Research article

Exponential decay in a delayed wave equation with variable coefficients

  • Received: 20 July 2024 Revised: 09 September 2024 Accepted: 21 September 2024 Published: 26 September 2024
  • MSC : 35B40, 35L05, 35L20, 93D23

  • We establish an exponential stability result for a wave equation that includes weighted coefficients of structural damping and a delayed term. This study reveals cases where the delayed term may not be dominated by the damping term, yet the system is exponentially stable. Our coefficients do not obey necessarily the conditions that are usually imposed in the literature.

    Citation: Waled Al-Khulaifi, Manal Alotibi, Nasser-Eddine Tatar. Exponential decay in a delayed wave equation with variable coefficients[J]. AIMS Mathematics, 2024, 9(10): 27770-27783. doi: 10.3934/math.20241348

    Related Papers:

  • We establish an exponential stability result for a wave equation that includes weighted coefficients of structural damping and a delayed term. This study reveals cases where the delayed term may not be dominated by the damping term, yet the system is exponentially stable. Our coefficients do not obey necessarily the conditions that are usually imposed in the literature.



    加载中


    [1] S. Kim, D. Kim, Analytical modeling of thermoacoustic instability influences in gas turbine combustors: A detailed parameter sensitivity analysis, Case Stud. Therm. Eng., 59 (2024), 104595. http://dx.doi.org/10.1016/j.csite.2024.104595 doi: 10.1016/j.csite.2024.104595
    [2] J. Gibbons, D. Howard, A. Tyrrell, FPGA implementation of 1D wave equation for real-time audio synthesis, IEE P.-Comput. Dig. T., 152 (2005), 619–631. https://doi.org/10.1049/ip-cdt:20045178 doi: 10.1049/ip-cdt:20045178
    [3] Y. Chen, K. Ma, C. Ren, Y. Nan, P. Zhou, Mechanism of time-delay feedback control of suspension damping with an annular vibration-absorbing structure, J. Vibroeng., 25 (2023), 1561–1582. https://doi.org/10.21595/jve.2023.23291 doi: 10.21595/jve.2023.23291
    [4] A. Polyanin, V. Sorokin, A. Zhurov, Delay ordinary and partial differential equations, Chapman and Hall/CRC, 1 (2023). http://dx.doi.org/10.1201/9781003042310
    [5] T. Erneux, Applied delay differential equations, Springer eBook, 2009. http://dx.doi.org/10.1007/978-0-387-74372-1
    [6] V. Kolmanovskii, A. Myshkis, Introduction to the theory and applications of functional differential equations, Springer Science & Business Media, 2013.
    [7] G. Chen, Control and stabilization for the wave equation in a bounded domain, SIAM J. Control Optim., 17 (1979), 66–81. http://dx.doi.org/10.1137/0317007 doi: 10.1137/0317007
    [8] G. Chen, Control and stabilization for the wave Equation in a bounded domain, part Ⅱ, SIAM J. Control Optim., 19 (1981), 114–122. http://dx.doi.org/10.1137/0319009 doi: 10.1137/0319009
    [9] V. Komornik, Exact controllability and stabilization: The multiplier method, Elsevier Masson, 1994.
    [10] R. Datko, Representation of solutions and stability of linear differential-difference equations in a Banach space, J. Differ. Equations, 29 (1978), 105–166. http://dx.doi.org/10.1016/0022-0396(78)90043-8 doi: 10.1016/0022-0396(78)90043-8
    [11] R. Datko, J. Lagnese, M. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152–156. http://dx.doi.org/10.1137/0324007 doi: 10.1137/0324007
    [12] G. Xu, S. Yung, L. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM Contr. Optim. Ca., 12 (2006), 770–785. http://dx.doi.org/10.1051/cocv:2006021 doi: 10.1051/cocv:2006021
    [13] S. Nicaise, C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561–1585. http://dx.doi.org/10.1016/j.jmaa.2004.01.048 doi: 10.1016/j.jmaa.2004.01.048
    [14] S. Nicaise, C. Pignotti, Exponential stability of abstract evolution equations with time delay, J. Evol. Equ., 15 (2015), 107–129. http://dx.doi.org/10.1007/s00028-014-0251-5 doi: 10.1007/s00028-014-0251-5
    [15] M. Kirane, B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay, Z. Angew. Math. Phys., 62 (2011), 1065–1082. http://dx.doi.org/10.1007/s00033-011-0145-0 doi: 10.1007/s00033-011-0145-0
    [16] F. Alabau-Boussouira, S. Nicaise, C. Pignotti, Exponential stability of the wave equation with memory and time delay, In: New prospects in direct, inverse and control problems for evolution equations, Springer Indam Series, 10 (2014), 1–22. http://dx.doi.org/10.1007/978-3-319-11406-4-1
    [17] A. Guesmia, Well-posedness and exponential stability of an abstract evolution equation with infinite memory and time delay, IMA J. Math. Control I., 30 (2013), 507–526. http://dx.doi.org/10.1093/imamci/dns039 doi: 10.1093/imamci/dns039
    [18] S. Park, Global existence, energy decay and blow-up of solutions for wave equations with time delay and logarithmic source, Adv. Differ. Equ., 2020 (2020), 631. http://dx.doi.org/10.1186/s13662-020-03037-6 doi: 10.1186/s13662-020-03037-6
    [19] G. Liu, H. Yue, H. Zhang, Long time behavior for a wave equation with time delay, Taiwan. J. Math., 21 (2017), 107–129. Available from: https://www.jstor.org/stable/90000350.
    [20] S. Wu, Asymptotic behavior for a viscoelastic wave equation with a delay term, Taiwan. J. Math., 17 (2013), 765–784. http://dx.doi.org/10.11650/tjm.17.2013.2517 doi: 10.11650/tjm.17.2013.2517
    [21] A. Benaissa, S. Messaoudi, Global existence and energy decay of solutions for a nondissipative wave equation with a time-varying delay term, Springer International Publishing, 2013. Available from: http://dx.doi.org/10.1007/978-3-319-00125-8_1.
    [22] H. Yüksekkaya, E. Pișkin, S. Boulaaras, B. Cherif, S. Zubair, Existence, nonexistence, and stability of solutions for a delayed plate equation with the logarithmic source, Adv. Math. Phys., 2021 (2021), 1–11. http://dx.doi.org/10.1155/2021/8561626 doi: 10.1155/2021/8561626
    [23] Z. Yang, Existence and energy decay of solutions for the Euler-Bernoulli viscoelastic equation with a delay, Z. Angew. Math. Phys., 66 (2015), 727–745. http://dx.doi.org/10.1007/s00033-014-0429-2 doi: 10.1007/s00033-014-0429-2
    [24] M. Mustafa, M. Kafini, Decay rates for memory-type plate system with delay and source term, Math. Meth. Appl. S., 40 (2017), 883–895. http://dx.doi.org/10.1002/mma.4015 doi: 10.1002/mma.4015
    [25] A. Benaissa, S. Messaoudi, A. Benguessoum, Energy decay of solutions for a wave equation with a constant weak delay and a weak internal feedback, Electron. J. Qual. Theo., 2014, 1–13. http://dx.doi.org/10.14232/ejqtde.2014.1.11
    [26] V. Barros, C. Nonato, C. Raposo, Global existence and energy decay of solutions for a wave equation with non-constant delay and nonlinear weights, Electron. Res. Arch., 28 (2020), 205–220. http://dx.doi.org/10.3934/era.2020014 doi: 10.3934/era.2020014
    [27] Q. Dai, Z. Yang, Global existence and exponential decay of the solution for a viscoelastic wave equation with a delay, Z. Angew. Math. Phys., 65 (2014), 885–903. http://dx.doi.org/10.1007/s00033-013-0365-6 doi: 10.1007/s00033-013-0365-6
    [28] S. Messaoudi, A. Fareh, N. Doudi, Well posedness and exponential stability in a wave equation with a strong damping and a strong delay, J. Math. Phys., 57 (2016), 111501. http://dx.doi.org/10.1063/1.4966551 doi: 10.1063/1.4966551
    [29] H. Makheloufi, M. Bahlil, Global well-posedness and stability results for an abstract viscoelastic equation with a non-constant delay term and nonlinear weight, Ric. Mat., 73 (2021), 433–469. http://dx.doi.org/10.1007/s11587-021-00617-w doi: 10.1007/s11587-021-00617-w
    [30] B. Feng, General decay for a viscoelastic wave equation with strong time-dependent delay, Bound. Value Probl., 2017. http://dx.doi.org/10.1186/s13661-017-0789-6
    [31] C. Enyi, S. Mukiawa, Decay estimate for a viscoelastic plate equation with strong time-varying delay, Ann. U. Ferrara, 66 (2020), 339–357. http://dx.doi.org/10.1007/s11565-020-00346-2 doi: 10.1007/s11565-020-00346-2
    [32] W. Al-Khulaifi, T. Diagana, A. Guesmia, Well-posedness and stability results for some nonautonomous abstract linear hyperbolic equations with memory, Semigroup Forum, 105 (2022), 351–373. https://doi.org/10.1007/s00233-022-10284-4 doi: 10.1007/s00233-022-10284-4
    [33] N. Tatar, Stability for the damped wave equation with neutral delay, Math. Nachr., 290 (2017), 2401–2412. http://dx.doi.org/10.1002/mana.201600229 doi: 10.1002/mana.201600229
    [34] T. Wang, Inequalities and stability for a linear scalar functional differential equation, J. Math. Anal. Appl., 298 (2004), 33–44. http://dx.doi.org/10.1016/j.jmaa.2004.01.048 doi: 10.1016/j.jmaa.2004.01.048
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(436) PDF downloads(39) Cited by(0)

Article outline

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog