org/10.1016/S0252-9602(16)30052-2
20. S. Gulyaz, E. Karapınar, V. Rakocevic, P. Salimi, Existence of a solution of integral equation via fixed point theorem, J. Inequal. Appl., 2013.
21. D. Gopal, M. Abbas, C. Vetro, Some new fixed point theorems in Menger PM-spaces with application to Volterra type integral equation, Appl. Math. Comput., 232 (2014), 955-967. https://doi.org/10.1186/1029-242X-2013-529
22. A. Hussain, Solution of fractional differentional equations utilizing symmetric contraction, J. Math., 22 (2021), 17. https://doi.org/10.1155/2021/5510971
23. E. Karapinar, S. Moustafa, R. P. Agarwal, Fractional hybrid differential equations and coupled fixed point results for α-Admissible $F\left(\psi_{1}, \psi_{2}\right)$-contractions in M-metric spaces, Discrete Dyn. Nat. Soc., 13 (2020). https://doi.org/10.1155/2020/7126045
24. E. Karapınar, M. Abbas, S. Farooq, A discussion on the existence of best proximity points that belong to the zero set, Axioms, 9 (2020), 19. https://doi.org/10.3390/axioms9010019
25. H. Lakzian, D. Gopal, W. Sintunavarat, New fixed point results for mappings of contractive type with an application to nonlinear fractional differential equations, J. Fix. Point Theory A., 18 (2016), 251-266. https://doi.org/10.1007/S11784-015-0275-7
26. S. G. Matthews, Partial metric topology, Proc. 8th summer conference on general topology and applications, New York Acad. Sci., 728 (1994), 183-197.
27. H. Monfared, M. Azhini, M. Asadi, Fixed point results on M-metric spaces, J. Math. Anal., 7 (2016), 85-101.
28. S. B. Nadler, Multivalued contraction mappings, Pac. J. Math., 30 (1969), 475-488. https://doi.org/10.2140/pjm.1969.30.475
29. G. A. Okeke, S. H. Khan, Approximation of fixed point of multivalued ρ-quasi contractive mappings in modular function spaces, Arab J. Math. Sci., 26 (2020), 7-93. https://doi.org/10.1186/1687-1812-2014-34
30. G. A. Okeke, J. O. Olaleru, Fixed points of demicontinuous ϕ-nearly Lipschtzian mappings in Banach Spaces, Thai J. Math., 17 (2019) 141-154.
31. P. R. Patle, D. K. Patel, H. Aydi, D. Gopal, N. Mlaiki, Nadler and Kannan type set valued mappings in M-metric spaces and an application, Mathematics, 7 (2019), 373. https://doi.org/10.3390/math7040373
32. A. Padcharoen, D. Gopa, P. Chaipunya, P. Kumam, Fixed point and periodic point results for α-type F-contractions in modular metric spaces, Fixed Point Theory A., 1 (2016), 1-12. https://doi.org/10.1186/s 13663-016-0525-4
33. B. Samet, C. Vetro, P. Vetro, Fixed point theorems for (α, ψ)-contractive type mappings, Nonlinear Anal., 75 (2012), 2154-2165. https://doi.org/10.1155/2014/869123
34. O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol., 6 (2005), 229-240. https://doi.org/10.4995/agt.2005.1957
35. C. Vetro, F. Vetro, A homotopy fixed point theorem in 0-complete partial metric space, Filomat, 29 (2015), 2037-2048. https://doi.org/10.2298/FIL1509037V

AIMS Press
© 2022 Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

