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Abstract: In this paper, we aim to investigate the class of jointly hyponormal operators related to
a positive operator A on a complex Hilbert space X, which is called jointly A-hyponormal. This
notion was first introduced by Guesba et al. in [Linear and Multilinear Algebra, 69(15), 2888–2907]
for m-tuples of operators that admit adjoint operators with respect to A. Mainly, we prove that if
B = (B1, · · · , Bm) is a jointly A-hyponormal m-tuple of commuting operators, then B is jointly A-
normaloid. This result allows us to establish, for a particular case when A is the identity operator, a
sharp bound for the distance between two jointly hyponormal m-tuples of operators, expressed in terms
of the difference between their Taylor spectra. We also aim to introduce and investigate the class of
spherically A-p-hyponormal operators with 0 < p < 1. Additionally, we study the tensor product of
specific classes of multivariable operators in semi-Hilbert spaces.
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1. Introduction and preliminary concepts

In recent years, there has been significant progress in studying multivariable operators on Hilbert
spaces, building on ideas from single-variable operator theory. These developments are discussed
in [1–7] and other related works.

One interesting direction in this field is studying multivariable operators on Hilbert spaces with
a semi-inner product defined by a positive semidefinite operator A. These spaces, called semi-Hilbert
spaces, have attracted a lot of attention (see, for instance, [8–10] and the cited references). This research
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was started by the first author and others in [11] in 2018. Initially, the focus was on the joint A-
numerical range and joint A-maximal numerical range. Later studies introduced and explored several
new classes of operators in this setting, such as jointly A-normal, jointly A-hyponormal, jointly (α; β)-
A-normal operators, and (A,m)-isometric tuples, among others. For more information on these classes,
see [1, 11–15] and the references therein.

In this paper, we contribute to this field by studying the class of jointly A-hyponormal commuting
operator tuples. We also introduce a new class of multivariable operators called spherically A-p-
hyponormal operators with 0 < p < 1. These operators are defined and studied within the algebra
of bounded linear operators that have A-adjoints.

Before delving into our specific contributions, we will explore semi-Hilbert spaces and establish
essential notation and definitions pertinent to multivariable operators. The subsequent subsection will
provide a comprehensive overview of semi-Hilbert spaces, covering their definitions, notation, and
fundamental concepts. Throughout this paper, we work within the framework where (X, 〈·, ·〉) denotes
a Hilbert space over the field of complex numbers C, with 〈·, ·〉 representing the inner product that
defines the norm ‖ · ‖. The set of all bounded linear operators on X, including the identity operator
I, is denoted by L (X). We use N and N∗ to denote the sets of non-negative and positive integers,
respectively. An “operator” in this context refers to an element of L (X). For any operator B, R(B)
denotes its range, N(B) its null space, and B∗ its adjoint.

An operator B ∈ L (X) is termed positive (B ≥ 0) if 〈By, y〉 ≥ 0 for all y ∈ X. We denote the
set of all positive operators on X by L (X)+. For B,C ∈ L (X), the notation B ≥ C means that
B −C ∈ L (X)+. The square root of a positive operator B ∈ L (X)+ is denoted by

√
B.

Hereafter, let A be a non-zero positive operator defining the semi-inner product 〈·, ·〉A : X×X −→ C
by 〈y1, y2〉A := 〈Ay1, y2〉 for all (y1, y2) ∈ X × X. This construction characterizes (X, ‖ · ‖A) as a semi-
Hilbert space, where ‖ · ‖A denotes the semi-norm defined as ‖y‖A =

√
〈y, y〉A for all y ∈ X. The unit

A-sphere in X, denoted SA
X

, consists of elements with ‖y‖A = 1. When A = I, SX represents the unit
sphere of X. It is important to note that (X, ‖ · ‖A) is generally neither a normed space nor a complete
space. However, one can show that (X, ‖ · ‖A) becomes a Hilbert space if and only if A is injective and
R(A) = R(A), i.e., A is invertible. Here, R(A) denotes the closure of R(A) in the norm topology of X.
For further details, refer to [16].

Consider an operator B ∈ L (X). An operator C ∈ L (X) is defined as an A-adjoint of B if
〈By1, y2〉A = 〈y1,Cy2〉A holds for all y1, y2 ∈ X, which is equivalent to AC = B∗A (see [17]). It
should be emphasized that not all operators B ∈ L (X) possess an A-adjoint operator, and even in
cases where such an adjoint exists, uniqueness cannot be guaranteed (see [17]). These nuances are
particularly relevant in the study of operators on semi-Hilbert spaces.

In this context, the Douglas range inclusion theorem [18] is particularly significant. Briefly, the
theorem states that for B,C ∈ L (X), the equation BZ = C has a solution in L (X) if and only if
R(C) ⊆ R(B), or equivalently, if there exists some α > 0 such that ‖C∗x‖ ≤ α‖B∗x‖ for every x ∈ X.
Moreover, if either of these conditions holds, there exists a unique solution D ∈ L (X) to the equation
BZ = C such that R(D) ⊆ R(B∗). This unique solution D is referred to as the “reduced solution” of the
equation BZ = C.

Consider LA(X) as the set of operators possessing A-adjoints. According to the Douglas theorem,
an operator B ∈ L (X) belongs to LA(X) if and only if R(B∗A) ⊆ R(A). Moreover, the “reduced
solution” of the equation AX = B∗A will be denoted by B?A . If A† represents the Moore-Penrose
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pseudo-inverse of A, then B?A = A†B∗A (see [19]). It is crucial to distinguish between B?A and B∗;
although they share similarities, (B?A)?A = PABPA instead of (B?A)?A = B, where PA denotes the
orthogonal projection onto R(A). However, equivalence holds when R(B) ⊆ R(A): (B?A)?A = B
(see [17]). Notice that for any B,C ∈ LA(X) and µ, ν ∈ C, the following properties hold: µB + νC ∈
LA(X) and (µB+νC)?A = µB?A+νC?A . Additionally, BC ∈ LA(X) and (BC)?A = C?A B?A . Furthermore,
Bn ∈ LA(X) and

(
Bn)?A =

(
B?A

)n for all n ∈ N∗. Let B ∈ L (X). The operator B is termed A-selfadjoint
if AB = B∗A, indicating that AB is selfadjoint. It is referred to as A-positive if AB ≥ 0, denoted as
B ≥A 0. The notation B ≥A C signifies that B − C ≥A 0. Note that if B ≥A 0, then B ∈ LA(X). For
proofs and further details, see [17, 19].

Let [B,C] := BC−CB for B,C ∈ L (X). An operator B ∈ LA(X) is termed A-normal if [B?A , B] = 0,
and A-hyponormal if [B?A , B] ≥ 0. Let L (X)m denote the direct product of m copies of L (X), where
m ∈ N∗. Consider B = (B1, . . . , Bm) ∈ L (X)m as an m-tuple of operators. When the operators Bk

commute pairwise ([Bk, Bl] = 0 for all k, l ∈ {1, . . . ,m}), we say B is a commuting tuple. Furthermore,
B is termed an A-doubly commuting operator tuple if it is commuting and [B?A

i , B j] = 0 for all 1 ≤ i ,
j ≤ m.

Following [13], an operator tuple B = (B1, . . . , Bm) ∈ LA(X)m is jointly A-hyponormal if the
operator matrix

CA(B) =


[B?A

1 , B1] [B?A
2 , B1] · · · [B?A

m , B1]
[B?A

1 , B2] [B?A
2 , B2] · · · [B?A

m , B2]
...

...
...

...

[B?A
1 , Bm] [B?A

2 , Bm] · · · [B?A
m , Bm]


is A-positive, where A = diag(A, . . . , A) and denotes a diagonal matrix. Consequently, B =

(B1, . . . , Bm) ∈ LA(X)m is a jointly A-hyponormal m-tuple of operators if and only if

m∑
i=1

m∑
j=1

〈[B?A
j , Bi]x j, xi〉A ≥ 0, (1.1)

holds for all x1, x2, . . . , xm ∈ X.
It is important to note that the definition of jointly A-hyponormality does not require the coordinates

to commute. By taking A = I, we recover the definition originally introduced by A. Athavale in [2].
We take this opportunity to provide a more precise clarification regarding the definition presented
in [13]: The authors originally defined joint A-hyponormality stating that CA(B) is A-positive, whereas
it should correctly be CA(B) being A-positive. Furthermore, it is important to note that in [13], the
authors proved in Theorem 2.2 that if B = (B1, . . . , Bm) ∈ LA(X)m is jointly A-hyponormal, then so
is Bn = (Bn1

1 , . . . , B
nm
m ) for all n = (n1, . . . , nm) ∈ Nm. Here, Nm denotes the Cartesian product of N

taken m times. However, this result may not hold true even for m = 1 and A = I. Indeed, it is well-
known that although B being hyponormal implies B2 is hyponormal in some cases, in general, B2 is
not hyponormal (see Problem 209 [20] for further details).

Now, let us focus on recalling some useful concepts, particularly in the context where operators
have A-adjoints. For B ∈ LA(X), the A-seminorm and A-numerical radius of B are defined as follows
(cf. [21]):

‖B‖A := sup
x∈SA

X

‖Bx‖A and ωA(B) := sup
x∈SA

X

|〈Bx, x〉A|. (1.2)
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These quantities have attracted considerable attention in recent literature, with numerous studies
exploring various results and inequalities related to them (refer to, for example, the recent book [10]
and its references).

The notions given in (1.2) have been extended to the multivariable setting. For B = (B1, . . . , Bm) ∈
LA(X)m, which may not necessarily commute, the following two quantities are defined in [11]:

ωA(B) := sup
x∈SA

X

√√ m∑
j=1

|〈B jx, x〉A|2 and ‖B‖A := sup
x∈SA

X

√√ m∑
j=1

‖B jx‖2A.

It is noteworthy that for B = (B1, . . . , Bm) ∈ LA(X)m, it was demonstrated in [12] that

‖B‖A =

√√√∥∥∥∥∥∥∥
m∑

j=1

B?A
j B j

∥∥∥∥∥∥∥
A

. (1.3)

It is clear that ‖ · ‖A and ωA(·) define two seminorms on LA(X)m, referred to as the joint operator A-
seminorm and the joint A-numerical radius of operators, respectively. These seminorms are equivalent,
as demonstrated in [11], where it was shown that for every B ∈ LA(X)m, the following inequalities
hold:

1
2
√

m
‖B‖A ≤ ωA(B) ≤ ‖B‖A.

Let us now consider the concept of the joint spectral radius of semi-Hilbert space operators.
Specifically, if B = (B1, . . . , Bm) ∈ LA(X)m is an m-tuple of commuting operators, the joint A-spectral
radius associated with B was first introduced in [12] as:

rA(B) := inf
j∈N∗

∥∥∥∥∥∥∥∥∥∥∥
∑
|γ|= j,
γ∈Nm

j!
γ!

(
B?A

)γ Bγ

∥∥∥∥∥∥∥∥∥∥∥
1
2 j

A

= lim
j→∞

∥∥∥∥∥∥∥∥∥∥∥
∑
|γ|= j,
γ∈Nm

j!
γ!

(
B?A

)γ Bγ

∥∥∥∥∥∥∥∥∥∥∥
1
2 j

A

. (1.4)

Here, B?A = (B?A
1 , . . . , B?A

m ). For the multi-index γ = (γ1, . . . , γm) ∈ Nm, we used Bγ :=
∏m

k=1 Bγk
k ,

|γ| :=
∑m

j=1 γ j, and γ! :=
∏m

k=1 γk!. Note that the second equality in (1.4) was established in [12].
Following [16], an m-tuple B = (B1, . . . , Bm) ∈ LA(X)m is said to be jointly A-normaloid if

rA(B) = ‖B‖A.

Several characterizations and properties of this class of operators have been stated in [16].
Consider B = (B1, . . . , Bm) ∈ LA(X)m. We define the operator ΘB : LA(X)→ LA(X) by

ΘB(X) :=
m∑

j=1

B?A
j XB j,

with Θ0
B(X) = X and Θn

B(X) = ΘB[Θn−1
B (X)] inductively for all n ≥ 1. According to [12], for a

commuting m-tuple B ∈ LA(X)m, we have

rA(B) = lim
j→∞
‖Θ

j
B(I)‖

1
2 j

A . (1.5)
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When A = I, the notation rI(B) simplifies to r(B), which can be described in terms of the Taylor
spectrum. Specifically,

r(B) = max{‖γ‖2, λ = (γ1, . . . , γm) ∈ σT (B)},

where ‖ · ‖2 represents the Euclidean norm on Cm. For further details, refer to [22–25].
We close this section by summarizing the main objectives of this paper. One primary goal is to prove

that if B = (B1, . . . , Bm) ∈ LA(X)m is a jointly A-hyponormal m-tuple of commuting operators, then B
is jointly A-normaloid. This result generalizes and extends a theorem by Chavan et al. in [26], though
our techniques differ from theirs. Furthermore, this result enables us to establish, in the particular case
where A = I, a sharp bound for the distance between two jointly hyponormal m-tuples of operators,
expressed in terms of the difference between their Taylor spectra. Additionally, we aim to extend the
celebrated Löwner-Heinz inequality, which states that “B ≥ C ≥ 0 ensures Bα ≥ Cα ≥ 0 for all
α ∈ [0, 1]” (cf. [27]), to the setting of semi-Hilbert space operators. As a consequence of this, we
explore a new class of multivariable operators called spherically A-p-hyponormal operators, where
0 < p < 1. Finally, we will investigate the tensor product of specific classes of multivariable operators
in semi-Hilbert spaces.

2. Main results

In this section, we will present our results. To demonstrate our initial finding, we need to introduce
some lemmas. Let us start with the following one.

Lemma 2.1. Let B = (B1, · · · , Bm) ∈ LA(X)m be a jointly A-hyponormal m-tuple of commuting
operators. Then,

Θ2
B(I) ≥A

[
ΘB(I)

]2
.

Proof. Let x ∈ X. Then, using the commutativity of B, we have

〈(Θ2
B(I) −

[
ΘB(I)

]2)x, x〉A =

m∑
i=1

m∑
j=1

〈(B?A
i B?A

j B jBi − B?A
i BiB

?A
j B j)x, x〉A

=

m∑
i=1

m∑
j=1

〈B?A
i [B?A

j , Bi]B jx, x〉A

=

m∑
i=1

m∑
j=1

〈[B?A
j , Bi]B jx, Bix〉A.

Set xi := Bix, i ∈ {1, . . . ,m}. Then, (1.1) implies that

〈(Θ2
B(I) −

[
ΘB(I)

]2)x, x〉A =

m∑
i=1

m∑
j=1

〈[B?A
j , Bi]x j, xi〉A ≥ 0.

Since x ∈ X was arbitrary, we conclude that Θ2
B(I) ≥A

[
ΘB(I)

]2. �

Recall from [28] the following definition.

Definition 2.1. A sequence {ak}k∈N of nonnegative numbers is said to be log-convex if a2
k ≤ ak−1ak+1,

for all k ∈ N∗.
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It is important to note that the log-convex sequences appear naturally in many areas in mathematics,
especially in moment problems, as the following example demonstrates.

Example 2.1. A sequence {ak}k∈N of real numbers is said to be a Stieltjes moment sequence if there
exists a positive Borel measure µ on the closed half-line [0,+∞) such that

ak =

∫ +∞

0
tk dµ(t), k ∈ N.

The measure µ is called a representing measure of {ak}k∈N.

By applying the Cauchy–Schwarz inequality, for all k ∈ N∗, we have that

a2
k =

(∫ +∞

0
tk dµ(t)

)2

=

(∫ +∞

0
t

k−1
2 t

k+1
2 dµ(t)

)2

≤

∫ +∞

0
tk−1 dµ(t) ·

∫ +∞

0
tk+1 dµ(t)

= ak−1ak+1,

and thus, {ak}k∈N is log-convex.

The subsequent lemma is also essential.

Lemma 2.2. Let B = (B1, · · · , Bm) ∈ LA(X)m be a jointly A-hyponormal m-tuple of commuting
operators and let x ∈ X. Then, the sequence {θk}k∈N given by

θk := 〈Θk
B(I)x, x〉A, k ∈ N,

is log-convex.

Proof. Let k ∈ N∗ be arbitrary. By the definition of log-convexity, we need to show that θ2
k ≤ θk−1θk+1.

Using the Cauchy-Schwarz inequality for semi-inner products, and Lemma 2.1,

θ2
k = 〈Θk

B(I)x, x〉2A
= 〈Θk−1

B (ΘB(I))x, x〉2A

=


∑
|γ|=k−1,
γ∈Nm

(k − 1)!
γ!

〈ΘB(I)Bγx,Bγx〉A


2

≤
∑
|γ|=k−1,
γ∈Nm

(k − 1)!
γ!

‖ΘB(I)Bγx‖2A ·
∑
|γ|=k−1,
γ∈Nm

(k − 1)!
γ!

‖Bγx‖2A

=
∑
|γ|=k−1,
γ∈Nm

(k − 1)!
|γ|!

〈
[
ΘB(I)

]2Bγx,Bγx〉A ·
∑
|γ|=k−1,
γ∈Nm

(k − 1)!
γ!

〈(B?A)γBγx, x〉2A
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≤
∑
|γ|=k−1,
γ∈Nm

(k − 1)!
γ!

〈Θ2
B(I)Bγx,Bγx〉A · 〈Θk−1

B (I)x, x〉A

= 〈Θk−1
B (I)x, x〉A ·

∑
|γ|=k−1,
γ∈Nm

(k − 1)!
γ!

〈(B?A)γΘ2
B(I)Bγx, x〉A

= 〈Θk−1
B (I)x, x〉A · 〈Θk−1

B (Θ2
B(I))x, x〉A

= 〈Θk−1
B (I)x, x〉A · 〈Θk+1

B (I)x, x〉A
= θk−1θk+1.

This completes the proof. �

Before we establish the primary result of this section, we also require the following general lemma.

Lemma 2.3. Let B = (B1, · · · , Bm) ∈ LA(X)m. Then∥∥∥Θn
B(I)

∥∥∥
A
≤ ‖ΘB(I)‖nA (2.1)

for all n ∈ N∗.

Proof. We use mathematical induction. Inequality (2.1) clearly holds for n = 1. Assume that it is true
for some n ∈ N∗. Then,∥∥∥Θn+1

B (I)
∥∥∥

A
=

∥∥∥ΘB(Θn
B(I))

∥∥∥
A

=

∥∥∥∥∥∥∥
m∑

k=1

B?A
j [Θn

B(I)]B j

∥∥∥∥∥∥∥
A

=

∥∥∥∥∥∥∥∥∥∥∥∥∥


∑m

j=1 B?A
j [Θn

B(I)]B j 0 · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


∥∥∥∥∥∥∥∥∥∥∥∥∥

A

=

∥∥∥∥∥∥∥∥∥∥∥∥

B?A

1 · · · B?A
m

0 · · · 0
...

. . .
...

0 · · · 0



Θn

B(I)
. . .

Θn
B(I)




B1 0 · · · 0
...

...
. . .

...

Bm 0 · · · 0


∥∥∥∥∥∥∥∥∥∥∥∥

A

≤

∥∥∥∥∥∥∥∥∥

Θn

B(I)
. . .

Θn
B(I)


∥∥∥∥∥∥∥∥∥

A

∥∥∥∥∥∥∥∥∥


B1 0 · · · 0
...

...
. . .

...

Bm 0 · · · 0


∥∥∥∥∥∥∥∥∥

2

A

=
∥∥∥Θn

B(I)
∥∥∥

A

∥∥∥∥∥∥∥∥∥∥∥∥

B?A

1 · · · B?A
m

0 · · · 0
...

. . .
...

0 · · · 0




B1 0 · · · 0
...

...
. . .

...

Bm 0 · · · 0


∥∥∥∥∥∥∥∥∥∥∥∥

A
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=
∥∥∥Θn

B(I)
∥∥∥

A

∥∥∥∥∥∥∥
m∑

j=1

B?A
j B j

∥∥∥∥∥∥∥
A

≤ ‖ΘB(I)‖nA ‖ΘB(I)‖A
= ‖ΘB(I)‖n+1

A ,

as desired. �

We are now prepared to demonstrate our primary result in this paper.

Theorem 2.1. Let B = (B1, · · · , Bm) ∈ LA(X)m be a jointly A-hyponormal m-tuple of commuting
operators. Then, B is jointly A-normaloid.

Proof. It is well-known that rA(B) ≤ ‖B‖A (see [12]). So, it suffices to prove that rA(B) ≥ ‖B‖A.
Let k ∈ N∗ and x ∈ X with ‖x‖A = 1 be arbitrary. Using Lemma 2.2, we have that

〈Θk
B(I)x, x〉2A ≤ 〈Θ

k−1
B (I)x, x〉A · 〈Θk+1

B (I)x, x〉A
≤

∥∥∥Θk−1
B (I)x

∥∥∥
A
·
∥∥∥Θk+1

B (I)x
∥∥∥

A
.

Since Θk
B(I) ≥A 0, it immediately follows that

‖Θk
B(I)‖2A = sup

x∈SA
X

〈Θk
B(I)x, x〉2A

≤ sup
x∈SA

X

∥∥∥Θk−1
B (I)x

∥∥∥
A
· sup

x∈SA
X

∥∥∥Θk+1
B (I)x

∥∥∥
A

= ‖Θk−1
B (I)‖A · ‖Θk+1

B (I)‖A,

i.e.,
‖Θk

B(I)‖2A ≤ ‖Θ
k−1
B (I)‖A · ‖Θk+1

B (I)‖A. (2.2)

Let us now show that
‖ΘB(I)‖nA ≤ ‖Θ

n
B(I)‖A, (2.3)

for all n ∈ N∗. The previous inequality clearly holds for n = 1. Assume that (2.3) holds for some
n ∈ N∗ such that n > 1. Then, using (2.2) and (2.1), we have

‖ΘB(I)‖2n
A =

(
‖ΘB(I)‖nA

)2

≤ ‖Θn
B(I)‖2A

≤ ‖Θn−1
B (I)‖A · ‖Θn+1

B (I)‖A
≤ ‖ΘB(I)‖n−1

A · ‖Θn+1
B (I)‖A.

From here, it immediately follows that

‖ΘB(I)‖n+1
A ≤ ‖Θn+1

B (I)‖A.

By the induction principle, we have that (2.3) holds for all n ∈ N∗. Finally, (1.5), (2.3), and (1.3) imply

rA(B) = lim
n→∞
‖Θn

B(I)‖
1
2n
A
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≥ lim
n→∞

(
‖ΘB(I)‖nA

) 1
2n

= lim
n→∞
‖ΘB(I)‖

1
2
A

=

∥∥∥∥∥∥∥
m∑

k=1

B?A
k Bk

∥∥∥∥∥∥∥
1
2

A

= ‖B‖A .

This proves that rA(B) ≥ ‖B‖A. �

Remark 2.1. It should be mentioned that by setting m = 1 in Theorem 2.1, we recover a well-known
result established by the second author in [29].

By substituting A = I into Theorem 2.1, we can derive the following corollary, which was originally
proven in [26].

Corollary 2.1. Let B = (B1, · · · , Bm) ∈ L(X)m be a jointly hyponormal m-tuple of commuting
operators. Then,

r(B) = ‖B‖. (2.4)

As an important application of Eq (2.4), we establish a sharp bound in our next result for the distance
between two jointly hyponormal d-tuples of operators, expressed in terms of the difference between
their Taylor spectra. Our result generalizes [30, Theorem 1.1] (see also [31, Theorem 2.3] and [32,
Corollary 2]). Before presenting our result, let us recall that for two given d-tuples of operators,
B = (B1, . . . , Bm) and C = (C1, . . . ,Cm), the distance between B and C is defined as B − C := (B1 −

C1, . . . , Bm −Cm).

Proposition 2.1. Let B = (B1, . . . , Bm) ∈ L(X)m and C = (C1, . . . ,Cm) ∈ L(X)m be jointly hyponormal
m-tuples of commuting operators. Then

‖B − C‖ ≤
√

2 max {‖η − ν‖2 ; η ∈ σT (B), ν ∈ σT (C)} . (2.5)

Proof. We imitate the argument of [21, Theorem 2.3]. Let ξ = (ξ1, . . . , ξd) ∈ Cm. Since B =

(B1, . . . , Bm) and C = (C1, . . . ,Cm) are jointly hyponormal, then by [2, Remark 2(e)], so are B − ξI
and C − ξI. So, we see from the spectral mapping property of the Taylor spectrum [22] that

‖B − C‖ ≤ ‖B − ξI‖ + ‖C − ξI‖

= r(B − ξI) + r(C − ξI) (by (2.4))
= max{‖η‖2 ; η ∈ σT (B − ξI)} + max{‖ν‖2 ; ν ∈ σT (C − ξI)}
≤ max

η∈σT (B)
‖η − ξ‖2 + max

ν∈σT (C)
‖ν − ξ‖2

≤
√

2 max {‖η − ν‖2 ; η ∈ σT (B), ν ∈ σT (C)} .

In the last inequality, we utilize [30, Theorem 2.3] applied to the compact subsets σT (B) and σT (C)
of Cm. �
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Remark 2.2. It should be noted that the inequality (2.5) is sharp. In fact, the optimality of the constant√
2 in (2.5) is well-known in the simplest case when d = 1 and dim(X) < ∞. In finite-dimensional

Hilbert spaces, every hyponormal operator is necessarily normal. Therefore, in this scenario, when
d = 1, the bound (2.5) can be stated as follows: If B and C are m×m normal commuting matrices with
eigenvalues η1, . . . , ηm and ν1, . . . , νm, respectively, then

‖B −C‖ ≤
√

2 max
i, j∈{1,...,m}

|ηi − ν j|. (2.6)

Now, let us consider the following normal commuting matrices:

B =

(
0 −1
1 0

)
and C =

(
0 1
1 0

)
It is not difficult to see that ‖B − C‖ = 2, σ(B) = {i,−i}, and σ(C) = {1,−1}. Therefore, it is evident
that the bound (2.6) is sharp.

Now, for a given B = (B1, · · · , Bm) ∈ LA(X)m, we define the following operator:

ΩB : LA(X) −→ LA(X)

X 7−→ ΩB(X) :=
m∑

j=1

B jXB?A
j .

Definition 2.2. Let B = (B1, · · · , Bm) ∈ LA(X)m. We say that B is spherically A-hyponormal if

ΘB(I) ≥A ΩB(I).

Definition 2.3. Let B = (B1, · · · , Bm) ∈ LA(X)m. We say that B is spherically A-p-hyponormal (0 <

p < 1) if ΘB(I),ΩB(I) ∈ L(X)+ and [
ΘB(I)

]p
≥A

[
ΩB(I)

]p
.

In order to support our forthcoming contributions on these novel classes of operators, we first need
to establish the following key result, which extends the celebrated Löwner-Heinz inequality (cf. [27])
to the context of semi-Hilbert space operators.

Theorem 2.2. Let T, S ∈ L(X)+. Then,

T ≥A S ≥A 0 =⇒ T γ ≥A S γ ≥A 0,

for each γ ∈ (0, 1].

Proof. Assume that
T ≥A S ≥A 0.

Then, AT ≥ AS ≥ 0, and thus
AS = (AS )∗ = S ∗A∗ = S A,
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since both A and S are positive. Similarly, AT = T A and A(T − S ) = (T − S )A. Using the continuous
functional calculus, we have that

A
1

2γ S = S A
1

2γ , A
1

2γ T = T A
1

2γ and A
1−γ
2γ (T − S ) = (T − S )A

1−γ
2γ ,

where 1−γ
2γ ≥ 0 since γ ∈ (0, 1]. Now,

A
1
γ S = A

1
2γ S A

1
2γ ≥ 0,

and, similarly, A
1
γ T ≥ 0. Also, using the fact that A(T − S ) ≥ 0, we have

A
1
γ (T − S ) = A

1−γ
2γ A(T − S )A

1−γ
2γ ≥ 0.

Thus,
A

1
γ T ≥ A

1
γ S ≥ 0. (2.7)

Since A
1
γ commutes with S and T , we have that

(A
1
γ S )γ = (A

1
γ )γS γ = AS γ,

and, similarly, (A
1
γ T )γ = AT γ. Combining this with (2.7) and the Löwner-Heinz inequality for Hilbert

spaces, we have that
AT γ ≥ AS γ ≥ 0,

i.e.,
T γ ≥A S γ ≥A 0.

This completes the proof. �

Theorem 2.2 allows us to derive the following result.

Theorem 2.3. Let p, q ∈ (0, 1) such that q ≤ p. If B = (B1, · · · , Bm) ∈ LA(X)m is spherically A-p-
hyponormal, then B is spherically A-q-hyponormal.

Proof. Since B is spherically A-p-hyponormal, we have that ΘB(I),ΩB(I) ∈ L(X)+ and[
ΘB(I)

]p
≥A

[
ΩB(I)

]p
.

From q ≤ p, we have that q
p ∈ (0, 1], and by Theorem 2.2, we have

[
ΘB(I)

]q
=

([
ΘB(I)

]p) q
p ≥A

([
ΩB(I)

]p) q
p =

[
ΩB(I)

]q
.

Hence, B is spherically A-q-hyponormal. �

Theorem 2.4. Let B = (B1, · · · , Bm) ∈ LA(X)m be a jointly A-hyponormal m-tuple such that
ΘB(I),ΩB(I) ∈ L(X)+. Then, B is spherically A-p-hyponormal for all 0 < p < 1.
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Proof. Let k ∈ {1, . . . ,m}, p ∈ (0, 1], and x ∈ X be arbitrary. Set xk = x, and xi = 0 for i ∈
{1, . . . ,m} \ {k}. Since B jointly A-hyponormal, (1.1) implies that

〈[B?A
k , Bk]x, x〉A =

m∑
i=1

m∑
j=1

〈[B?A
j , Bi]x j, xi〉A ≥ 0.

Thus, B?A
k Bk ≥A BkB?A

k for each k ∈ {1, . . . ,m}. This further implies that

ΘB(I) =

m∑
k=1

B?A
k Bk ≥A

m∑
k=1

BkB?A
k = ΩB(I).

Thus, B is spherically A-hyponormal. Theorem 2.3 now implies that B is spherically A-p-hyponormal
for all 0 < p < 1. �

From the proof of the previous theorem, it is easy to see that the following holds.

Theorem 2.5. Let B = (B1, · · · , Bm) ∈ LA(X)m be a jointly A-hyponormal m-tuple. Then, B is
spherically A-hyponormal.

From now until the end of this paper, we aim to study the tensor product of specific classes of
multivariable operators in semi-Hilbert spaces. Before proceeding, we need to recall some useful facts
and notions. The study of operators on tensor products of Hilbert spaces arises in various problems in
both pure and applied mathematics (see [33, 34] and references therein).

Let (X, 〈·, ·〉X) and (Y, 〈·, ·〉Y) be two complex Hilbert spaces. We denote their algebraic tensor
product by X⊗Y, which is linearly spanned by elements of the form b⊗c with b ∈ X and c ∈ Y. Here,
b ⊗ c is defined algebraically to be bilinear in its arguments b and c. The completion of X ⊗ Y under
the inner product 〈b ⊗ c, d ⊗ e〉 = 〈b, d〉X〈c, e〉Y is denoted by X⊗̂Y, which forms a Hilbert space.

The tensor product B ⊗C of operators B on X and C on Y is defined on X ⊗Y by (B ⊗C)(y ⊗ z) =

By⊗Cz. Moreover, if B ∈ L(X) and C ∈ L(Y), then B⊗C ∈ L(X⊗Y) and has an extension inL(X⊗̂Y)
also denoted by B⊗C. For B1, B2 ∈ L(X) and C1,C2 ∈ L(Y), we have (B1⊗̂C1)(B2⊗̂C2) = B1B2⊗̂C1C2.
A comprehensive overview of tensor products of operators on Hilbert spaces can be found in [35] and
the references cited therein.

If B = (B1, · · · , Bm) and C = (C1, · · · ,Cm) are two m-tuples of operators, we denote their tensor
product by B ⊗ C := (B1 ⊗ C1, · · · , Bm ⊗ Cm). To establish our next result, we need to recall the
following lemma from [12].

Lemma 2.4. Let A ∈ L(X)+ and D ∈ L(Y)+. If B ∈ LA(X) and C ∈ LD(Y), then B⊗̂C ∈ LA⊗D(X⊗̂Y)
and

(B⊗̂C)?A⊗̂D = B?A⊗̂C?D .

Theorem 2.6. Let B = (B1, · · · , Bm) ∈ LA(X)m and C = (C1, · · · ,Cm) ∈ LD(Y)m be two m-tuples
of doubly commuting A-hyponormal and D-hyponormal operators, respectively. Then, B ⊗ C is an
m-tuple of doubly commuting A ⊗ D-hyponormal operators.

Proof. Using the properties of the tensor product, we have[
Bi ⊗Ci, B j ⊗C j

]
= (Bi ⊗Ci)(B j ⊗C j) − (B j ⊗C j)(Bi ⊗Ci)
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= BiB j ⊗CiC j − B jBi ⊗C jCi

= BiB j ⊗CiC j − BiB j ⊗CiC j

= 0,

for each i, j ∈ {1, . . . ,m}. Also, by utilizing Lemma 2.4, we have[
(Bi ⊗Ci)?A⊗D , B j ⊗C j

]
= (Bi ⊗Ci)?A⊗D(B j ⊗C j) − (B j ⊗C j)(Bi ⊗Ci)?A⊗D

= (B?A
i ⊗C?D

i )(B j ⊗C j) − (B j ⊗C j)(B
?A
i ⊗C?D

i )
= B?A

i B j ⊗C?D
i C j − B jB

?A
i ⊗C jC

?D
i

= B?A
i B j ⊗C?D

i C j − B?A
i B j ⊗C?D

i C j

= 0,

for all i, j ∈ {1, . . . ,m}, i , j.
Now, for each x ∈ X, y ∈ Y and all k ∈ {1, . . . ,m},

〈(Bk ⊗Ck)?A⊗D(Bk ⊗Ck)(x ⊗ y), x ⊗ y〉A⊗D

= 〈(B?A
k ⊗C?D

k )(Bk ⊗Ck)(x ⊗ y), x ⊗ y〉A⊗D

= 〈B?A
k Bkx ⊗C?D

k Cky, x ⊗ y〉A⊗D

= 〈B?A
k Bkx, x〉A〈C

?D
k Cky, y〉D

≥ 〈BkB?A
k x, x〉A〈CkC

?D
k y, y〉D

= 〈BkB?A
k x ⊗CkC

?D
k y, x ⊗ y〉A⊗D

= 〈(Bk ⊗Ck)(B
?A
k ⊗C?D

k )(x ⊗ y), x ⊗ y〉A⊗D

= 〈(Bk ⊗Ck)(Bk ⊗Ck)?A⊗D(x ⊗ y), x ⊗ y〉A⊗D.

In other words,
(Bk ⊗Ck)?A⊗D(Bk ⊗Ck) ≥A⊗D (Bk ⊗Ck)(Bk ⊗Ck)?A⊗D

for all k ∈ {1, . . . ,m}. This implies that B ⊗ C is an m-tuple of doubly commuting A ⊗ D-hyponormal
operators. �

Theorem 2.7. Let B = (B1, · · · , Bm) ∈ LA(X)m be a spherically A-hyponormal m-tuple and C =

(C, · · · ,C) ∈ LD(Y)m, where C ∈ LD(Y) is D-hyponormal. Then, B ⊗ C is spherically A ⊗ D-
hyponormal.

Proof. Let x ∈ X, y ∈ Y be arbitrary. Then, as in the proof of the previous theorem,

〈

m∑
k=1

(Bk ⊗C)?A⊗D(Bk ⊗C)(x ⊗ y), x ⊗ y〉A⊗D =

m∑
k=1

〈B?A
k Bkx, x〉A〈C?DCy, y〉D

= 〈

m∑
k=1

B?A
k Bkx, x〉A〈C?DS y, y〉D.

Using the fact that B is spherically A-hyponormal, and that C is D-hyponormal, we have

〈

m∑
k=1

B?A
k Bkx, x〉A〈S ?DS y, y〉D ≥ 〈

m∑
k=1

BkB?A
k x, x〉A〈CC?Dy, y〉D
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= 〈

m∑
k=1

(Bk ⊗ S )(Bk ⊗ S )?A⊗D(x ⊗ y), x ⊗ y〉A⊗D.

This implies that
m∑

k=1

(Bk ⊗C)?A⊗D(Bk ⊗C) ≥
m∑

k=1

(Bk ⊗ S )(Bk ⊗C)?A⊗D .

In other words, B ⊗ C is spherically A ⊗ D-hyponormal. �

3. Conclusions

In this paper, we have extended the concept of jointly A-hyponormal operators, as introduced by
Guesba et al. in [13], by establishing several important properties for this class of operators on complex
Hilbert spaces. Specifically, we proved that any jointly A-hyponormal m-tuple of commuting operators
is also jointly A-normaloid. This result enabled us to derive a sharp bound for the distance between
two jointly hyponormal m-tuples of operators in terms of the difference between their Taylor spectra,
in the special case where A is the identity operator.

Furthermore, we introduced and examined the class of spherically A-p-hyponormal operators,
extending the analysis to the case where 0 < p < 1. We also explored the tensor product of specific
classes of multivariable operators in semi-Hilbert spaces, contributing new insights into the structure
of these operators.

Our results provide a foundation for further investigations into operator theory, particularly in
the study of A-hyponormal operators, their spectral properties, and their applications in semi-Hilbert
spaces. We believe that the techniques and findings presented here may stimulate future research
in these areas, potentially leading to new developments in the theory of operator inequalities and
multivariable operator systems.
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