In this paper, we aim to investigate the class of jointly hyponormal operators related to a positive operator $ A $ on a complex Hilbert space $ \mathcal{X} $, which is called jointly $ A $-hyponormal. This notion was first introduced by Guesba et al. in [Linear and Multilinear Algebra, 69(15), 2888–2907] for $ m $-tuples of operators that admit adjoint operators with respect to $ A $. Mainly, we prove that if $ \mathbf{B} = (B_1, \cdots, B_m) $ is a jointly $ A $-hyponormal $ m $-tuple of commuting operators, then $ \mathbf{B} $ is jointly $ A $-normaloid. This result allows us to establish, for a particular case when $ A $ is the identity operator, a sharp bound for the distance between two jointly hyponormal $ m $-tuples of operators, expressed in terms of the difference between their Taylor spectra. We also aim to introduce and investigate the class of spherically $ A $-$ p $-hyponormal operators with $ 0 < p < 1 $. Additionally, we study the tensor product of specific classes of multivariable operators in semi-Hilbert spaces.
Citation: Salma Aljawi, Kais Feki, Hranislav Stanković. Jointly $ A $-hyponormal $ m $-tuple of commuting operators and related results[J]. AIMS Mathematics, 2024, 9(11): 30348-30363. doi: 10.3934/math.20241464
In this paper, we aim to investigate the class of jointly hyponormal operators related to a positive operator $ A $ on a complex Hilbert space $ \mathcal{X} $, which is called jointly $ A $-hyponormal. This notion was first introduced by Guesba et al. in [Linear and Multilinear Algebra, 69(15), 2888–2907] for $ m $-tuples of operators that admit adjoint operators with respect to $ A $. Mainly, we prove that if $ \mathbf{B} = (B_1, \cdots, B_m) $ is a jointly $ A $-hyponormal $ m $-tuple of commuting operators, then $ \mathbf{B} $ is jointly $ A $-normaloid. This result allows us to establish, for a particular case when $ A $ is the identity operator, a sharp bound for the distance between two jointly hyponormal $ m $-tuples of operators, expressed in terms of the difference between their Taylor spectra. We also aim to introduce and investigate the class of spherically $ A $-$ p $-hyponormal operators with $ 0 < p < 1 $. Additionally, we study the tensor product of specific classes of multivariable operators in semi-Hilbert spaces.
[1] | N. Altwaijry, K. Feki, N. Minculete, A new seminorm for $d$-tuples of $A$-bounded operators and their applications, Mathematics, 11 (2023), 685. https://doi.org/10.3390/math11030685 doi: 10.3390/math11030685 |
[2] | A. Athavale, On joint hyponormality of operators, Proc. Am. Math. Soc., 103 (1988), 417–423. https://doi.org/10.1090/S0002-9939-1988-0943059-X doi: 10.1090/S0002-9939-1988-0943059-X |
[3] | C. Benhida, R. E. Curto, S. H. Lee, J. Yoon, The spectral picture and joint spectral radius of the generalized spherical Aluthge transform, Adv. Math., 408 (2022). https://doi.org/10.1016/j.aim.2022.108602 |
[4] | S. Chavan, K. Feki, Spherical symmetry of some unitary invariants for commuting tuples, Oper. Matrices, 15 (2021), 1131–1139. https://doi.org/10.7153/oam-2021-15-70 doi: 10.7153/oam-2021-15-70 |
[5] | S. Chavan, V. M. Sholapurkar, Rigidity theorems for spherical hyperexpansions, Complex Anal. Oper. Th., 7 (2013), 1545–1568. https://doi.org/10.1007/s11785-012-0270-6 doi: 10.1007/s11785-012-0270-6 |
[6] | P. Grover, S. Singla, A distance formula for tuples of operators, Linear Algebra Appl., 650 (2022), 267–285. https://doi.org/10.1016/j.laa.2022.06.002 doi: 10.1016/j.laa.2022.06.002 |
[7] | T. Le, Decomposing algebraic $m$-isometric tuples, J. Funct. Anal., 278 (2020). https://doi.org/10.1016/j.jfa.2019.108424 |
[8] | H. Baklouti, S. Namouri, Closed operators in semi-Hilbertian spaces, Linear Multilinear A., 70 (2021), 5847–5858. https://doi.org/10.1080/03081087.2021.1932709 doi: 10.1080/03081087.2021.1932709 |
[9] | H. Baklouti, S. Namouri, Spectral analysis of bounded operators on semi-Hilbertian spaces, Banach J. Math. Anal., 16 (2022), 12. https://doi.org/10.1007/s43037-021-00167-1 doi: 10.1007/s43037-021-00167-1 |
[10] | P. Bhunia, S. S. Dragomir, M. S. Moslehian, K. Paul, Lectures on numerical radius inequalities, Infosys Science Foundation Series in Mathematical Sciences, Springer, 2022. |
[11] | H. Baklouti, K. Feki, O. A. M. S. Ahmed, Joint numerical ranges of operators in semi-Hilbertian spaces, Linear Algebra Appl., 555 (2018), 266–284. https://doi.org/10.1016/j.laa.2018.06.021 doi: 10.1016/j.laa.2018.06.021 |
[12] | H. Baklouti, K. Feki, O. A. M. S. Ahmed, Joint normality of operators in semi-Hilbertian spaces, Linear Multilinear A., 68 (2020), 845–866. https://doi.org/10.1080/03081087.2019.1593925 doi: 10.1080/03081087.2019.1593925 |
[13] | M. Guesba, E. M. O. Beiba, O. A. M. S. Ahmed, Joint $A$-hyponormality of operators in semi-Hilbert spaces, Linear Multilinear A., 69 (2021), 2888–2907. https://doi.org/10.1080/03081087.2019.1698509 doi: 10.1080/03081087.2019.1698509 |
[14] | S. Ghribi, N. Jeridi, R. Rabaoui, On $(A, m)$-isometric commuting tuples of operators on a Hilbert space, Linear Multilinear A., 70 (2022), 2097–2116. https://doi.org/10.1080/03081087.2020.1786489 doi: 10.1080/03081087.2020.1786489 |
[15] | O. A. M. S. Ahmed, A. H. Ahmed, A. Sarosh, $(\alpha, \beta)$-Normal operators in several variables, Math. Probl. Eng., 2022 (2022). https://doi.org/10.1155/2022/3020449 |
[16] | N. Altwaijry, S. S. Dragomir, K. Feki, On $A$-normaloid $d$-tuples of operators and related questions, Quaest. Math., 47 (2024), 1305–1326. https://doi.org/10.2989/16073606.2024.2353387 doi: 10.2989/16073606.2024.2353387 |
[17] | M. L. Arias, G. Corach, M. C. Gonzalez, Partial isometries in semi-Hilbertian spaces, Linear Algebra Appl., 428 (2008), 1460–1475. https://doi.org/10.1016/j.laa.2007.09.031 doi: 10.1016/j.laa.2007.09.031 |
[18] | R. G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert space, P. Am. Math. Soc., 17 (1966), 413–416. https://doi.org/10.2307/2035178 doi: 10.2307/2035178 |
[19] | M. L. Arias, G. Corach, M. C. Gonzalez, Metric properties of projections in semi-Hilbertian spaces, Integr. Equat. Oper. Th., 62 (2008), 11–28. https://doi.org/10.1007/s00020-008-1613-6 doi: 10.1007/s00020-008-1613-6 |
[20] | P. R. Halmos, A Hilbert space problem book, 2 Eds., Springer Verlag, New York, 1982. |
[21] | K. Feki, A note on the $A$-numerical radius of operators in semi-Hilbert spaces, Arch. Math., 115 (2020), 535–544. https://doi.org/10.1007/s00013-020-01482-z doi: 10.1007/s00013-020-01482-z |
[22] | R. E. Curto, Applications of several complex variables to multiparameter spectral theory, In Surveys of some recent results in operator theory, Vol.II, volume 192 of Pitman Res. Notes Math. Ser., Longman Sci. Tech., Harlow, 1988, 25–90. |
[23] | M. Chō, M. Takaguchi, Boundary points of joint numerical ranges, Pac. J. Math., 95 (1981), 27–35. https://doi.org/10.2140/pjm.1981.95.27 doi: 10.2140/pjm.1981.95.27 |
[24] | V. Müller, A. Soltysiak, Spectral radius formula for commuting Hilbert space operators, Stud. Math., 103 (1992), 329–333. https://doi.org/10.4064/sm-103-3-329-333 doi: 10.4064/sm-103-3-329-333 |
[25] | J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal., 6 (1970), 172–191. https://doi.org/10.1016/0022-1236(70)90055-8 doi: 10.1016/0022-1236(70)90055-8 |
[26] | S. Chavan, V. M. Sholapurkar, Completely hyperexpansive tuples of finite order, J. Math. Anal. Appl., 447 (2017), 1009–1026. https://doi.org/10.1016/j.jmaa.2016.10.065 doi: 10.1016/j.jmaa.2016.10.065 |
[27] | G. K. Pedersen, Some operator monotone functions, P. Am. Math. Soc., 36 (1972), 309–310. https://doi.org/10.2307/2039083 doi: 10.2307/2039083 |
[28] | X. Chen, Y. Wang, S. N. Zheng, A combinatorial proof of the log-convexity of sequences in Riordan arrays, J. Algebr. Comb., 54 (2021), 39–48. https://doi.org/10.1007/s10801-020-00966-z doi: 10.1007/s10801-020-00966-z |
[29] | K. Feki, Spectral radius of semi-Hilbertian space operators and its applications, Ann. Funct. Anal., 11 (2020), 929–946. https://doi.org/10.1007/s43034-020-00064-y doi: 10.1007/s43034-020-00064-y |
[30] | R. Bhatia, L. Elsner, P. Šemrl, Distance between commuting tuples of normal operators, Arch. Math., 71 (1998), 229–232. https://doi.org/10.1007/s000130050257 doi: 10.1007/s000130050257 |
[31] | K. Feki, A note on doubly commuting tuples of hyponormal operators on Hilbert spaces, Results Math., 75 (2020), 93. https://doi.org/10.1007/s00025-020-01220-5 doi: 10.1007/s00025-020-01220-5 |
[32] | T. Ando, Bounds for the anti-distance, J. Convex Anal., 2 (1996), 1–3. |
[33] | N. Dunford, J. T. Schwartz, Linear operators, part I. General theory, Wiley Interscience, New York, 1966. |
[34] | R. A. Ryan, Introduction to tensor products of Banach spaces, Springer-Verlag, 2002. https://doi.org/10.1007/978-1-4471-3903-4 |
[35] | C. S. Kubrusly, P. C. M. Vieira, Convergence and decomposition for tensor products of Hilbert space operators, Oper. Matrices, 2 (2008), 407–416. https://doi.org/10.7153/oam-02-24 doi: 10.7153/oam-02-24 |