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1. Introduction and preliminaries

In 1922, S. Banach [15] provided the concept of Contraction theorem in the context of metric
space. After, Nadler [28] introduced the concept of set-valued mapping in the module of Hausdroff

metric space which is one of the potential generalizations of a Contraction theorem. Let (X, d) is a
complete metric space and a mapping T : X → CB (X) satisfying

H (T (x) ,T (y)) ≤ γd (x, y)

for all x, y ∈ X, where 0 ≤ γ < 1, H is a Hausdorff with respect to metric d and CB (X) ={
S ⊆ X : S is closed and bounded subset of X equipped with a metric d

}
. Then T has a fixed point

in X.
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In the recent past, Matthews [26] initiate the concept of partial metric spaces which is the classical
extension of a metric space. After that, many researchers generalized some related results in the frame
of partial metric spaces. Recently, Asadi et al. [4] introduced the notion of an M-metric space which is
the one of interesting generalizations of a partial metric space. Later on, Samet et al. [33] introduced
the class of mappings which known as (α, ψ)-contractive mapping. The notion of (α, ψ)-contractive
mapping has been generalized in metric spaces (see more [10, 12, 14, 17, 19, 25, 29, 30, 32]).

Throughout this manuscript, we denote the set of all positive integers by N and the set of real
numbers by R. Let us recall some basic concept of an M-metric space as follows:

Definition 1.1. [4] Let m : X × X → R+be a mapping on nonempty set X is said to be an M-metric if
for any x, y, z in X, the following conditions hold:

(i) m (x, x) = m (y, y) = m (x, y) if and only if x = y;
(ii) mxy ≤ m(x, y);

(iii) m (x, y) = m (y, x) ;
(iv) m (x, y) − mxy ≤ (m (x, z) − mxz) + (m (z, y) − mz,y) for all x, y, z ∈ X. Then a pair (X,m) is called

M-metric space. Where
mxy = min {m (x, x) ,m (y, y)}

and
Mxy = max {m (x, x) ,m (y, y)} .

Remark 1.2. [4] For any x, y, z in M-metric space X, we have

(i) 0 ≤ Mxy + mxy = m (x, x) + m (y, y) ;
(ii) 0 ≤ Mxy − mxy = |m (x, x) − m (y, y)| ;

(iii) Mxy − mxy ≤ (Mxz − mxz) +
(
Mzy − mzy

)
.

Example 1.3. [4] Let (X,m) be an M-metric space. Define mw, ms : X × X → R+ by:

(i)
mw (x, y) = m (x, y) − 2mx,y + Mx,y,

(ii)

ms =

{
m (x, y) − mx,y, if x , y
0, if x = y.

Then mw and ms are ordinary metrics. Note that, every metric is a partial metric and every partial
metric is an M-metric. However, the converse does not hold in general. Clearly every M-metric
on X generates a T0 topology τm on X whose base is the family of open M-balls

{Bm (x, ε) : x ∈ X, ε > 0} ,

where
Bm (x, ε) = {y ∈ X : m (x, y) < mxy + ε}

for all x ∈ X, ε > 0. (see more [3, 4, 23]).

Definition 1.4. [4] Let (X,m) be an M-metric space. Then,
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(i) A sequence {xn} in (X,m) is said to be converges to a point x in X with respect to τm if and only if

lim
n→∞

(
m (xn, x) − mxn x

)
= 0.

(ii) Furthermore, {xn} is said to be an M-Cauchy sequence in (X,m) if and only if

lim
n,m→∞

(
m (xn, xm) − mxn xm

)
, and lim

n,m→∞

(
Mxn,xm − mxn xm

)
exist (and are finite).

(iii) An M-metric space (X,m) is said to be complete if every M-Cauchy sequence {xn} in (X,m)
converges with respect to τm to a point x ∈ X such that

lim
n→∞

m (xn, x) − mxn x = 0, and lim
n→∞

(
Mxn,x − mxn x

)
= 0.

Lemma 1.5. [4] Let (X,m) be an M-metric space. Then:

(i) {xn} is an M-Cauchy sequence in (X,m) if and only if {xn} is a Cauchy sequence in a metric space
(X,mw) .

(ii) An M-metric space (X,m) is complete if and only if the metric space (X,mw) is complete.
Moreover,

lim
n→∞

mw (xn, x) = 0 if and only if
(
lim
n→∞

(
m (xn, x) − mxn x

)
= 0, lim

n→∞

(
Mxn x − mxn x

)
= 0

)
.

Lemma 1.6. [4] Suppose that {xn} converges to x and {yn} converges to y as n approaches to ∞ in
M-metric space (X,m) . Then we have

lim
n→∞

(
m (xn, yn) − mxnyn

)
= m (x, y) − mxy.

Lemma 1.7. [4] Suppose that {xn} converges to x as n approaches to ∞ in M-metric space (X,m) .
Then we have

lim
n→∞

(
m (xn, y) − mxny

)
= m (x, y) − mxy for all y ∈ X.

Lemma 1.8. [4] Suppose that {xn} converges to x and {xn} converges to y as n approaches to ∞ in
M-metric space (X,m) . Then m (x, y) = mxy moreover if m (x, x) = m (y, y) , then x = y.

Definition 1.9. Let α : X × X → [0,∞) . A mapping T : X → X is said to be an α-admissible mapping
if for all x, y ∈ X

α (x, y) ≥ 1⇒ α (T (x),T (y)) ≥ 1.

Let Ψ be the family of the (c)-comparison functions ψ : R+ ∪ {0} → R+ ∪ {0} which satisfy the
following properties:

(i) ψ is nondecreasing,
(ii)

∑∞
n=0 ψ

n (t) < ∞ for all t > 0, where ψn is the n-iterate of ψ (see [7, 8, 10, 11]).

Definition 1.10. [33] Let (X, d) be a metric space and α : X × X → [0,∞). A mapping T : X → X is
called (α, ψ)-contractive mapping if for all x, y ∈ X, we have

α (x, y) d (T (x),T (x)) ≤ ψ (d (x, y)) ,

where ψ ∈ Ψ.
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A subset K of an M-metric space X is called bounded if for all x ∈ K, there exist y ∈ X and r > 0
such that x ∈ Bm (y, r) . Let K denote the closure of K. The set K is closed in X if and only if K = K.

Definition 1.11. [31] Define Hm : CBm (X) ×CBm (X)→ [0,∞) by

Hm (K, L) = max {∇m (K, L) ,∇m (L,K)} ,

where

m (x, L) = inf {m (x, y) : y ∈ L} and
∇m (L,K) = sup {m (x, L) : x ∈ K} .

Lemma 1.12. [31] Let F be any nonempty set in M-metric space (X,m), then

x ∈ F if and only if m (x, F) = sup
a∈F
{mxa}.

Proposition 1.13. [31] Let A, B,C ∈ CBm (X), then

(i) ∇m (A, A) = supx∈A

{
supy∈A mxy

}
,

(ii)
(
∇m (A, B) − supx∈A supy∈B mxy

)
≤ (∇m (A,C) − infx∈A infz∈C mxz) +(

∇m (C, B) − infz∈C infy∈B mzy

)
.

Proposition 1.14. [31] Let A, B,C ∈ CBm (X) following are hold

(i) Hm (A, A) = ∇m (A, A) = supx∈A

{
supy∈A mxy

}
,

(ii) Hm (A, B) = Hm (B, A) ,
(iii) Hm (A, B) − supx∈A supy∈A mxy) ≤ Hm (A,C) + Hm (B,C) − infx∈A infz∈C mxz − infz∈C infy∈B mzy.

Lemma 1.15. [31] Let A, B ∈ CBm (X) and h > 1. Then for each x ∈ A, there exist at the least one
y ∈ B such that

m (x, y) ≤ hHm (A, B) .

Lemma 1.16. [31] Let A, B ∈ CBm (X) and l > 0. Then for each x ∈ A, there exist at least one y ∈ B
such that

m (x, y) ≤ Hm (A, B) + l.

Theorem 1.17. [31] Let (X,m) be a complete M-metric space and T : X → CBm (X). Assume that
there exist h ∈ (0, 1) such that

Hm (T (x) ,T (y)) ≤ hm (x, y) , (1.1)

for all x, y ∈ X. Then T has a fixed point.

Proposition 1.18. [31] Let T : X → CBm (X) be a set-valued mapping satisfying (1.1) for all x, y in
an M-metric space X. If z ∈ T (z) for some z in X such that m (x, x) = 0 for x ∈ T (z) .
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2. Main results

We start with the following definition:

Definition 2.1. Assume that Ψ is a family of non-decreasing functions φM : R+ → R+ such that

(i)
∑+∞

n φn
M (x) < ∞ for every x > 0 where φn

M is a nth-iterate of φM,

(ii) φM (x + y) ≤ φM (x) + φM (y) for all x, y ∈ R+,

(iii) φM (x) < x, for each x > 0.

Remark 2.2. If
∑
αn|n=∞ = 0 is a convergent series with positive terms then there exists a monotonic

sequence (βn)|n=∞ such that βn|n=∞ = ∞ and
∑
αnβn|n=∞ = 0 converges.

Definition 2.3. Let (X,m) be an M-metric pace. A self mapping T : X → X is called (α∗, φM)-
contraction if there exist two functions α∗ : X × X → [0,∞) and φM ∈ Ψ such that

α∗ (x, y) m (T (x) ,T (y)) ≤ φM (m (x, y)) ,

for all x, y ∈ X.

Definition 2.4. Let (X,m) be an M-metric space. A set-valued mapping T : X → CBm (X) is said to be
(α∗, φM)-contraction if for all x, y ∈ X, we have

α∗ (x, y) Hm (T (x) ,T (x)) ≤ φM (m (x, y)) , (2.1)

where φM ∈ Ψ and α∗ : X × X → [0,∞) .
A mapping T is called α∗-admissible if

α∗ (x, y) ≥ 1⇒ α∗ (a1, b1) ≥ 1

for each a1 ∈ T (x) and b1 ∈ T (y) .

Theorem 2.5. Let (X,m) be a complete M-metric space. Suppose that (α∗, φM) contraction and α∗-
admissible mapping T : X → CBm (X) satisfies the following conditions:

(i) there exist x0 ∈ X such that α∗ (x0, a1) ≥ 1 for each a1 ∈ T (x0) ,
(ii) if {xn} ∈ X is a sequence such that α∗ (xn, xn+1) ≥ 1 for all n and {xn} → x ∈ X as n → ∞, then

α∗ (xn, x) ≥ 1 for all n ∈ N. Then T has a fixed point.

Proof. Let x1 ∈ T (x0) then by the hypothesis (i) α∗ (x0, x1) ≥ 1. From Lemma 1.16, there exist x2 ∈

T (x1) such that
m (x1, x2) ≤ Hm (T (x0) ,T (x1)) + φM (m (x0, x1)) .

Similarly, there exist x3 ∈ T (x2) such that

m (x2, x3) ≤ Hm (T (x1) ,T (x2)) + φ2
M (m (x0, x1)) .

Following the similar arguments, we obtain a sequence {xn} ∈ X such that there exist xn+1 ∈ T (xn)
satisfying the following inequality

m (xn, xn+1) ≤ Hm (T (xn−1) ,T (xn)) + φn
M (m (x0, x1)) .
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Since T is α∗-admissible, therefore α∗ (x0, x1) ≥ 1 ⇒ α∗ (x1, x2) ≥ 1. Using mathematical induction,
we get

α∗ (xn, xn+1) ≥ 1. (2.2)

By (2.1) and (2.2), we have

m (xn, xn+1) ≤ Hm (T (xn−1) ,T (xn)) + φn
M (m (x0, x1))

≤ α∗ (xn, xn+1) Hm (T (xn−1) ,T (xn))

+φn
M (m (x0, x1))

≤ φM (m (xn−1, xn)) + φn
M (m (x0, x1))

= φM

[
(m (xn−1, xn)) + φn−1

M (m (x0, x1))
]

≤ φM

[
Hm (T (xn−2) ,T (xn−1)) + φn−1

M (m (x0, x1))
]

≤ φM

[
α∗ (xn−1, xn) Hm (T (xn−1) ,T (xn)) + φn−1

M (m (x0, x1))
]

≤ φM

[
φM (m (xn−2, xn−1)) + φn−1

M (m (x0, x1)) + φn−1
M (m (x0, x1))

]
≤ φ2

M (m (xn−2, xn−1)) + 2φn
M (m (x0, x1))

....

m (xn, xn+1) ≤ φn
M (m (x0, x1)) + nφn

M (m (x0, x1))

m (xn, xn+1) ≤ (n + 1) φn
M (m (x0, x1)) .

Let us assume that ε > 0, then there exist n0 ∈ N such that∑
n≥n0

(n + 1) φn
M (m (x0, x1)) < ε.

By the Remarks (1.2) and (2.2) , we get

lim
n→∞

m (xn, xn+1) = 0.

Using the above inequality and (m2) , we deduce that

lim
n→∞

m (xn, xn) = lim
n→∞

min {m (xn, xn) ,m (xn+1, xn+1)}

= lim
n→∞

mxn xn+1

≤ lim
n→∞

m (xn, xn+1) = 0.

Owing to limit, we have limn→∞m (xn, xn) = 0,

lim
n,m→∞

mxn xm = 0.

Now, we prove that {xn} is M-Cauchy in X. For m, n in N with m > n and using the triangle inequality
of an M-metric we get
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m (xn, xm) − mxn xm ≤ m (xn, xn+1) − mxn xn+1 + m (xn+1, xm) − mxn+1 xm

≤ m (xn, xn+1) − mxn xn+1 + m (xn+1, xn+2) − mxn+1 xn+1

+m (xn+2, xm) − mxn+2 xm

≤ m (xn, xn+1) − mxn xn+1 + m (xn+1, xn+2) − mxn+1 xn+2

+ · · · +m (xm−1, xm) − mxm−1 xm

≤ m (xn, xn+1) + m (xn+1, xn+2) + · · · + m (xm−1, xm)

=

m−1∑
r=n

m (xr, xr+1)

≤

m−1∑
r=n

(r + 1) φr
M (m (x0, x1))

≤

m−1∑
r≥n0

(r + 1) φr
M (m (x0, x1))

≤

m−1∑
r≥n0

(r + 1) φr
M (m (x0, x1)) < ε.

m (xn, xm) − mxn xm → 0, as n → ∞, we obtain limm,n→∞
(
Mxn xm − mxn xm

)
= 0. Thus {xn} is a M-Cauchy

sequence in X. Since (X,m) is M-complete, there exist x? ∈ X such that

lim
n→∞

(
m

(
xn, x?

)
− mxn x?

)
= 0 and

lim
n→∞

(
Mxn x? − mxn x?

)
= 0.

Also, limn→∞m (xn, xn) = 0 gives that

lim
n→∞

m
(
xn, x?

)
= 0 and lim

n→∞
Mxn x? = 0, (2.3)

lim
n→∞

{
max

(
m

(
xn, x?

)
,m

(
x?, x?

))}
= 0,

which implies that m
(
x?, x?

)
= 0 and hence we obtain mx?T (x?) = 0. By using (2.1) and (2.3) with

lim
n→∞

α∗
(
xn, x?

)
≥ 1.

Thus,
lim
n→∞

Hm
(
T (xn) ,T

(
x?

))
≤ lim

n→∞
φM

(
m

(
xn, x?

))
≤ lim

n→∞
m

(
xn, x?

)
.

lim
n→∞

Hm
(
T (xn) ,T

(
x?

))
= 0. (2.4)

Now from (2.3) , (2.4) , and xn+1 ∈ T (xn) , we have

m
(
xn+1,T

(
x?

))
≤ Hm

(
T (xn) ,T

(
x?

))
= 0.
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Taking limit as n→ ∞ and using (2.4) , we obtain that

lim
n→∞

m
(
xn+1,T

(
x?

))
= 0. (2.5)

Since mxn+1T (x?) ≤ m
(
xn+1,T

(
x?

))
which gives

lim
n→∞

mxn+1T (x?) = 0. (2.6)

Using the condition (m4) , we obtain

m
(
x?,T

(
x?

))
− sup

y∈T (x?)
mx?y ≤ m

(
x?,T

(
x?

))
− mx?,T (x?)

≤ m
(
x?, xn+1

)
− mx?xn+1

+m
(
xn+1,T

(
(x?

))
− mxn+1T (x?).

Applying limit as n→ ∞ and using (2.3) and (2.6) , we have

m
(
x?,T

(
x?

))
≤ sup

y∈T (x?)
mx?y. (2.7)

From (m2) , mx?y ≤ m
(
x?y

)
for each y ∈ T

(
x?

)
which implies that

mx?y − m
(
x?, y

)
≤ 0.

Hence,
sup

{
mx?y − m

(
x?, y

)
: y ∈ T

(
x?

)}
≤ 0.

Then
sup

y∈T (x?)
mx?y − inf

y∈T (x?)
m

(
x?, y

)
≤ 0.

Thus
sup

y∈T (x?)
mx?y ≤ m

(
x?,T

(
x?

))
. (2.8)

Now, from (2.7) and (2.8), we obtain

m
(
T

(
x?

)
, x?

)
= sup

y∈T (x?)
mx?y.

Consequently, owing to Lemma (1.12), we have x? ∈ T (x?) = T
(
x?

)
. �

Corollary 2.6. Let (X,m) be a complete M-metric space and an self mapping T : X → X an α∗-
admissible and (α∗, φM)-contraction mapping. Assume that the following properties hold:

(i) there exists x0 ∈ X such that α∗ (x0,T (x0)) ≥ 1,
(ii) either T is continuous or for any sequence {xn} ∈ X with α∗ (xn, xn+1) ≥ 1 for all n ∈ N and
{xn} → x as n→∞, we have α∗ (xn, x) ≥ 1 for all n ∈ N. Then T has a fixed point.

Some fixed point results in ordered M-metric space.
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Definition 2.7. Let (X,�) be a partially ordered set. A sequence {xn} ⊂ X is said to be non-decreasing
if xn � xn+1 for all n.

Definition 2.8. [16] Let F and G be two nonempty subsets of partially ordered set (X,�). The relation
between F and G is defined as follows: F ≺1 G if for every x ∈ F, there exists y ∈ G such that x � y.

Definition 2.9. Let (X,m,�) be a partially ordered set on M-metric. A set-valued mapping T : X →
CBm (X) is said to be ordered (α∗, φM)-contraction if for all x, y ∈ X, with x � y we have

Hm (T (x) ,T (y)) ≤ φM (m (x, y))

where φM ∈ Ψ. Suppose that α∗ : X × X → [0,∞) is defined by

α∗ (x, y) =

{
1 if T x ≺1 Ty
0 otherwise.

A mapping T is called α∗-admissible if

α (x, y) ≥ 1⇒ α∗ (a1, b1) ≥ 1,

for each a1 ∈ T (x) and b1 ∈ T (y) .

Theorem 2.10. Let (X,m,�) be a partially ordered complete M-metric space and T : X → CBm (X)
an α∗-admissible ordered (α∗, φM)-contraction mapping satisfying the following conditions:

(i) there exist x0 ∈ X such that {x0} ≺1 {T (x0)} , α∗ (x0, a1) ≥ 1 for each a1 ∈ T (x0) ,
(ii) for every x, y ∈ X, x � y implies T (x) ≺1 T (y) ,

(iii) If {xn} ∈ X is a non-decreasing sequence such that xn � xn+1 for all n and {xn} → x ∈ X as n→ ∞
gives xn � x for all n ∈ N. Then T has a fixed point.

Proof. By assumption (i) there exist x1 ∈ T (x0) such that x0 � x1 and α∗ (x0, x1) ≥ 1. By
hypothesis (ii) , T (x0) ≺1 T (x1) . Let us assume that there exist x2 ∈ T (x1) such that x1 � x2 and
we have the following

m (x1, x2) ≤ Hm (T (x0) ,T (x1)) + φM (m (x0, x1)) .

In the same way, there exist x3 ∈ T (x2) such that x2 � x3 and

m (x2, x3) ≤ Hm (T (x1) ,T (x2)) + φ2
M (m (x0, x1)) .

Following the similar arguments, we have a sequence {xn} ∈ X and xn+1 ∈ T (xn) for all n ≥ 0
satisfying x0 � x1 � x2 � x3 � ...xn � xn+1. The proof is complete follows the arguments given in
Theorem 2.5. �

Example 2.11. Let X =
[

1
6 , 1

]
be endowed with an M-metric given by m (x, y) =

x+y
2 . Define T : X →

CBm (X) by

T (x) =


{

1
2 x + 1

6 ,
1
4

}
, if x = 1

6{
x
2 ,

x
3

}
, if 1

4 ≤ x ≤ 1
3{

2
3 ,

5
6

}
, if 1

2 ≤ x ≤ 1.
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Define a mapping α∗ : X × X → [0,∞) by

α∗ (x, y) =

 1 if x, y ∈
[

1
4 ,

1
3

]
0 otherwise.

Let φM : R+ → R+ be given by φM (t) = 17
10 where φM ∈ Ψ, for x, y ∈ X. If x = 1

6 , y = 1
4 then

m (x, y) = 5
24 , and

Hm (T (x) ,T (y)) = Hm

({
3

12
,

1
4

}
,

{
1
8
,

1
12

})
= max

(
∇m

({
3

12
,

1
4

}
,

{
1
8
,

1
12

})
,∇m

({
1
8
,

1
12

}
,

{
3
12
,

1
4

}))
= max

{
3

16
,

2
12

}
=

3
16

≤ φM (t) m (x, y) .

If x = 1
3 , y = 1

2 then m (x, y) = 5
12 , and

Hm (T (x) ,T (y)) = Hm

({
1
6
,

1
9

}
,

{
2
3
, 1

})
= max

(
∇m

({
1
6
,

1
9

}
,

{
2
3
, 1

})
,∇m

({
2
3
, 1

}
,

{
1
6
,

1
9

}))
= max

{
17
36
,

7
18

}
=

17
36

≤ φM (t) m (x, y) .

If x = 1
6 , y = 1, then m (x, y) = 7

12 and

Hm (T (x) ,T (y)) = Hm

({
3

12
,

1
4

}
,

{
2
3
,

5
6

})
= max

(
∇m

({
3
12
,

1
4

}
,

{
2
3
,

5
6

})
,∇m

({
2
3
,

5
6

}
,

{
3

12
,

1
4

}))
= max

{
11
24
,

13
24

}
=

13
24

≤ φM (t) m (x, y) .

In all cases, T is (α∗, φM)-contraction mapping. If x0 = 1
3 , then T (x0) =

{
x
2 ,

x
3

}
.Therefore α∗ (x0, a1) ≥ 1

for every a1 ∈ T (x0) . Let x, y ∈ X be such that α∗ (x, y) ≥ 1, then x, y ∈
[

x
2 ,

x
3

]
and T (x) =

{
x
2 ,

x
3

}
and

T (y) =
{

x
2 ,

x
3

}
which implies that α∗ (a1, b1) ≥ 1 for every a1 ∈ T (x) and b1 ∈ T (x). Hence T is

α∗-admissble.
Let {xn} ∈ X be a sequence such that α∗ (xn, xn+1) ≥ 1 for all n in N and xn converges to x as

n converges to ∞, then xn ∈
[

x
2 ,

x
3

]
. By definition of α∗-admissblity, therefore x ∈

[
x
2 ,

x
3

]
and hence

α∗ (xn, x) ≥ 1. Thus all the conditions of Theorem 2.3 are satisfied. Moreover, T has a fixed point.
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Example 2.12. Let X =
{
(0, 0) ,

(
0,−1

5

)
,
(
−1

8 , 0
)}

be the subset of R2 with order � defined as: For
(x1, y1) , (x2, y2) ∈ X, (x1, y1) � (x2, y2) if and only if x1 ≤ x2, y1 ≤ y2. Let m : X × X → R+ be defined
by

m ((x1, y1) , (x2, y2)) =

∣∣∣∣∣ x1 + x2

2

∣∣∣∣∣ +

∣∣∣∣∣y1 + y2

2

∣∣∣∣∣ , for x = (x1, y1) , y = (x2, y2) ∈ X.

Then (X,m) is a complete M-metric space. Let T : X → CBm (X) be defined by

T (x) =


{(0, 0)} , if x = (0, 0) ,{
(0, 0) ,

(
−1

8 , 0
)}

, if x ∈
(
0,−1

5

)
{(0, 0)} , if x ∈

(
−1

8 , 0
)
.

Define a mapping α∗ : X × X → [0,∞) by

α∗ (x, y) =

{
1 if x, y ∈ X
0 otherwise.

Let φM : R+ → R+ be given by φM (t) = 1
2 . Obviously, φM ∈ Ψ. For x, y ∈ X,

if x =
(
0,−1

5

)
and y = (0, 0) , then Hm (T (x) ,T (y)) = 0 and m (x, y) = 1

10 gives that

Hm (T (x) ,T (y)) = Hm

({
(0, 0) ,

(
−

1
8
, 0

)}
, {(0, 0)}

)
= max

 ∇m

({
(0, 0) ,

(
−1

8 , 0
)}
, {(0, 0)}

)
,

∇m

(
{(0, 0)} ,

{
(0, 0) ,

(
−1

8 , 0
)}) 

= max {0, 0} = 0
≤ φM (t) m (x, y) .

If x =
(
−1

8 , 0
)

and y = (0, 0) then Hm (T (x) ,T (y)) = 0, and m (x, y) = 1
16 implies that

Hm (T (x) ,T (y)) ≤ φM (t) m (x, y) .

If x = (0, 0) and y = (0, 0) then Hm (T (x) ,T (y)) = 0, and m (x, y) = 0 gives

Hm (T (x) ,T (y)) ≤ φM (t) m (x, y) .

If x =
(
0,−1

5

)
and y =

(
0,−1

5

)
then Hm (T (x) ,T (y)) = 0, and m (x, y) = 1

5 implies that

Hm (T (x) ,T (y)) ≤ φM (t) m (x, y) .

If x =
(
0,−1

8

)
and y =

(
0,−1

8

)
then Hm (T (x) ,T (y)) = 0, and m (x, y) = 1

8 gives that

Hm (T (x) ,T (y)) ≤ φM (t) m (x, y) .

Thus all the condition of Theorem 2.10 satisfied. Moreover, (0, 0) is the fixed point of T.
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3. Application

In this section, we present an application of our result in homotopy theory. We use the fixed point
theorem proved for set-valued (α∗, φM)-contraction mapping in the previous section, to establish the
result in homotopy theory. For further study in this direction, we refer to [6, 35] .

Theorem 3.1. Suppose that (X,m) is a complete M-metric space and A and B are closed and open
subsets of X respectively, such that A ⊂ B. For a, b ∈ R, let T : B × [a, b] → CBm (X) be a set-valued
mapping satisfying the following conditions:

(i) x < T (y, t) for each y ∈ B/A and t ∈ [a, b] ,
(ii) there exist φM ∈ Ψ and α∗ : X × X → [0,∞) such that

α∗ (x, y) Hm (T (x, t) ,T (y, t)) ≤ φM (m (x, y)) ,

for each pair (x, y) ∈ B × B and t ∈ [a, b] ,
(iii) there exist a continuous function Ω : [a, b]→ R such that for each s, t ∈ [a, b] and x ∈ B, we get

Hm (T (x, s) ,T (y, t)) ≤ φM |Ω (s) −Ω (t)| ,

(iv) if x? ∈ T
(
x?, t

)
, then T

(
x?, t

)
=

{
x?

}
,

(v) there exist x0 in X such that x0 ∈ T (x0, t) ,
(vi) a function< : [0,∞)→ [0,∞) defined by< (x) = x−φM (x) is strictly increasing and continuous

if T (., tᵀ) has a fixed point in B for some tᵀ ∈ [a, b] , then T (., t) has a fixed point in A for all
t ∈ [a, b] . Moreover, for a fixed t ∈ [a, b], fixed point is unique provided that φM (t) = 1

2 t where
t > 0.

Proof. Define a mapping α∗ : X × X → [0,∞) by

α∗ (x, y) =


1 if x ∈ T (x, t) , y ∈ T (y, t)

0 otherwise.

We show that T is α∗-admissible. Note that α∗ (x, y) ≥ 1 implies that x ∈ T (x, t) and y ∈ T (y, t) for
all t ∈ [a, b]. By hypothesis (iv) , T (x, t) = {x} and T (y, t) = {y} . It follows that T is α∗-admissible.
By hypothesis (v) , there exist x0 ∈ X such that x0 ∈ (x0, t) for all t, that is α∗ (x0, x0) ≥ 1. Suppose
that α∗ (xn, xn+1) ≥ 1 for all n and xn converges to q as n approaches to ∞ and xn ∈ T (xn, t) and
xn+1 ∈ T (xn+1, t) for all n and t ∈ [a, b] which implies that q ∈ T (q, t) and thus α∗ (xn, q) ≥ 1. Set

D = {t ∈ [a, b] : x ∈ T (x, t) for x ∈ A} .

So T (., tᵀ) has a fixed point in B for some tᵀ ∈ [a, b], there exist x ∈ B such that x ∈ T (x, t) . By
hypothesis (i) x ∈ T (x, t) for t ∈ [a, b] and x ∈ A so D , φ. Now we now prove that D is open and
close in [a, b] . Let t0 ∈ D and x0 ∈ A with x0 ∈ T (x0, t0) . Since A is open subset of X, Bm (x0, r) ⊆ A
for some r > 0. For ε = r + mxx0 − φ

(
r + mxx0

)
and a continuous function Ω on [a, b], there exist δ > 0

such that
φM |Ω (t) −Ω (t0)| < ε for all t ∈ (t0 − δ, t0 + δ) .
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If t ∈ (t0 − δ, t0 + δ) for x ∈ Bm (x0, r) =
{
x ∈ X : m (x0 , x) ≤ mx0 x + r

}
and l ∈ T (x, t) , we obtain

m (l, x0) = m (T (x, t) , x0)

= Hm (T (x, t) ,T (x0, t0)) .

Using the condition (iii) of Proposition 1.13 and Proposition 1.18, we have

m (l, x0) ≤ Hm (T (x, t) ,T (x0, t0)) + Hm (T (x, t) ,T (x0, t0)) (2.9)

as x ∈ T (x0, t0) and x ∈ Bm (x0, r) ⊆ A ⊆ B, t0 ∈ [a, b] with α∗ (x0, x0) ≥ 1. By hypothesis (ii), (iii)
and (2.9)

m (l, x0) ≤ φM |Ω (t) −Ω (t0)| + α∗ (x0, x0) Hm (T (x, t) ,T (x0, t0))

≤ φM |Ω (t) −Ω (t0)| + φM (m (x, x0))

≤ φM (ε) + φM
(
mxx0 + r

)
≤ φM

(
r + mxx0 − φM

(
r + mxx0

))
+ φM

(
mxx0 + r

)
< r + mxx0 − φM

(
r + mxx0

)
+ φM

(
mxx0 + r

)
= r + mxx0 .

Hence l ∈ Bm (x0, r) and thus for each fixed t ∈ (t0 − δ, t0 + δ) , we obtain T (x, t) ⊂ Bm (x0, r) therefore
T : Bm (x0, r) → CBm

(
Bm (x0, r)

)
satisfies all the assumption of Theorem (3.1) and T (., t) has a

fixed point Bm (x0, r) = Bm (x0, r) ⊂ B. But by assumption of (i) this fixed point belongs to A. So
(t0 − δ, t0 + δ) ⊆ D, thus D is open in [a, b] . Next we prove that D is closed. Let a sequence {tn} ∈ D
with tn converges to t0 ∈ [a, b] as n approaches to∞. We will prove that t0 is in D.

Using the definition of D, there exist {tn} in A such that xn ∈ T (xn, tn) for all n.
Using Assumption (iii)–(v) , and the condition (iii) of Proposition 1.13, and an outcome of the
Proposition 1.18, we have

m (xn, xm) ≤ Hm (T (xn, tn) ,T (xm, tm))

≤ Hm (T (xn, tn) ,T (xn, tm)) + Hm (T (xn, tm) ,T (xm, tm))

≤ φM |Ω (tn) −Ω (tm)| + α∗ (xn, xm) Hm (T (xn, tm) ,T (xm, tm))

≤ φM |Ω (tn) −Ω (tm)| + φM (m (xn, xm))

⇒

m (xn, xm) − φM (m (xn, xm)) ≤ φM |Ω (tn) −Ω (tm)|
⇒

< (m (xn, xm)) ≤ φM |Ω (tn) −Ω (tm)|
< (m (xn, xm)) < |Ω (tn) −Ω (tm)|

m (xn, xm) <
1
<
|Ω (tn) −Ω (tm)| .

So, continuity of 1
<
,< and convergence of {tn} , taking the limit as m, n→ ∞ in the last inequality, we

obtain that
lim

m,n→∞
m (xn, xm) = 0.

AIMS Mathematics Volume 7, Issue 5, 8861–8878.



8874

Sine mxn xm ≤ m (xn, xm) , therefore
lim

m,n→∞
mxn xm = 0.

Thus, we have limn→∞m (xn, xn) = 0 = limm→∞m (xm, xm). Also,

lim
m,n→∞

(
m (xn, xm) − mxn xm

)
= 0, lim

m,n→∞

(
Mxn xm − mxn xm

)
.

Hence {xn} is an M-Cauchy sequence. Using Definition 1.4, there exist x∗ in X such that

lim
n→∞

(
m (xn, x∗) − mxn x∗

)
= 0 and lim

n→∞

(
Mxn x∗ − mxn x∗

)
= 0.

As limn→∞m (xn, xn) = 0, therefore

lim
n→∞

m (xn, x∗) = 0 and lim
n→∞

Mxn x∗ = 0.

Thus, we have m (x, x∗) = 0. We now show that x∗ ∈ T
(
x∗, t

∗
)
. Note that

m
(
xn,T

(
x∗, t

∗
))
≤ Hm

(
T (xn, tn) ,T

(
x∗, t

∗
))

≤ Hm

(
T (xn, tn) ,T

(
xn, t

∗
))

+ Hm

(
T

(
xn, t

∗
)
,T

(
x∗, t

∗
))

≤ φM

∣∣∣∣Ω (tn) −Ω
(
t
∗
)∣∣∣∣ + α∗

(
xn, t

∗
)

Hm

(
T

(
xn, t

∗
)
,T

(
x∗, t

∗
))

≤ φM

∣∣∣∣Ω (tn) −Ω
(
t
∗
)∣∣∣∣ + φM

(
m

(
xn, t

∗
))
.

Applying the limit n→ ∞ in the above inequality, we have

lim
n→∞

m
(
xn,T

(
x∗, t

∗
))

= 0.

Hence
lim
n→∞

m
(
xn,T

(
x∗, t

∗
))

= 0. (2.10)

Since m (x∗, x∗) = 0, we obtain

sup
y∈T(x∗,t∗)

mx∗y = sup
y∈T(x∗,t∗)

min {m (x∗, x∗) ,m (y, y)} = 0. (2.11)

From above two inequalities, we get

m
(
x∗,T

(
x∗, t

∗
))

= sup
y∈T(x∗,t∗)

mx∗y.

Thus using Lemma 1.12 we get x∗ ∈ T
(
x∗, t

∗
)
. Hence x∗ ∈ A. Thus x∗ ∈ D and D is closed in [a, b] ,

D = [a, b] and D is open and close in [a, b] . Thus T (., t) has a fixed point in A for all t ∈ [a, b] . For
uniqueness, t ∈ [a, b] is arbitrary fixed point, then there exist x ∈ A such that x ∈ T (x, t). Assume that
y is an other point of T (x, t), then by applying condition 4, we obtain

m (x, y) = Hm (T (x, t) ,T (y, t))

≤ αM (x, y) Hm (T (x, t) ,T (y, t)) ≤ φM (m (x, y)) .

ForφM (t) = 1
2 t, where t > 0, the uniqueness follows. �
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4. Application to integral equation

In this section we will apply the previous theoretical results to show the existence of solution for
some integral equation. For related results (see [13, 20]). We see for non-negative solution of (3.1) in
X = C ([0, δ] ,R) . Let X = C ([0, δ] ,R) be a set of continuous real valued functions defined on [0, δ]
which is endowed with a complete M-metric given by

m (x, y) = sup
t∈[0,δ]

(∣∣∣∣∣ x (t) + x (t)
2

∣∣∣∣∣) for all x, y ∈ X.

Consider an integral equation

v1 (t) = ρ (t) +

∫ δ

0
h (t, s) J (s, v1 (s)) ds for all 0 ≤ t ≤ δ. (3.1)

Define g : X → X by

g (x) (t) = ρ (t) +

∫ δ

0
h (t, s) J (s, x (s)) ds

where

(i) for δ > 0, (a) J : [0, δ] × R → R, (b) h : [0, δ] × [0, δ] → [0,∞) , (c) ρ : [0, δ] → R are all
continuous functions

(ii) Assume that σ : X × X → R is a function with the following properties,
(iii) σ (x, y) ≥ 0 implies that σ (T (x) ,T (y)) ≥ 0,
(iv) there exist x0 ∈ X such that σ (x0,T (x0)) ≥ 0,
(v) if {xn} ∈ X is a sequence such that σ (xn, xn+1) ≥ 0 for all n ∈ N and xn → x as n → ∞, then

σ (x,T (x)) ≥ 0
(vi)

sup
t∈[0,δ]

∫ δ

0
h (t, s) ds ≤ 1

where t ∈ [0, δ], s ∈ R,
(vii) there exist φM ∈ Ψ, σ (y,T (y)) ≥ 1 and σ (x,T (x)) ≥ 1 such that for each t ∈ [0, δ] , we have

|J (s, x (t)) + J (s, y (t)) | ≤ φM (|x + y|) . (3.3)

Theorem 4.1. Under the assumptions (i) − (vii) the integral Eq (3.1) has a solution in
{X = C ([0, δ] ,R) for all t ∈ [0, δ]} .

Proof. Using the condition (vii), we obtain that

m (g (x) , g (y)) =

∣∣∣∣∣g (x) (t) + g (y) (t)
2

∣∣∣∣∣ =

∣∣∣∣∣∣
∫ δ

0
h (t, s)

[
J (s, x (s)) + J (s, y (s))

2

]
ds

∣∣∣∣∣∣
≤

∫ δ

0
h (t, s)

∣∣∣∣∣ J (s, x (s)) + J (s, y (s))
2

∣∣∣∣∣ ds

≤

∫ δ

0
h (t, s)

[
φM

∣∣∣∣∣ x (s) + y (s)
2

∣∣∣∣∣] ds
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≤

(
sup

t∈[0,δ]

∫ δ

0
h (t, s) ds

) (
φM

∣∣∣∣∣ x (s) + y (s)
2

∣∣∣∣∣)
≤ φM

(∣∣∣∣∣ x (s) + y (s)
2

∣∣∣∣∣)
m (g (x) , g (y)) ≤ φ (m (x, y))

Define α∗ : X × X → [0,+∞) by

α∗ (x, y) =


1 if σ (x, y) ≥ 0

0 otherwise

which implies that
m (g (x) , g (y)) ≤ φM (m (x, y)) .

Hence all the assumption of the Corollary 2.6 are satisfied, the mapping g has a fixed point in X =

C ([0, δ] ,R) which is the solution of integral Eq (3.1) . �

5. Conclusions

In this study we develop some set-valued fixed point results based on (α∗, φM)-contraction mappings
in the context of M-metric space and ordered M-metric space. Also, we give examples and applications
to the existence of solution of functional equations and homotopy theory.
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