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1. Introduction

Let n be an integer number, N = {1, 2, . . . , n}, and let Cn×n be the set of all complex matrices of
order n. A matrix M = (mi j) ∈ Cn×n(n ≥ 2) is called a strictly diagonally dominant (S DD) matrix [1] if

|mii| > ri(M) =
n∑

j=1, j,i

|mi j|, ∀i ∈ N.

It was shown that an S DD matrix is an H-matrix [1], where matrix M = (mi j) ∈ Cn×n(n ≥ 2) is called
an H-matrix [1–3] if and only if there exists a positive diagonal matrix X such that MX is an S DD
matrix [1, 2, 4]. H-matrices are widely applied in many fields, such as computational mathematics,
economics, mathematical physics and dynamical system theory, see [1,4–6]. Meanwhile, upper bounds
for the infinity norm of the inverse matrices of H-matrices can be used in the convergence analysis
of matrix splitting and matrix multi-splitting iterative methods for solving the large sparse of linear
equations [7], as well as linear complementarity problems. Moreover, upper bounds of the infinity
norm of the inverse for different classes of matrices have been widely studied, such as CKV-type
matrices [8], S -S DDS matrices [9], DZ and DZ-type matrices [10, 11], Nekrasov matrices [12–15],
S -Nekrasov matrices [16], Q-Nekrasov matrices [17], GS DD1 matrices [18] and so on.
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In 2011, Peňa [19] proposed a new subclass of H-matrices called S DD1 matrices, whose definition
is listed below. A matrix M = (mi j) ∈ Cn×n(n ≥ 2) is called an S DD1 matrix if

|mii| > pi(M), ∀i ∈ N1(M),

where

pi(M) =
∑

j∈N1(M)\{i}

|mi j| +
∑

j∈N2(M)\{i}

r j(M)
|m j j|

|mi j|,

N1(M) = {i||mii| ≤ ri(M)} , N2(M) = {i||mii| > ri(M)} .

In 2023, Dai et al. [18] gave a new subclass of H-matrices named generalized S DD1 (GS DD1)
matrices, which extends the class of S DD1 matrices. Here, a matrix M = (mi j) ∈ Cn×n(n ≥ 2) is said a
GS DD1 matrix if

ri(M) − pN2(M)
i (M) > 0, ∀i ∈ N2(M),

and (
ri(M) − pN2(M)

i (M)
) (
|a j j| − pN1(M)

j (M)
)
> pN1(M)

i (M)pN2(M)
j (M), ∀i ∈ N2(M), ∀ j ∈ N1(M),

where

pN2(M)
i (M) =

∑
j∈N2(M)\{i}

r j(M)
|m j j|

|mi j|, pN1(M)
i (M) =

∑
j∈N1(M)\{i}

|mi j|, i ∈ N.

Subsequently, some upper bounds for the infinite norm of the inverse matrices of S DD matrices,
S DD1 matrices and GS DD1 matrices are presented, see [18,20,21]. For example, the following results
that will be used later are listed.

Theorem 1. (Varah bound) [21] Let matrix M = (mi j) ∈ Cn×n(n ≥ 2) be an S DD matrix. Then

||M−1||∞ ≤
1

min
1≤i≤n

(|mii| − ri(M))
.

Theorem 2. [20] Let matrix M = (mi j) ∈ Cn×n(n ≥ 2) be an S DD matrix. Then

||M−1||∞ ≤

max
i∈N

pi(M)
|mii |
+ ε

min
i∈N

Zi
, 0 < ε < min

i∈N

|mii| − pi(M)
ri(M)

,

where

Zi = ε(|mii| − ri(M)) +
∑

j∈N\{i}

(
r j(M) − p j(M)

|m j j|

)
|mi j|.

Theorem 3. [20] Let matrix M = (mi j) ∈ Cn×n(n ≥ 2) be an S DD matrix. If ri(M) > 0(∀i ∈ N), then

||M−1||∞ ≤

max
i∈N

pi(M)
|mii |

min
i∈N

∑
j∈N\{i}

r j(M)−p j(M)
|m j j |

|mi j|
.
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Theorem 4. [18] Let M = (mi j) ∈ Cn×n be a GS DD1 matrix. Then

||M−1||∞ ≤

max
{
ε, max

i∈N2(M)

ri(M)
|mii |

}
min

{
min

i∈N2(M)
ϕi, min

i∈N1(M)
ψi

} ,
where

ϕi = ri(M) −
∑

j∈N2(M)\{i}

r j(M)
|m j j|

|mi j| −
∑

j∈N1(M)\{i}

|mi j|ε,

ψi = |mii|ε −
∑

j∈N1(M)\{i}

|mi j|ε +
∑

j∈N2(M)\{i}

r j(M)
|m j j|

|mi j|,

and

max
i∈N1(M)

pN2(M)
i (M)

|mii| − pN1(M)
i (M)

< ε < min
j∈N2(M)

r j(M) − pN2(M)
j (M)

pN1(M)
j (M)

.

On the basis of the above articles, we continue to study special structured matrices and introduce a
new subclass of H-matrices called S DDk matrices, and provide some new upper bounds for the
infinite norm of the inverse matrices for S DD matrices and S DDk matrices, which improve the
previous results. The remainder of this paper is organized as follows: In Section 2, we propose a new
subclass of H-matrices called S DDk matrices, which include S DD matrices and S DD1 matrices, and
derive some properties of S DDk matrices. In Section 3, we present some upper bounds for the infinity
norm of the inverse matrices for S DD matrices and S DDk matrices, and provide some comparisons
with the well-known Varah bound. Moreover, some numerical examples are given to illustrate the
corresponding results.

2. S DDk matrices

In this section, we propose a new subclass of H-matrices called S DDk matrices, which include
S DD matrices and S DD1 matrices, and derive some new properties.

Definition 1. A matrix M = (mi j) ∈ Cn×n(n ≥ 2) is called an S DDk matrix if there exists k ∈ N
such that

|mii| > p(k−1)
i (M), ∀i ∈ N1(M),

where

p(k)
i (M) =

∑
j∈N1(M)\{i}

|mi j| +
∑

j∈N2(M)\{i}

p(k−1)
j (M)

|m j j|
|mi j|,

p(0)
i (M) =

∑
j∈N1(M)\{i}

|mi j| +
∑

j∈N2(M)\{i}

r j(M)
|m j j|

|mi j|.
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Immediately, we know that S DDk matrices contain S DD matrices and S DD1 matrices, so

{S DD} ⊆ {S DD1} ⊆ {S DD2} ⊆ · · · ⊆ {S DDk} .

Lemma 1. A matrix M = (mi j) ∈ Cn×n(n ≥ 2) is an S DDk(k ≥ 2) matrix if and only if for ∀i ∈ N,
|mii| > p(k−1)

i (M).

Proof. For ∀i ∈ N1(M), from Definition 1, it holds that |mii| > p(k−1)
i (M).

For ∀i ∈ N2(M), we have that |mii| > ri(M). When k = 2, it follows that

|mii| > ri(M) ≥
∑

j∈N1(M)\{i}

|mi j| +
∑

j∈N2(M)\{i}

r j(M)
|m j j|

|mi j| = p(0)
i (M)

≥
∑

j∈N1(M)\{i}

|mi j| +
∑

j∈N2(M)\{i}

p(0)
j (M)

|m j j|
|mi j| = p(1)

i (M).

Suppose that |mii| > p(k−1)
i (M)(k ≤ l, l > 2) holds for ∀i ∈ N2(M). When k = l + 1, we have

|mii| > ri(M) ≥
∑

j∈N1(M)\{i}

|mi j| +
∑

j∈N2(M)\{i}

p(l−2)
j (M)

|m j j|
|mi j| = p(l−1)

i (M)

≥
∑

j∈N1(M)\{i}

|mi j| +
∑

j∈N2(M)\{i}

p(l−1)
j (M)

|m j j|
|mi j| = p(l)

i (M).

By induction, we obtain that for ∀i ∈ N2(M), |mii| > p(k−1)
i (M). Consequently, it holds that matrix M is

an S DDk matrix if and only if |mii| > p(k−1)
i (M) for ∀i ∈ N. The proof is completed. □

Lemma 2. If M = (mi j) ∈ Cn×n(n ≥ 2) is an S DDk(k ≥ 2) matrix, then M is an H-matrix.

Proof. Let X be the diagonal matrix diag{x1, x2, · · · , xn}, where

(0 <) x j =

 1, j ∈ N1(M),
p(k−1)

j (M)

|m j j |
+ ε, j ∈ N2(M),

and

0 < ε < min
i∈N

|mii| − p(k−1)
i (M)∑

j∈N2(M)\{i}
|mi j|

.

If
∑

j∈N2(M)\{i}
|mi j| = 0, then the corresponding fraction is defined to be∞. Next we consider the following

two cases.
Case 1: For each i ∈ N1(M), it is not difficult to see that |(MX)ii| = |mii|, and
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ri(MX) =
∑

j=1, j,i

|mi j|x j

=
∑

j∈N1(M)\{i}

|mi j| +
∑

j∈N2(M)\{i}

 p(k−1)
j (M)

|m j j|
+ ε

|mi j|

≤
∑

j∈N1(M)\{i}

|mi j| +
∑

j∈N2(M)\{i}

 p(k−2)
j (M)

|m j j|
+ ε

|mi j|

=
∑

j∈N1(M)\{i}

|mi j| +
∑

j∈N2(M)\{i}

p(k−2)
j (M)

|m j j|
|mi j| +

∑
j∈N2(M)\{i}

ε|mi j|

= p(k−1)
i (M) + ε

∑
j∈N2(M)\{i}

|mi j|

< p(k−1)
i (M) + |mii| − p(k−1)

i (M)
= |mii| = |(MX)ii|.

Case 2: For each i ∈ N2(M), we can obtain that

|(MX)ii| = |mii|

(
pk−1

i (M)
|mii|

+ ε

)
= p(k−1)

i (M) + ε|mii|,

and

ri(MX) =
∑

j=1, j,i

|mi j|x j

=
∑

j∈N1(M)\{i}

|mi j| +
∑

j∈N2(M)\{i}

 p(k−1)
j (M)

|m j j|
+ ε

|mi j|

≤
∑

j∈N1(M)\{i}

|mi j| +
∑

j∈N2(M)\{i}

 p(k−2)
j (M)

|m j j|
+ ε

|mi j|

=
∑

j∈N1(M)\{i}

|mi j| +
∑

j∈N2(M)\{i}

p(k−2)
j

(M)

|m j j|
|mi j| +

∑
j∈N2(M)\{i}

ε|mi j|

= p(k−1)
i (M) + ε

∑
j∈N2(A)\{i}

|mi j|

< p(k−1)
i (M) + ε|mii|

= |(MX)ii|.

Based on Cases 1 and 2, we have that MX is an S DD matrix, and consequently, M is an H-matrix. The
proof is completed. □

According to the definition of S DDk matrix and Lemma 1, we obtain some properties of S DDk

matrices as follows:

AIMS Mathematics Volume 8, Issue 10, 24999–25016.
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Theorem 5. If M = (mi j) ∈ Cn×n(n ≥ 2) is an S DDk matrix and N1(M) , ∅, then for ∀i ∈ N1(M),∑
j,i, j∈N2(M)

|mi j| > 0.

Proof. Suppose that for ∀i ∈ N1(M),
∑

j,i, j∈N2(M)
|mi j| = 0. By Definition 1, we have that p(k−1)

i (M) =

ri(M), ∀i ∈ N1(M). Thus, it is easy to verify that |mii| > p(k−1)
i (M) = ri(M) ≥ |mii|, which is a

contradiction. Thus for ∀i ∈ N1(M),
∑

j,i, j∈N2(M)
|mi j| > 0. The proof is completed. □

Theorem 6. Let M = (mi j) ∈ Cn×n(n ≥ 2) be an S DDk(k ≥ 2) matrix. It holds that
∑

j,i, j∈N2(M)
|mi j| > 0,

∀i ∈ N2(M). Then

|mii| > p(k−2)
i (M) > p(k−1)

i (M) > 0, ∀i ∈ N2(M),

and

|mii| > p(k−1)
i (M) > 0, ∀i ∈ N.

Proof. By Lemma 1 and the known conditions that for ∀i ∈ N2(M),
∑

j,i, j∈N2(M)
|mi j| > 0, it holds that

|mii| > p(k−2)
i (M) > p(k−1)

i (M) > 0, ∀i ∈ N2(M),

and
|mii| > p(k−1)

i (M), ∀i ∈ N.

We now prove that |mii| > p(k−1)
i (M) > 0(∀i ∈ N) and consider the following two cases.

Case 1: If N1(M) =∅, then M is an S DD matrix. It is easy to verify that |mii| > p(k−1)
i (M) > 0,

∀i ∈ N2(M) = N.
Case 2: If N1(M) , ∅, by Theorem 5 and the known condition that for ∀i ∈ N2(M),

∑
j,i, j∈N2(M)

|mi j| >

0, then it is easy to obtain that |mii| > p(k−1)
i (M) > 0(∀i ∈ N).

From Cases 1 and 2, we have that |mii| > p(k−1)
i (M) > 0(∀i ∈ N). The proof is completed. □

Theorem 7. Let M = (mi j) ∈ Cn×n(n ≥ 2) be an S DDk(k ≥ 2) matrix and for ∀i ∈ N2(M),∑
j,i, j∈N2(M)

|mi j| > 0. Then there exists a diagonal matrix X = diag{x1, x2, · · · , xn} such that MX is an

S DD matrix. Elements x1, x2, . . . , xn are determined by

xi =
p(k−1)

i (M)
|mii|

, ∀i ∈ N.

Proof. We need to prove that matrix MX satisfies the following inequalities:

|(MX)ii| > ri(MX), ∀i ∈ N.

From Theorem 6 and the known condition that for ∀i ∈ N2(M),
∑

j,i, j∈N2(M)
|mi j| > 0, it is easy to verify

that

0 <
p(k−1)

i (M)
|mii|

<
p(k−2)

i (M)
|mii|

< 1, ∀i ∈ N2(M).
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For each i ∈ N, we have that |(MX)ii| = p(k−1)
i (M) and

ri(MX) =
∑

j=1, j,i

|mi j|x j

=
∑

j∈N1(M)\{i}

p(k−1)
j (M)

|m j j|
|mi j| +

∑
j∈N2(M)\{i}

p(k−1)
j (M)

|m j j|
|mi j|

<
∑

j∈N1(M)\{i}

|mi j| +
∑

j∈N2(M)\{i}

p(k−2)
j (M)

|m j j|
|mi j|

= p(k−1)
i (M) = |(MX)ii|,

that is,
|(MX)ii| > ri(MX).

Therefore, MX is an S DD matrix. The proof is completed. □

3. Infinity norm upper bounds for the inverse of S DD and S DDk matrices

In this section, by Lemma 2 and Theorem 7, we provide some new upper bounds of the infinity
norm of the inverse matrices for S DDk matrices and S DD matrices, respectively. We also present
some comparisons with the Varah bound. Some numerical examples are presented to illustrate the
corresponding results. Specially, when the involved matrices are S DD1 matrices as subclass of S DDk

matrices, these new bounds are in line with that provided by Chen et al. [20].

Theorem 8. Let M = (mi j) ∈ Cn×n(n ≥ 2) be an S DDk(k ≥ 2) matrix. Then

||M−1||∞ ≤

max
{

1, max
i∈N2(M)

p(k−1)
i (M)
|mii |

+ ε

}
min

{
min

i∈N1(M)
Ui, min

i∈N2(M)
Vi

} ,

where

Ui = |mii| −
∑

j∈N1(M)\{i}

|mi j| −
∑

j∈N2(M)\{i}

 p(k−1)
j (M)

|m j j|
+ ε

|mi j|,

Vi = ε(|mii| −
∑

j∈N2(M)\{i}

|mi j|) +
∑

j∈N2(M)\{i}

 p(k−2)
j

(M) − p(k−1)
j (M)

|m j j|

|mi j|,

and

0 < ε < min
i∈N

|mii| − p(k−1)
i (M)∑

j∈N2(M)\{i}
|mi j|

.
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Proof. By Lemma 2, we have that there exists a positive diagonal matrix X such that MX is an S DD
matrix, where X is defined as Lemma 2. Thus,

||M−1||∞ = ||X(X−1M−1)||∞ = ||X(MX)−1||∞ ≤ ||X||∞||(MX)−1||∞,

and

||X||∞ = max
1≤i≤n

xi = max

1, max
i∈N2(M)

p(k−1)
i (M)
|mii|

+ ε

 .
Notice that MX is an S DD matrix. Hence, by Theorem 1, we have

||(MX)−1||∞ ≤
1

min
1≤i≤n

(|(MX)ii| − ri(MX))
.

Thus, for any i ∈ N1(M), it holds that

|(MX)ii| − ri(MX) = |mii| −
∑

j∈N1(M)\{i}

|mi j| −
∑

j∈N2(M)\{i}

 p(k−1)
j (M)

|m j j|
+ ε

|mi j| = Ui.

For any i ∈ N2(M), it holds that

|(MX)ii| − ri(MX) = p(k−1)
i (M) + ε|mii| −

∑
j∈N1(M)\{i}

|mi j| −
∑

j∈N2(M)\{i}

 p(k−1)
j (M)

|m j j|
+ ε

|mi j|

=
∑

j∈N1(M)\{i}

|mi j| +
∑

j∈N2(M)\{i}

p(k−2)
j (M)

|m j j|
|mi j| + ε|mii|

−
∑

j∈N1(M)\{i}

|mi j| −
∑

j∈N2(M)\{i}

 p(k−1)
j (M)

|m j j|
+ ε

|mi j|

= ε(|mii| −
∑

j∈N2(M)\{i}

|mi j|) +
∑

j∈N2(M)\{i}

 p(k−2)
j

(M) − p(k−1)
j (M)

|m j j|

|mi j|

= Vi.

Therefore, we get

||M−1||∞ ≤

max
{

1, max
i∈N2(M)

p(k−1)
i (M)
|mii |

+ ε

}
min{ min

i∈N1(M)
Xi, min

i∈N2(M)
Yi}

.

The proof is completed. □

From Theorem 8, it is easy to obtain the following result.
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Corollary 1. Let M = (mi j) ∈ Cn×n(n ≥ 2) be an S DD matrix. Then

||M−1||∞ ≤

max
i∈N

p(k−1)
i (M)
|mii |

+ ε

min
i∈N

Zi
,

where k ≥ 2,

Zi = ε(|mii| − ri(M)) +
∑

j∈N\{i}

 p(k−2)
j

(M) − p(k−1)
j (M)

|m j j|

|mi j|,

and

0 < ε < min
i∈N

|mii| − p(k−1)
i (M)

ri(M)
.

Example 1. Consider the n × n matrix:

M =



4 2 1.5
1.5 4 2

4 8 2
4 8 2

. . .
. . .

. . .

4 8 2
4 8 2

4 8 2
3.5 4


.

Take that n = 20. It is easy to verify that M is an S DD matrix.
By calculations, we have that for k = 2,

max
i∈N

p(1)
i (M)
|mii|

+ ε1 = 0.5859 + ε1, min
i∈N

Zi = 0.4414 + 0.5ε1, 0 < ε1 < 0.4732.

For k = 4,

max
i∈N

p(3)
i (M)
|aii|

+ ε2 = 0.3845 + ε2, min
i∈N

Zi = 0.2959 + 0.5ε2, 0 < ε2 < 0.7034.

For k = 6,

max
i∈N

p(5)
i (M)
|mii|

+ ε3 = 0.2504 + ε3, min
i∈N

Zi = 0.1733 + 0.5ε3, 0 < ε3 < 0.8567.

For k = 8,

max
i∈N

p(7)
i (M)
|mii|

+ ε4 = 0.1624 + ε4, min
i∈N

Zi = 0.0990 + 0.5ε4, 0 < ε4 < 0.9572.
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So, when k = 2, 4, 6, 8, by Corollary 1 and Theorem 1, we can get the upper bounds for ||M−1||∞, see
Table 1. Thus,

||M−1||∞ ≤
0.5859 + ε1

0.4414 + 0.5ε1
< 2, ||M−1||∞ ≤

0.3845 + ε2

0.2959 + 0.5ε2
< 2,

and
||M−1||∞ ≤

0.2504 + ε3

0.1733 + 0.5ε3
< 2, ||M−1||∞ ≤

0.1624 + ε4

0.0990 + 0.5ε4
< 2.

Moreover, when k = 1, by Theorem 2, we have

||M−1||∞ ≤
0.7188 + ε5

0.4844 + 0.5ε5
, 0 < ε5 < 0.3214.

Table 1. The bounds in Corollary 1 and Theorem 1.

k 2 4 6 8

Cor 1 0.5859+ε1
0.4414+0.5ε1

0.3845+ε2
0.2959+0.5ε2

0.2504+ε3
0.1733+0.5ε3

0.1624+ε4
0.0990+0.5ε4

Th 1 2 2 2 2

The following Theorem 9 shows that the bound in Corollary 1 is better than that in Theorem 1
of [20] in some cases.

Theorem 9. Let matrix M = (mi j) ∈ Cn×n(n ≥ 2) be an S DD matrix. If there exists k ≥ 2 such that

max
i∈N

p(k−1)
i (M)
|mii|

min
i∈N

(|mii| − ri(M)) ≤ min
i∈N

∑
j∈N\{i}

p(k−2)
j (M) − p(k−1)

j (M)

|m j j|
|mi j|,

then

||M−1||∞ ≤

max
i∈N

p(k−1)
i (M)
|mii |

+ ε

min
i∈N

Zi
≤

1
min
1≤i≤n

(|mii| − ri(M))
,

where Zi and ε are defined as in Corollary 1, respectively.

Proof. From the given condition, we have that there exists k ≥ 2 such that

max
i∈N

p(k−1)
i (M)
|mii|

min
i∈N

(|mii| − ri(M)) ≤ min
i∈N

∑
j∈N\{i}

p(k−2)
j (M) − p(k−1)

j (M)

|m j j|
|mi j|,

then

max
i∈N

p(k−1)
i (M)
|mii|

min
i∈N

(|mii| − ri(M)) + εmin
i∈N

(|mii| − ri(M))

≤ min
i∈N

∑
j∈N\{i}

p(k−2)
j (M) − p(k−1)

j (M)

|m j j|
|mi j| + εmin

i∈N
(|mii| − ri(M)).
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Thus, we get max
i∈N

p(k−1)
i (M)
|mii|

+ ε

 min
i∈N

(|mii| − ri(M))

≤ min
i∈N

∑
j∈N\{i}

p(k−2)
j (M) − p(k−1)

j (M)

|m j j|
|mi j| + εmin

i∈N
(|mii| − ri(M))

= min
i∈N

∑
j∈N\{i}

p(k−2)
j (M) − p(k−1)

j (M)

|m j j|
|mi j| +min

i∈N
(ε(|mii| − ri(M)))

≤ min
i∈N

ε(|mii| − ri(M)) +
∑

j∈N\{i}

p(k−2)
j (M) − p(k−1)

j (M)

|m j j|
|mi j|


= min

i∈N
Zi.

Since M is an S DD matrix, then

|mii| > ri(M), Zi > 0, ∀i ∈ N.

It’s easy to verify that

max
i∈N

p(k−1)
i (M)
|mii |

+ ε

min
i∈N

Zi
≤

1
min
1≤i≤n

(|mii| − ri(M))
.

Thus, by Corollary 1, it holds that

||M−1||∞ ≤

max
i∈N

p(k−1)
i (M)
|mii |

+ ε

min
i∈N

Zi
≤

1
min
1≤i≤n

(|mii| − ri(M))
.

The proof is completed. □

We illustrate Theorem 9 by the following Example 2.

Example 2. This is the previous Example 1. For k = 4, we have

max
i∈N

p(3)
i (M)
|mii|

min
i∈N

(|mii| − ri(M)) = 0.1923 < 0.2959 = min
i∈N

∑
j∈N\{i}

p(2)
j (M) − p(3)

j (M)

|m j j|
|mi j|.

Thus, by Theorem 8, we obtain that for each 0 < ε2 < 0.7034,

||M−1||∞ ≤
0.3845 + ε2

0.2959 + 0.5ε2
< 2 =

1
min
1≤i≤n

(|mii| − ri(M))
.

However, we find that the upper bounds in Theorems 8 and 9 contain the parameter ε. Next, based
on Theorem 7, we will provide new upper bounds for the infinity norm of the inverse matrices of S DDk

matrices, which only depend on the elements of the given matrices.
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Theorem 10. Let M = (mi j) ∈ Cn×n(n ≥ 2) be an S DDk(k ≥ 2) matrix and for each i ∈ N2(M),∑
j,i, j∈N2(M)

|mi j| > 0. Then

||M−1||∞ ≤

max
i∈N

p(k−1)
i (M)
|mii |

min
i∈N

(
p(k−1)

i (M) −
∑

j∈N\{i}

p(k−1)
j (M)

|m j j |
|mi j|

) .
Proof. By Theorems 7 and 8, we have that there exists a positive diagonal matrix X such that MX is an
S DD matrix, where X is defined as in Theorem 7. Thus, it holds that

||M−1||∞ = ||X(X−1M−1)||∞ = ||X(MX)−1||∞ ≤ ||X||∞||(MX)−1||∞,

and

||X||∞ = max
1≤i≤n

xi = max
i∈N

p(k−1)
i (M)
|mii|

.

Notice that MX is an S DD matrix. Thus, by Theorem 1, we get

||(MX)−1||∞ ≤
1

min
1≤i≤n

(|(MX)ii| − ri(MX))

=
1

min
1≤i≤n

(|miixi| − ri(MX))

=
1

min
i∈N

(
p(k−1)

i (M) −
∑

j∈N\{i}

p(k−1)
j (M)

|m j j |
|mi j|

) .
Therefore, we have that

||M−1||∞ ≤

max
i∈N

p(k−1)
i (M)
|mii |

min
i∈N

(
p(k−1)

i (M) −
∑

j∈N\{i}

p(k−1)
j (M)

|m j j |
|mi j|

) .
The proof is completed. □

Since S DD matrices are a subclass of S DDk matrices, by Theorem 10, we can obtain the following
result.

Corollary 2. Let M = (mi j) ∈ Cn×n(n ≥ 2) be an S DD matrix. If ri(M) > 0(∀i ∈ N), then there exists
k ≥ 2 such that

||M−1||∞ ≤

max
i∈N

p(k−1)
i (M)
|mii |

min
i∈N

∑
j∈N\{i}

p(k−2)
j (M)−p(k−1)

j (M)

|m j j |
|mi j|

.

Two examples are given to show the advantage of the bound in Theorem 10.
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Example 3. Consider the following matrix:

M =


40 −1 −2 −1 −2
0 10 −4.1 −4 −6
−20 −2 33 −4 −8

0 −4 −6 20 −2
−30 −4 −2 0 40


.

It is easy to verify that M is not an S DD matrix, an S DD1 matrix, a GS DD1 matrix, an S -S DD matrix,
nor a CKV-type matrix. Therefore, we cannot use the error bounds in [1, 8, 9, 18, 20] to estimate
||M−1||∞. But, M is an S DD2 matrix. So by the bound in Theorem 10, we have that ∥M−1∥∞ ≤ 0.5820.

Example 4. Consider the tri-diagonal matrix M ∈ Rn×n arising from the finite difference method for
free boundary problems [18], where

M =



b + αsin
(

1
n

)
c 0 · · · 0

a b + αsin
(

2
n

)
c · · · 0

. . .
. . .

. . .

0 · · · a b + αsin
(

n−1
n

)
c

0 · · · 0 a b + αsin (1)


.

Take that n = 4, a = 1, b = 0 , c = 3.7 and α = 10. It is easy to verify that M is neither an S DD matrix
nor an S DD1 matrix. However, we can get that M is a GS DD1 matrix and an S DD3 matrix. By the
bound in Theorem 10, we have

∥M−1∥∞ ≤ 8.2630,

while by the bound in Theorem 4, it holds that

∥M−1∥∞ ≤
ε

min {2.1488 − ε, 0.3105, 2.474ε − 3.6272}
, ε ∈ (1.4661, 2.1488).

The following two theorems show that the bound in Corollary 2 is better than that in Theorem 1 in
some cases.

Theorem 11. Let M = (mi j) ∈ Cn×n(n ≥ 2) be an S DD matrix. If ri(M) > 0(∀i ∈ N) and there exists
k ≥ 2 such that

min
i∈N

∑
j∈N\{i}

p(k−2)
j (M) − p(k−1)

j (M)

|m j j|
|mi j| ≥ min

i∈N
(|mii| − ri(M)),

then

||M−1||∞ ≤

max
i∈N

p(k−1)
i (M)
|mii |

min
i∈N

∑
j∈N\{i}

p(k−2)
j (M)−p(k−1)

j (M)

|m j j |
|mi j|

<
1

min
1≤i≤n

(|mii| − ri(M))
.

Proof. Since M is an S DD matrix, then N1(M) = ∅ and M is an S DDk matrix. By the given condition
that ri(M) > 0(∀i ∈ N), it holds that

|mii| > ri(M) >
∑

j∈N\{i}

r j(M)
|m j j|

|mi j| = p(0)
i (M) > 0, ∀i ∈ N,
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p(0)
i (M) =

∑
j∈N\{i}

r j(M)
|m j j|

|mi j| >
∑

j∈N\{i}

p(0)
j (M)

|m j j|
|mi j| = p(1)

i (M) > 0, ∀i ∈ N.

Similarly, we can obtain that

|mii| > ri(M) > p(0)
i (M) > · · · > p(k−1)

i (M) > 0, ∀i ∈ N,

that is,

max
i∈N

p(k−1)
i (M)
|mii|

< 1.

Since there exists k ≥ 2 such that

min
i∈N

∑
j∈N\{i}

p(k−2)
j (M) − p(k−1)

j (M)

|m j j|
|mi j| ≥ min

i∈N
(|mii| − ri(M)),

then we have
max

i∈N

p(k−1)
i (M)
|mii |

min
i∈N

∑
j∈N\{i}

p(k−2)
j (M)−p(k−1)

j (M)

|m j j |
|mi j|

<
1

min
1≤i≤n

(|mii| − ri(M))
.

Thus, from Corollary 2, we get

||M−1||∞ ≤

max
i∈N

p(k−1)
i (M)
|mii |

min
i∈N

∑
j∈N\{i}

p(k−2)
j (M)−p(k−1)

j (M)

|m j j |
|mi j|

<
1

min
1≤i≤n

(|mii| − ri(M))
.

The proof is completed. □

We illustrate the Theorem 11 by following Example 5.

Example 5. Consider the matrix M = (mi j) ∈ Cn×n(n ≥ 2), where

M =



4 3 0.9
1 6 2

2 5 2
2 5 2

. . .
. . .

. . .

2 5 2
2 5 2

1 6 2
0.9 3 4


.

Take that n = 20. It is easy to check that M is an S DD matrix. Let

lk = min
i∈N

∑
j∈N\{i}

p(k−2)
j (M) − p(k−1)

j (M)

|m j j|
|mi j|, m = min

i∈N
(|mii| − ri(M)).
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By calculations, we have

l2 = 0.2692 > 0.1 = m, l3 = 0.2567 > 0.1 = m, l4 = 0.1788 > 0.1 = m,

l5 = 0.1513 > 0.1 = m, l6 = 0.1037 > 0.1 = m.

Thus, when k = 2, 3, 4, 5, 6, the matrix M satisfies the conditions of Theorem 11. By Theorems 1
and 11, we can derive the upper bounds for ||M−1||∞, see Table 2. Meanwhile, when k = 1, by
Theorem 3, we get that ||M−1||∞ ≤ 1.6976.

Table 2. The bounds in Theorem 11 and Theorem 1.

k 2 3 4 5 6
Th 11 1.9022 1.5959 1.8332 1.7324 2.0214
Th 1 10 10 10 10 10

From Table 2, we can see that the bounds in Theorem 11 are better than that in Theorems 1 and 3
in some cases.

Theorem 12. Let M = (mi j) ∈ Cn×n(n ≥ 2) be an S DD matrix. If ri(M) > 0(∀i ∈ N) and there exists
k ≥ 2 such that

max
i∈N

p(k−1)
i (M)
|mii|

min
i∈N

(|mii| − ri(M)) ≤ min
i∈N

∑
j∈N\{i}

p(k−2)
j (M) − p(k−1)

j (M)

|m j j|
|mi j|

< min
i∈N

(|mii| − ri(M)),

then

||M−1||∞ ≤

max
i∈N

p(k−1)
i (M)
|mii |

min
i∈N

∑
j∈N\{i}

p(k−2)
j (M)−p(k−1)

j (M)

|m j j |
|mi j|

≤
1

min
1≤i≤n

(|mii| − ri(M))
.

Proof. By Theorem 7 and the given condition that ri(M) > 0(∀i ∈ N), it is easy to get that

∑
j∈N\{i}

p(k−2)
j (M) − p(k−1)

j (M)

|m j j|
|mi j| > 0, ∀i ∈ N.

From the condition that there exists k ≥ 2 such that

max
i∈N

p(k−1)
i (M)
|mii|

min
i∈N

(|mii| − ri(M)) ≤ min
i∈N

∑
j∈N\{i}

p(k−2)
j (M) − p(k−1)

j (M)

|m j j|
|mi j|,

we have
max

i∈N

p(k−1)
i (M)
|mii |

min
i∈N

∑
j∈N\{i}

p(k−2)
j (M)−p(k−1)

j (M)

|m j j |
|mi j|

≤
1

min
1≤i≤n

(|mii| − ri(M))
.
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Thus, from Corollary 2, it holds that

||M−1||∞ ≤

max
i∈N

p(k−1)
i (M)
|mii |

min
i∈N

∑
j∈N\{i}

p(k−2)
j (M)−p(k−1)

j (M)

|m j j |
|mi j|

≤
1

min
1≤i≤n

(|mii| − ri(M))
.

The proof is completed. □

Next, we illustrate Theorem 12 by the following Example 6.

Example 6. Consider the tri-diagonal matrix M = (mi j) ∈ Cn×n(n ≥ 2), where

M =



3 −2.5
−1.2 4 −2

−2.8 5 −1
−2.8 5 −1

. . .
. . .

. . .

−2.8 5 −1
−2.8 5 −1

−1.2 4 −2
−2.5 3


.

Take that n = 20. It is easy to verify that M is an S DD matrix.
By calculations, we have that for k = 2,

max
i∈N

p(1)
i (M)
|mii|

min
i∈N

(|mii| − ri(M)) = 0.2686 < min
i∈N

∑
j∈N\{i}

p(0)
j (M) − p(1)

j (M)

|m j j|
|mi j| = 0.3250

< 0.5 = min
i∈N

(|mii| − ri(M)).

For k = 5, we get

max
i∈N

p(4)
i (M)
|mii|

min
i∈N

(|mii| − ri(M)) = 0.1319 < min
i∈N

∑
j∈N\{i}

p(3)
j (M) − p(4)

j (M)

|m j j|
|mi j| = 0.1685

< 0.5 = min
i∈N

(|mii| − ri(M)).

For k = 10, it holds that

max
i∈N

p(9)
i (M)
|mii|

min
i∈N

(|mii| − ri(M)) = 0.0386 < min
i∈N

∑
j∈N\{i}

p(8)
j (M) − p(9)

j (M)

|m j j|
|mi j| = 0.0485

< 0.5 = min
i∈N

(|mii| − ri(M)).

Thus, for k = 2, 5, 10, the matrix M satisfies the conditions of Theorem 12. Thus, from Theorems 12
and 1, we get the upper bounds for ||M−1||∞, see Table 3. Meanwhile, when k = 1, by Theorem 3, we
have that ||M−1||∞ ≤ 1.7170.
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From Table 3, we can see that the bound in Theorem 12 is sharper than that in Theorems 1 and 3 in
some cases.

Table 3. The bounds in Theorem 12 and Theorem 1.

k 2 5 10
Th 12 1.6530 1.5656 1.5925
Th 1 2 2 2

4. Conclusions

S DDk matrices as a new subclass of H-matrices are proposed, which include S DD matrices and
S DD1 matrices, and some properties of S DDk matrices are obtained. Meanwhile, some new upper
bounds of the infinity norm of the inverse matrices for S DD matrices and S DDk matrices are
presented. Furthermore, we prove that the new bounds are better than some existing bounds in some
cases. Some numerical examples are also provided to show the validity of new results. In the future,
based on the proposed infinity norm bound, we will explore the computable error bounds of the linear
complementarity problems for S DDk matrices.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This research is supported by Guizhou Provincial Science and Technology Projects (20191161), and
the Natural Science Research Project of Department of Education of Guizhou Province (QJJ2023062,
QJJ2023063).

Conflict of interest

The authors declare that they have no competing interests.

References

1. A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, New York:
Society for Industrial and Applied Mathematics, 1994.
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