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Abstract: The incidence rate function describes the mechanism of a disease transmission and has a
key role in mathematical epidemiology. In the present paper, we develop a fractional SEIR epidemic
model in the Caputo sense with generalized incidence function. Initially, we present the existence and
positivity of the Caputo SEIR epidemic model and calculate the basic reproduction number. Further,
we investigate the model equilibria and prove the detail stability analysis of the model. Finally, the
numerical simulations are provided for various values of fractional order α and different incidence
rates. From the numerical simulations we conclude that the order of the fractional derivative plays a
significant role to provides more insights about the disease dynamics.
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1. Introduction

Mathematical epidemiology is concern with the dynamical evolution of diseases and its control
within a population. It is an important field and attracted much interest in the recent years.
Mathematical models of various communicable diseases have been used as a powerful tool to explore
the realistic aspects of disease spreading. In literature, numerous mathematical models have been
developed in order to analyze the spread and possible control strategies of various diseases such
as [1–3].

In epidemic models the incidence rate function plays an essential role and ensure that the model
provides a reasonable qualitative analysis of the disease dynamics. In the literature of infectious
disease models, a verity of incidence rate functions have been implemented. The bilinear incidence
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rate of the type βS I has been frequently adopted, where β indicates the per unit contact rate, S and I
are respectively susceptible and infected individuals [4, 5]. In [6] the authors introduced a simple
epidemic model using bilinear incidence rate under the assumptions that there are no births or deaths
from the infection. Later on in 1973, Capasso et al., [7] introduced the nonlinear incidence rate βS I

1+αI to
formulate the mathematical model of cholera epidemic in Bari. The global analysis of the SIR and
SIRS models with nonlinear incidence rate have been investigated in [7, 8]. In [9], the authors
investigated the dynamics of SIR epidemic model with the incidence function of the form f (S , I).
Recently, Gao et al. [10] formulated a more general epidemic model using f (S , I) as transmission
function and explored the global dynamics of the model. Most of these models are formulated using
ordinary integer-order differential equations (IDEs). In epidemiology, the previous experiences and
history of an epidemic have an essential role to study its dynamics in a more realistic way. These
classical models have some serious drawbacks such as they are local in nature and can not explore the
dynamics of phenomena in between two integer values. Further, since the classical models do not
possess the memory effects, therefore, these models can not replicate the dynamics of many real
world phenomena including infectious diseases.

Fractional calculus (FC) is the generalization of classical integer-order calculus. Mathematical
models with fractional-order (FO) derivative can be used to model universal phenomena with greater
degree of accuracy and its applications can be found in various fields such as engineering, economics,
control theory, finance and in epidemiology [11–17]. The increasing interest of using FDEs in
modeling of real world complex problems is due to its various properties which are not found in IDEs.
In order to overcome the aforesaid limitations of integer-order derivative, different FO operators have
been introduced in existing literature [18–20]. A number of epidemic models using FO derivative
with singular and non-singular Kernel have been proposed in the literature. Most of these models are
based on either bilinear or non-linear incidence rate. Such as Saeedian et al. [21] proposed a simple
SIR epidemic model with bilinear incidence function and explored the importance of memory effects
and previous history on the disease dynamics. Further, they concluded that the precise information
about the past events plays a key role in the disease eradication. Mouaouine et al. [22] developed a
non-integer order SIR epidemic model incorporating non-linear incidence rate function.

Motivated by the previous literature in the present paper, we develop a fractional SEIR epidemic
model with generalized incidence rate function of the form f (I)S . Further, we provide a detail
stability analysis of both disease free and endemic equilibriums of the model and numerical
simulations for various values of fractional order α. The remaining sections of the manuscript are
organized as: The basic definitions and relevant results are provided in section 2. Model description
and its basic properties are presented in section 3. The stability results of the model are discussed in
section 4. The numerical simulations and concluding remarks are given in sections 5 and 6
respectively.

2. Preliminaries

First we recall the basic definitions and some relevant results regarding the Caputo fractional
derivative [18, 23].

Definition 2.1. For a given function h ∈ Cn and t, ϑ ∈ R, then the FO derivative having order ϑ in
Caputo sense is given by
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CDϑ
t (h(t)) =

1
Γ(n − ϑ)

∫ t

0

hn(χ)
(t − χ)ϑ+1−n dχ,

where n − 1 < ϑ < n ∈ N.

Definition 2.2. For a function h : R+ → R, the fractional integral having order ϑ is given by

Iϑt (h(t)) =
1

Γ(ϑ)

∫ t

0
h(χ)(t − χ)ϑ−1dχ.

Definition 2.3. [24] For a given dynamical system with Caputo fractional operator given by
CDϑ

t x(t) = f (t, x(t)), ϑ ∈ (0, 1), (2.1)

the constant x∗ is an equilibrium point if and only if f (t, x∗) = 0.

In order to implement Lyapunov stability method for a system involving Caputo derivative, we
re-call the relevant result from [24, 25].

Theorem 2.4. For an equilibrium point given by x∗ for the system in Caputo sense (2.1) and Ω ∈ Rn

be the domain such that x∗ ∈ Ω and let G : [0,∞) × Ω → R, be a continuously differentiable function
and if

V1(x) ≤ G(t, x(t)) ≤ V2(x), (2.2)

and
CDϑ

t G(t, x(t)) ≤ −V3(x), (2.3)

∀ ϑ ∈ (0, 1) and x ∈ Ω. Where V1(x), V2(x) and V3(x) are continuously positive definite functions over
Ω, then the point x of (2.1) is stable uniformly asymptotically.

3. Mathematical formulation of the model

To construct the propose model we divide the total population into four subclasses i.e., suspectable
S (t), exposed E(t), infected I(t) and those who recovered are denoted by R(t). The suspectable
population is recruited at the rate Λ. The natural death rate in all classes is denoted by d. The function
S f (I) denotes the generalized incidence rate function describing the rate at which the suspectable
become infectious and join the exposed class. The exposed class become infected and enter to
infected class at the rate τ. The parameter µ2 is the recovery rate of infected class whereas δ is the
disease related death rate of infected class. The waning of immunity of the recovered class is denoted
by the parameter θ and join the suspectable class again. The dynamics in each class is governed by a
differential equation. Hence, the proposed fractional SEIR with generalized incidence rate is given by
the below nonlinear system of FDEs.

CDα
t S (t) = Λ − S f (I) + µ1I + θR,

CDα
t E(t) = S f (I) − (d + τ)E,

CDα
t I(t) = τE − (d + µ1 + µ2 + δ)I,

CDα
t R(t) = µ2I − (d + θ)R.

(3.1)
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In (3.1), CDα
t denotes the Caputo derivative having order α ∈ (0, 1] in order to describe the memory

effects in the proposed epidemic model.
To make our study more effective we have assumed that f (I) is to be non-negative and

continuously differentiable in the interior of R+ and further, the same hypotheses is taken in account
as mentioned in [26] i.e., f (I) is a real locally Lipschitz function on the interval [0,∞) such that
i. f (0) = 0 and f (I) > 0 for I > 0;
ii. f (I)/I is continuous and monotonously non-increasing for I > 0 and limI→0+

f (I)
I exists, denoted by

β with β > 0.

It is obvious from condition (ii)

f (I) ≤ βI f or I ∈ R+.

Then,
∫ 1

0+
1/ f (u)du = 1 and thus the assumption (ii) in [26] is redundant. The incidence rate f (I) is

dependent on the concentration of infection. Furthermore, it most famous generalized forms satisfying
the above hypothesis are given in the Table 1.

Table 1. Some famous incidence functions f (I), for β, ai ≥ 0, i = 0, · · · , 3.

Incidence functions f (I) Source

Bi-linear βI [29]

Saturated βI
1+a1I [1, 2, 30]

Beddington-Deaneries βI
1+a1S +a2I [31, 32]

Specific nonlinear βI
1+a1S +a2I+a3S I [33]

3.1. Existence and positivity of the solution

To present the non-negativity of the system solution, let

R4
+ = {y ∈ R4 | y ≥ 0} and y(t) =

(
S (t), E(t), I(t),R(t)

)T
.

To proceeds further, we recall the generalized mean values theorem [27].

Lemma 3.1. Let suppose that h(y) ∈ C[a1, a2] and CDα
t h(y) ∈ (a1, a2], then

h(t) = h(a1) +
1

Γ(α)
(CDα

t h)(χ)(t − a1)α,

where a1 ≤ χ ≤ t, ∀ t ∈ (a1, a2].
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Corollary 3.2. Suppose that h(y) ∈ C[a1, a2] and CDα
t h(y) ∈ (a1, a2], where α ∈ (0, 1]. Then if

(i) CDα
t h(y) ≥ 0,∀ y ∈ (a1, a2), then h(y) is non − decreasing.

(ii) CDα
t h(y) ≤ 0,∀ y ∈ (a1, a2), then h(y) is non − increasing.

Theorem 3.3. A unique solution y(t) of (3.1) exists with a view to remain in R4
+. Furthermore, the

solution is positive.

Proof. The exitance of the Caputo fractional SEIR model can be shown with the help of theorem 3.1
from [28], while the uniqueness of the solution can be easily obtained by making use of the remark 3.2
in [28] for all positive values of t. In order to explore the solution positivity, it is necessary to show
that on each hyperplane bounding the non-negative orthant, the vector field points to R4

+. Utilizing the
aforesaid conditions on incidence function f (I), we deduced form the system (3.1)

CDα
t S |S =0= Λ + µ1I + θR ≥ 0, CDα

t E |E=0= S f (I) ≥ 0,

CDα
t E |I=0= τE ≥ 0, CDα

t R |R=0= µ2I ≥ 0.

Hence, using the above corollary, we got the target that is, the solution will stay in R4
+ and hence, the

biologically feasible region is constructed as:

Φ =
{
(S , E, I,R) ∈ R4

+ : S , E, I,R ≥ 0
}
.

�

Next we explore the equilibria and basic threshold quantity R0 of the model in the following
subsection.

3.2. Equilibria and basic reproduction number

To evaluate the equilibria of the proposed model (3.1) we need to solve the following linearized
system:

CDα
t S = CDα

t E = CDα
t I = CDα

t R = 0.

Thus, we have

Theorem 3.4. The fractional SEIR model (3.1) have at the most two equilibria which are:

The disease free equilibrium (DEF) given by

E0 =
(
S 0, 0, 0, 0

)
=

(Λ

d
, 0, 0, 0

)
,
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The endemic equilibrium (EE) denoted by E1 =
(
S ∗, E∗, I∗,R∗

)
,

where,

S ∗ =
(d + τ)(d + µ1 + µ2 + δ)I∗

τ f (I∗)
, E∗ =

(d + µ1 + µ2 + δ)I∗

τ
, R∗ =

µ2I∗

d + θ
. (3.2)

where I∗ is a positive zero of the function H defined below

H(I) =
d(d + τ)(d + µ1 + µ2 + δ)

τ

I
f (I)

+
( (d + τ)(d + µ1 + µ2 + δ)

τ
+

dµ2

(d + θ)

)
I − Λ. (3.3)

Further,

lim
I→0+

H(I) =
d(d + τ)(d + µ1 + µ2 + δ)

βτ
− Λ, and H(

Λ

d
) > 0. (3.4)

Hence, H has a positive zero (and only one in this case) if and only if d(d+τ)(d+µ1+µ2+δ)
βτ

− Λ < 0 or
equivalently,

Λβτ

d(d + τ)(d + µ1 + µ2 + δ)
> 1. (3.5)

The expression for the most biologically important threshold parameter known as the basic
reproduction number R0 obtained by the next generation approach which is given as below:

R0 =
Λτ

d(d + τ)(d + µ1 + µ2 + δ)
∂ f (I0)
∂I

. (3.6)

Where, ∂ f (I0)
∂I is the partial derivative of incidence function f at DFE. Clearly, the EE E1, exist if R0 > 1.

4. Stability of DEF

The Jacobian matrix JE0 of the fractional model SEIR (3.1), evaluated around the DEF, E0 is as
follow:

JE0 =


−d 0 −S 0 ∂ f (I0)

∂I + µ1 θ

0 −(d + τ) S 0 ∂ f (I0)
∂I 0

0 τ −(d + µ1 + µ2 + δ) 0
0 0 µ2 −(d + θ)

 . (4.1)

Theorem 4.1. For any two positive integers r1 and r2 with gcd(r1, r2) = 1. Let α = ( r1
r2

) and define
M = r2, then the model DEF denoted by E0 is stable locally asymptotically provided that |arg(λ)| > π

2M ,
where λ denotes the possible roots of the characteristic equation (4.2) of the matrix JE0 .

det(diag[λr1λr1λr1λr1] − JE0) = 0. (4.2)

Proof. By expansion of (4.2), we get below equation in term of λ.

(λr1 + d)(λr1 + d + θ)(λ2r1 + g1λ
r1 + g2) = 0, (4.3)

AIMS Mathematics Volume 5, Issue 4, 2843–2857.



2849

where the coefficients are given below:

g1 = 2d + δ + µ1 + µ2 + τ,

g2 = (d + τ)(d + µ1 + µ2 + δ)(1 − R0).

The arguments of the roots of λp1 + d1 = 0 are as follow:

arg(λk) =
π

r1
+ k

2π
r1

>
π

M
>

π

2M
, where k = 0, 1 · · · , (r1 − 1). (4.4)

In similar pattern, it can be shown that argument of the roots of λp1 + d2 = 0 are also greater than π
2M .

Further, if R0 < 1, then the desired condition (|arg(λ)| > π
2M ) is satisfied for all roots of polynomial

(4.3). For R0 > 1, then with the help of Descartes rule of signs, there exits exactly one root of
characteristic equation with |arg(λ)| < π

2M . Thus the DEF is stable locally asymptotically if R0 < 1 and
unstable otherwise. �

Theorem 4.2. The DEF, E0, of the fractional SEIR model (3.1) is globally asymptotically stable (GAS)
within the region Φ if R0 <1.

Proof. To present the proof, we consider the following appropriate Lyapunov function:

L(t) = A1E(t) +A2I(t),

where A j, for j= 1,2, which are positive constant to be decide later. Evaluating the time Caputo
fractional derivative of L(t) we obtain

CDα
t L(t) = A1

CDα
t E +A2

CDα
t I.

Utilizing (3.1), we obtain

CDα
t L(t) = A1

[
S f (I) − (d + τ)E

]
+A2

[
τE − (d + µ1 + µ2 + δ)I

]
≤ A1

[
βIS 0 − (d + τ)E

]
+A2

[
τE − (d + µ1 + µ2 + δ)I

]
, f (I) ≤ βI

=
[
A1βS 0 −A2(d + µ1 + µ2 + δ)

]
I +

[
A2τ −A1(d + τ)

]
E

= A2(d + µ1 + µ2 + δ)I
[ A1βS 0

A2(d + µ1 + µ2 + δ)
− 1

]
+

[
A2τ −A1(d + τ)

]
E.

Let the constants beA1 = τ andA2 = (d + τ), then simplifying, we have,

CDα
t L(t) ≤ I(d + τ)(d + µ1 + µ2 + δ)

(
R0 − 1

)
.

It is clear that when R0 < 1 then CDα
t L(t) is −ve, therefore, we conclude that the disease free case E0

is GAS in the region Φ. �

Next, we present the global stability of the fractional order S EIR model (3.1) at the endemic case.
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4.1. Global stability of endemic equilibrium

Theorem 4.3. If R0 > 1, then the EE, E1 of the system (3.1) is GAS.

Proof. Before to start the proof, at the steady state E1 of the model (3.1) we derive the following
relations

Λ = dS ∗ + S ∗ f (I∗) − µ1I∗ − θR∗, (d + τ) =
S ∗ f (I∗)

E∗
, (d + µ1 + µ2 + δ) =

τE∗

I∗
, (d + θ) =

µ2I∗

R∗
.

Now, we define the following Lyapunov function

V(t) =
(
S − S ∗ − S ∗ ln

S
S ∗

)
+

(
E − E∗ − E∗ ln

E
E∗

)
+

(d + τ)
τ

(
I − I∗ − I∗ ln

I
I∗

)
+
(
R − R∗ − R∗ ln

R
R∗

)
.

The differentiation ofV(t) along with the solution of (3.1) is

CDα
tV(t) =

(
1 −

S ∗

S

)
CDα

t S (t) +
(
1 −

E∗

E

)
CDα

t E(t) +
(d + τ)
τ

(
1 −

I∗

I

)
CDα

t I(t)

+
(
1 −

R∗

R

)
CDα

t R(t).

By direct calculations, we have that:

CDα
tV(t) =

(
1 −

S ∗

S

)[
Λ − dS − S f (I) + µ1I + θR

]
+

(
1 −

E∗

E

)[
S f (I) − (d + τ)E

]
+

(d + τ)
τ

(
1 −

I∗

I

)[
τE − (d + µ1 + µ2 + δ)I

]
+

(
1 −

R∗

R

)[
µ2I − (d + θ)R

]
.

(
1 −

S ∗

S

)
CDα

t S (t) =
(
1 −

S ∗

S

)[
Λ − dS − S f (I) + µ1I + θR

]
=

(
1 −

S ∗

S

)[
dS ∗ + S ∗ f (I∗) − µ1I∗ − θR∗ − DES − S f (I) + µ1I + θR

]
= dS ∗

(
2 −

S
S ∗
−

S ∗

S

)
+ µ1I∗

( I
I∗
− 1 −

S ∗I
S I∗

+
S ∗

S

)
+ θR∗

( R
R∗
− 1

−
S ∗R
S R∗

+
S ∗

S

)
+ S ∗ f (I∗)

(
1 −

S f (I)
S ∗ f (I∗)

−
S ∗

S
+

f (I)
f (I∗)

)
. (4.5)

(
1 −

E∗

E

)
CDα

t E(t) =
(
1 −

E∗

E

)[
S f (I) − (d + τ)E

]
= (1 −

E∗
E

)
[
S f (I) − S ∗ f (I∗)

E
E∗

]
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= S ∗ f (I∗)
( S f (I)
S ∗ f (I∗)

−
E
E∗
−

E∗S f (I)
ES ∗ f (I∗)

+ 1
)
. (4.6)

(d + τ)
τ

(
1 −

I∗

I

)
CDα

t I(t) =
(d + τ)
τ

(
1 −

I∗

I

)[
τE − (d + µ1 + µ2 + δ)I

]
=

(
1 −

I∗

I

) (d + τ)
τ

[
τE − τE∗

I
I∗

]
= S ∗ f (I∗)

( E
E∗
−

I
I∗
−

EI∗

E∗I
+ 1

)
. (4.7)

(1 −
R∗

R
)CDα

t R(t) =
(
1 −

R∗

R

)
(µ2I − (d + θ)R)

=
(
1 −

R∗

R

)(
µ2I −

µ2I∗

R∗
R
)

= µ2I∗
( I
I∗
−

R
R∗
−

R∗I
RI∗

+ 1
)
. (4.8)

After some arrangement we have

CDα
tV(t) = dS ∗

(
2 −

S
S ∗
−

S ∗

S

)
+ µ1I∗

( I
I∗
− 1 −

S ∗

S

( I
I∗
− 1

))
+

θR∗
( R
R∗
− 1 −

S ∗

S

( R
R∗
− 1

))
+ µ2I∗(1 −

R
R∗
−

I
I∗

(R∗

R
− 1

))
+

S ∗ f (I∗)
(
3 −

S ∗

S
−

I
I∗
−

EI∗

E∗I
−

f (I)
f (I∗)

(E∗S
ES ∗

− 1
))
.

It follows from the property arithmetic mean and we have(
2 −

S
S ∗
−

S ∗

S

)
≤ 0,

and if ( I
I∗
− 1 −

S ∗

S

( I
I∗
− 1

))
≤ 0,( R

R∗
− 1 −

S ∗

S

( R
R∗
− 1

))
≤ 0,

(1 −
R
R∗
−

I
I∗

(R∗

R
− 1

))
≤ 0,(

3 −
S ∗

S
−

I
I∗
−

EI∗

E∗I
−

f (I)
g(I∗)

(E∗S
ES ∗

− 1
))
≤ 0,

then, by Lyapunov stability theorem, it ensures that the model is GAS at E1 when R0 > 1. �
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5. Numerical results

To obtain the numerical solution of the fractional SEIR model (3.1), we take the general incidence
function particularly as bilinear f (I) = βI and saturated i.e., f (I) =

βI
1+α1I . The numerical values of the

parameters are Λ = 0.8 β = 0.00004, α1 = 0.1, d = 0.001, µ1 = 0.02, θ = 0.02, τ = 0.02, µ2 = 0.02,
and δ = 0.004. For the numerical solution of fractional order model (3.1), we use the predictor corrector
method. The time level considered in the numerical simulations of the model is 400 days. We present
the obtained results in the form of graphics as well as Tables. For the Tables 2 and 3, we use the step size
h = 0.1 while for the graphical results we considered h = 0.05. The graphical results of bilinear case
are depicted in 1 and 2. We considered β = 0.004 on which the reproduction number R0 = 67.7249 >
1 which shows that the population is highly endemic and present the graphical results in Figure 1.
Further, we obtain Figure 2, in which we considered β = 0.00004 on which R0 = 0.67721 < 1.
In Figure 1 and 2 we used the order of the fractional parameter α = 1, 0.95, 0.9, 0.85. In Figure 1,
the subgraphs show, the population of susceptible, exposed, infected and recovered individuals. By
decreasing the value of α, the population of exposed, infected and recovered individuals decreases
efficiently while the population of susceptible increases. For such a high endemic case the population
of infected compartments and their decrease at fractional order parameter is very important. To make
such model with the realistic data could be useful for the data fitting. The sub-graphs in Figure 2 shows
that decreasing the fractional order parameter α = 1, 0.95, 0.9, 0.85, we can see that the population of
infected compartments are increases while the population of susceptible and recovered individuals
decreases. The graphical interpretations of the model (3.1) with nonlinear saturated incidence rate
are presented in Figures 3 and 4 for R0 > 1 and R0 < 1 respectively. Furthermore, for the saturated
incidence rate we considered the fractional order parameter α = 1, 0.95, 0.9, 0.85 and give the Tables 2
and 3, where each variable for the step-size h = 0.1 their values are presented.

Table 2. Tabulated values of I and R for saturated case, when α = 1, 0.95, 0.90, 0.85, β =

0.004.

t S , α = 1 S , α = 0.95 S , α = 0.90 S , α = 0.85 E, α = 1 E, α = 0.95 E, α = 0.90 E, α = 0.850

0.0 100.0000 100.0000 100.0000 100.0000 60.0000 60.0000 60.0000 60.0000
0.1 99.8898 99.8738 99.8557 99.8353 60.0742 60.0850 60.0972 60.1110
0.2 99.7794 99.7558 99.7303 99.7025 60.1487 60.1646 60.1819 60.2007
0.3 99.6686 99.6406 99.6108 99.5793 60.2236 60.2426 60.2628 60.2842
0.4 99.5575 99.5269 99.4950 99.4619 60.2989 60.3197 60.3414 60.3640
0.5 99.4461 99.4144 99.3818 99.3485 60.3745 60.3961 60.4184 60.4411
0.6 99.3344 99.3026 99.2705 99.2382 60.4504 60.4721 60.4942 60.5164
0.7 99.2225 99.1916 99.1608 99.1303 60.5266 60.5478 60.5690 60.5900
0.8 99.1103 99.0810 99.0524 99.0245 60.6031 60.6233 60.6431 60.6624
0.9 98.9978 98.9709 98.9451 98.9204 60.6799 60.6986 60.7166 60.7338
1.0 98.8851 98.8612 98.8387 98.8178 60.7570 60.7737 60.7895 60.8042
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Table 3. Tabulated values of I and R for saturated case, when α = 1, 0.95, 0.90, 0.85.

t I, α = 1 I, α = 0.95 I, α = 0.90 I, α = 0.85 R, α = 1 R, α = 0.95 R, α = 0.90 R, α = 0.850

0.0 10.0000 10.0000 10.0000 10.0000 0 0 0 0
0.1 10.0749 10.0858 10.0980 10.1118 0.0201 0.0230 0.0263 0.0300
0.2 10.1496 10.1654 10.1826 10.2012 0.0402 0.0445 0.0492 0.0543
0.3 10.2242 10.2428 10.2626 10.2835 0.0605 0.0656 0.0711 0.0769
0.4 10.2985 10.3187 10.3397 10.3615 0.0809 0.0865 0.0924 0.0985
0.5 10.3727 10.3935 10.4147 10.4363 0.1013 0.1072 0.1133 0.1195
0.6 10.4466 10.4673 10.4880 10.5088 0.1219 0.1278 0.1338 0.1399
0.7 10.5204 10.5403 10.5599 10.5792 0.1426 0.1484 0.1542 0.1599
0.8 10.5941 10.6126 10.6306 10.6480 0.1634 0.1689 0.1743 0.1796
0.9 10.6675 10.6842 10.7002 10.7153 0.1843 0.1894 0.1944 0.1991
1.0 10.7408 10.7553 10.7689 10.7813 0.2053 0.2099 0.2142 0.2183
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Figure 1. Graphical results of the model using bilinear incidence, with β = 0.004, R0 > 1,
and α = 1, 0.95, 0.9, 0.85.
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Figure 2. Graphical results of the model using bilinear incidence, with β = 0.00004, R0 < 1
and α = 1, 0.95, 0.9, 0.85.
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Figure 3. Graphical results of the model for f (I) =
βI

1+α1I , with β = 0.004, R0 > 1, and
α = 1, 0.95, 0.9, 0.85.
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Figure 4. Graphical results of the model for f (I) =
βI

1+α1I , with β = 0.00004, R0 < 1, and
α = 1, 0.95, 0.9, 0.85.

6. Conclusion

The present work investigate the dynamics of a fractional SEIR epidemic model with generalized
incidence rate. We presented the fractional SEIR model in Caputo sense and explored its basic
mathematical results. The stability results of the disease free and endemic equilibriums are
investigated. The fractional model at the disease free case is locally as well as globally asymptotically
stable when R0 < 1. Further, we presented the global stability of the fractional order model at the
endemic case when R0 > 1 by using the extended Lyapunov function theory. Then, the numerical
results via Tables and graphically are obtained for the fractional order model when the basic
reproduction number less or greater than unity. To obtained the model simulations we particularly
considered the most widely used bilinear and situated incidence rates. The graphical result for the
high endemic value of the fractional order parameter α, suggest that the at high endemic case the
infected compartments are decreases well by decreasing the fractional order parameter α. From the
graphical results we concluded that the saturated incidence rate is more appropriate and biologically
feasible than the bilinear case. Further, we concluded that the fractional order model is the
generalization of integer order model and it gives useful information at each instant of time of
interest. In future we will study the dynamics of the present model using Atangana-Baleanu-Caputo
and Caputo-Fabrizio fractional derivatives.
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