This paper studies an extended continuous-time insider trading model of Calentey and Stacchetti (2010, Econometrica), which allows market makers to observe some partial information about a dynamic risky asset. For each of the two cases with trading until either a fixed time or a random time, we establish the existence and uniqueness of linear Bayesian equilibrium, consisting of insider trading intensity, price pressure on market orders and price pressure on asset observations. It shows that at each of the two equilibria, all information on the risky asset is incorporated in the market price and when the volatility of observation noise keeps constant, the more information observed by market makers, the smaller price pressure on market orders but the greater price pressure on asset observations such that the insider earns less profit and vice versa. It suggests that the partial observation of market makers weakens the information advantage of the insider, which prevents the insider from monopolizing the market to make excessive profit, then reduces the losses of noise traders, thus improving the fairness and effectiveness in the insider trading market.
Citation: Jixiu Qiu, Yonghui Zhou. Insider trading with dynamic asset under market makers' partial observations[J]. AIMS Mathematics, 2023, 8(10): 25017-25036. doi: 10.3934/math.20231277
This paper studies an extended continuous-time insider trading model of Calentey and Stacchetti (2010, Econometrica), which allows market makers to observe some partial information about a dynamic risky asset. For each of the two cases with trading until either a fixed time or a random time, we establish the existence and uniqueness of linear Bayesian equilibrium, consisting of insider trading intensity, price pressure on market orders and price pressure on asset observations. It shows that at each of the two equilibria, all information on the risky asset is incorporated in the market price and when the volatility of observation noise keeps constant, the more information observed by market makers, the smaller price pressure on market orders but the greater price pressure on asset observations such that the insider earns less profit and vice versa. It suggests that the partial observation of market makers weakens the information advantage of the insider, which prevents the insider from monopolizing the market to make excessive profit, then reduces the losses of noise traders, thus improving the fairness and effectiveness in the insider trading market.
[1] | A. S. Kyle, Continuous auctions and insider trading, Econometrica, 53 (1985), 1315–1335. https://doi.org/10.2307/1913210 doi: 10.2307/1913210 |
[2] | K. Back, Insider trading in continuous-time, Rev. Financ. Stud., 5 (1992), 387–409. https://doi.org/10.1093/rfs/5.3.387 doi: 10.1093/rfs/5.3.387 |
[3] | P. Collins-Dufresne, V. Fos, Insider trading, stochastic liquidity and equilibrium prices, Econometrica, 84 (2016), 1441–1475. https://doi.org/10.3982/ECTA10789 doi: 10.3982/ECTA10789 |
[4] | B. Z. Yang, X. J. He, N. J. Huang, Equilibrium price and optimal insider trading strategy under stochastic liquidity with long memory, Appl. Math. Optim., 84 (2021), 1209–1237. https://doi.org/10.1007/s00245-020-09675-2 doi: 10.1007/s00245-020-09675-2 |
[5] | R. Calentey, E. Stacchetti, Insider trading with a random deadline, Econometrica, 78 (2010), 245–283. https://doi.org/10.3982/ECTA7884 doi: 10.3982/ECTA7884 |
[6] | L. Campi, U. Çetin, A. Danilova, Equilibrium model with default and dynamic insiders information, Finance Stoch., 17 (2013), 565–585. https://doi.org/10.1007/s00780-012-0196-x doi: 10.1007/s00780-012-0196-x |
[7] | J. Ma, R. T. Sun, Y. H. Zhou, Kyle-Back equilibrium models and linear conditional mean-field SDEs, SIAM J. Control Optim., 56 (2018), 1154–1180. https://doi.org/10.1137/15M102558X doi: 10.1137/15M102558X |
[8] | K. K. Aase, T. Bjuland, B. Øksendal, Strategic insider trading equilibrium: a filter theory approach, Afr. Mat., 23 (2012), 145–162. https://doi.org/10.1007/s13370-011-0026-x doi: 10.1007/s13370-011-0026-x |
[9] | K. Back, S. Baruch, Information in securities markets: Kyle meets Glosten and Milgrom, Econometrica, 72 (2004), 433–465. https://doi.org/10.1111/j.1468-0262.2004.00497.x doi: 10.1111/j.1468-0262.2004.00497.x |
[10] | K. Back, H. Pedersen, Long-lived information and intraday patterns, J. Financ. Mark., 1 (1998), 385–402. https://doi.org/10.1016/S1386-4181(97)00003-7 doi: 10.1016/S1386-4181(97)00003-7 |
[11] | S. Baruch, Insider trading and risk aversion, J. Financ. Mark., 5 (2002), 451–464. https://doi.org/10.1016/S1386-4181(01)00031-3 doi: 10.1016/S1386-4181(01)00031-3 |
[12] | F. Biagini, Y. Hu, T. Myer-Brandis, B. Øksendal, Insider trading equilibrium in a market with memory, Math. Finan. Econ., 6 (2012), 229–247. https://doi.org/10.1007/s11579-012-0065-6 doi: 10.1007/s11579-012-0065-6 |
[13] | L. Campi, U. Çetin, A. Danilova, Dynamic markov bridges motivated by models of insider trading, Stoch. Proc. Appl., 121 (2011), 534–567. https://doi.org/10.1016/j.spa.2010.11.004 doi: 10.1016/j.spa.2010.11.004 |
[14] | U. Çetin, Financial equilibrium with asymmetric information and random horizon, Finance Stoch., 22 (2018), 97–126. https://doi.org/10.1007/s00780-017-0348-0 doi: 10.1007/s00780-017-0348-0 |
[15] | K. H. Cho, Continuous auctions and insider trading: uniqueness and risk aversion, Finance Stoch., 7 (2003), 47–71. https://doi.org/10.1007/s007800200078 doi: 10.1007/s007800200078 |
[16] | A. Daniloa, Stock market insider trading in continous time with imperfect dynamic information, Stochastics, 82 (2010), 111–131. https://doi.org/10.1080/17442500903106614 doi: 10.1080/17442500903106614 |
[17] | K. Back, C. H. Cao, G. A. Willard, Imperfect competition among informed traders, J. Financ., 55 (2000), 2117–2155. https://doi.org/10.1111/0022-1082.00282 doi: 10.1111/0022-1082.00282 |
[18] | K. Back, K. Crotty, T. Li, Identifying information asymmetry in securities markets, Rev. Financ. Stud., 31 (2018), 2277–2325. https://doi.org/10.1093/rfs/hhx133 doi: 10.1093/rfs/hhx133 |
[19] | S. Banerjee, B. Breon-Drish, Strategic trading and unobservable information acquisition, J. Finan. Econ., 138 (2020), 458–482. https://doi.org/10.1016/j.jfineco.2020.05.007 doi: 10.1016/j.jfineco.2020.05.007 |
[20] | S. Banerjee, B. Breon-Drish, Dynamics of research and strategic trading, Rev. Financ. Stud., 35 (2022), 908–961. https://doi.org/10.1093/rfs/hhab029 doi: 10.1093/rfs/hhab029 |
[21] | J. H. Han, X. L. Li, G. Y. Ma, A. P. Kennedy, Strategic trading with information acquisition and long-memory stochastic liquidity, Eur. J. Oper. Res., 308 (2023), 480–495. https://doi.org/10.1016/j.ejor.2022.11.028 doi: 10.1016/j.ejor.2022.11.028 |
[22] | J. X. Qiu, Y. H. Zhou, On the equilibrium of insider trading under information acquisition with long memory, J. Ind. Manag. Optim., 19 (2023), 7130–7149. https://doi.org/10.3934/jimo.2022255 doi: 10.3934/jimo.2022255 |
[23] | A. Crane, K. Crotty, T. Umar, Hedge funds and public information acquisition, Manage. Sci., 69 (2023), 3241–3262. https://doi.org/10.1287/mnsc.2022.4466 doi: 10.1287/mnsc.2022.4466 |
[24] | S. L. Chen, H. Ma, Q. Wu, H. Zhang, Does common ownership constrain managerial rent extraction? Evidence from insider trading profitability, J. Corp. Financ., 80 (2023), 102389. https://doi.org/10.1016/j.jcorpfin.2023.102389 doi: 10.1016/j.jcorpfin.2023.102389 |
[25] | Y. Ma, Z. F. Li, Robust portfolio choice with limited attention, Electron. Res. Arch., 31 (2023), 3666–3687. https://doi.org/10.3934/era.2023186 doi: 10.3934/era.2023186 |
[26] | K. Nishide, Insider trading with correlation between liquidity trading and a public signal, Quant. Financ., 9 (2009), 297–304. https://doi.org/10.1080/14697680802165728 doi: 10.1080/14697680802165728 |
[27] | Y. H. Zhou, Existence of linear strategy equilibrium in insider trading with partial observations, J. Syst. Sci. Complex., 29 (2016), 1281–1292. https://doi.org/10.1007/s11424-015-4186-x doi: 10.1007/s11424-015-4186-x |
[28] | K. Xiao, Y. H. Zhou, Insider trading with a random deadline under partial observations: maximal principle method, Acta Math. Appl. Sin. Engl. Ser., 38 (2022), 753–762. https://doi.org/10.1007/s10255-022-1112-6 doi: 10.1007/s10255-022-1112-6 |
[29] | C. Y. Dang, S. Foerster, Z. C. Li, Z. Y. Tang, Analyst talent, information, and insider trading, J. Corp. Financ., 67 (2021), 101803. https://doi.org/10.1016/j.jcorpfin.2020.101803 |
[30] | P. E. Protter, Stochastic integration and differential equations, Berlin Heidelberg: Springer-Verlag, 1990. https://doi.org/10.1007/978-3-662-10061-5 |
[31] | R. S. Liptser, A. N. Shiryaev, Statistic of random process II, Berlin Heidelberg: Springer-Verlag, 2001. https://doi.org/10.1007/978-3-662-10028-8 |
[32] | J. M. Yong, X. Y. Zhou, Stochastic controls, New York: Springer, 1999. https://doi.org/10.1007/978-1-4612-1466-3 |