Research article Special Issues

Pythagorean fuzzy $ N $-Soft PROMETHEE approach: A new framework for group decision making

  • Received: 08 March 2023 Revised: 30 April 2023 Accepted: 05 May 2023 Published: 19 May 2023
  • MSC : 03E72, 03E75, 90B50

  • The use of Pythagorean fuzzy $ N $-soft sets (PFNSs) enables the examination of belongingness and non-belongingness of membership degrees, as well as their combinations with $ N $-grading, in the unpredictable nature of individuals. This research aims to enhance our understanding of a popular multi-criteria group decision making (MCGDM) technique, Preference Ranking Organization Method for Enrichment of Evaluations, under the PFNS environment, aiding in making effective decisions for real-life problems, as fuzzy set theory is directly relevant to real-life applications. The PROMETHEE technique's main principle is to calculate the inflow and outflow streams of alternatives based on the deviation of their score degrees, ultimately providing partial and complete rankings of the given options. To capture the uncertainty of human nature, which demands both the association and disassociation of the considered criteria and provision of $ N $-grading, the PFNS PROMETHEE technique is introduced in this research article. First, an Analytic Hierarchy Process AHP is used to check the feasibility of the standard weights of the criteria. The article then explains the detailed method of the fuzzy $ N $-soft PROMETHEE technique to rank alternatives, with all the steps presented in an extensive flowchart for better understanding of the methodology. Furthermore, the practicality and viability of the proposed technique are demonstrated through an example of selecting the best chemical element in cloud seeding, where the most suitable choice is identified using an outranking directed graph. The credibility of the PFNS PROMETHEE technique is assessed by comparison with an existing method. Finally, the proposed technique's strengths and weaknesses are discussed to demonstrate its efficiency and drawbacks.

    Citation: Muhammad Akram, Maheen Sultan, Arooj Adeel, Mohammed M. Ali Al-Shamiri. Pythagorean fuzzy $ N $-Soft PROMETHEE approach: A new framework for group decision making[J]. AIMS Mathematics, 2023, 8(8): 17354-17380. doi: 10.3934/math.2023887

    Related Papers:

  • The use of Pythagorean fuzzy $ N $-soft sets (PFNSs) enables the examination of belongingness and non-belongingness of membership degrees, as well as their combinations with $ N $-grading, in the unpredictable nature of individuals. This research aims to enhance our understanding of a popular multi-criteria group decision making (MCGDM) technique, Preference Ranking Organization Method for Enrichment of Evaluations, under the PFNS environment, aiding in making effective decisions for real-life problems, as fuzzy set theory is directly relevant to real-life applications. The PROMETHEE technique's main principle is to calculate the inflow and outflow streams of alternatives based on the deviation of their score degrees, ultimately providing partial and complete rankings of the given options. To capture the uncertainty of human nature, which demands both the association and disassociation of the considered criteria and provision of $ N $-grading, the PFNS PROMETHEE technique is introduced in this research article. First, an Analytic Hierarchy Process AHP is used to check the feasibility of the standard weights of the criteria. The article then explains the detailed method of the fuzzy $ N $-soft PROMETHEE technique to rank alternatives, with all the steps presented in an extensive flowchart for better understanding of the methodology. Furthermore, the practicality and viability of the proposed technique are demonstrated through an example of selecting the best chemical element in cloud seeding, where the most suitable choice is identified using an outranking directed graph. The credibility of the PFNS PROMETHEE technique is assessed by comparison with an existing method. Finally, the proposed technique's strengths and weaknesses are discussed to demonstrate its efficiency and drawbacks.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inf. Control., 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
    [2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3
    [3] K. T. Atanassov, On the concept of intuitionistic fuzzy sets, In: On intuitionistic fuzzy sets theory, Berlin, Heidelberg: Springer, 2012. https://doi.org/10.1007/978-3-642-29127-2_1
    [4] R. R. Yager, A. M. Abbasov, Pythagorean membership grades, complex numbers, and decision making, Int. J. Intell. Syst., 28 (2013), 436–452. https://doi.org/10.1002/int.21584 doi: 10.1002/int.21584
    [5] S. Zeng, J. Chen, X. Li, A hybrid method for Pythagorean fuzzy multiple-criteria decision making, Int. J. Inf. Technol. Decis., 15 (2016), 403–422. https://doi.org/10.1142/S0219622016500012 doi: 10.1142/S0219622016500012
    [6] X. Zhang, Multicriteria Pythagorean fuzzy decision analysis: A hierarchical QUALIFLEX approach with the closeness index-based ranking methods, Inf. Sci., 330 (2016), 104–124. https://doi.org/10.1016/j.ins.2015.10.012 doi: 10.1016/j.ins.2015.10.012
    [7] M. Akram, K. Zahid, J. C. R. Alcantud, A new outranking method for multicriteria decision making with complex Pythagorean fuzzy information, Neural Comput. Appl., 34 (2022), 8069–8102. https://doi.org/10.1007/s00521-021-06847-1 doi: 10.1007/s00521-021-06847-1
    [8] M. Kirişci, N. Şimşek, Decision making method related to Pythagorean fuzzy soft sets with infectious diseases application, J. King Saud Univ. Comput. Inf. Sci., 34 (2022), 5968–5978. https://doi.org/10.1016/j.jksuci.2021.08.010 doi: 10.1016/j.jksuci.2021.08.010
    [9] M. Deveci, L. Eriskin, M. Karatas, A survey on recent applications of pythagorean fuzzy sets: A state-of-the-art between 2013 and 2020, In: Pythagorean fuzzy sets: Theory and applications, Singapore: Springer, 2021. https://doi.org/10.1007/978-981-16-1989-2_1
    [10] D. A. Molodtsov, Soft set theory - First results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [11] F. Fatimah, D. Rosadi, R. B. F. Hakim, J. C. R. Alcantud, $N$-soft sets and their decision making algorithms, Soft Comput., 22 (2018), 3829–3842. https://doi.org/10.1007/s00500-017-2838-6 doi: 10.1007/s00500-017-2838-6
    [12] J. C. R. Alcantud, The semantics of $N$-soft sets, their applications, and a coda about three-way decision, Inf. Sci., 606 (2022), 837–852. https://doi.org/10.1016/j.ins.2022.05.084 doi: 10.1016/j.ins.2022.05.084
    [13] J. C. R. Alcantud, F. Feng, R. R. Yager, An $N$-soft set approach to rough sets, IEEE T. Fuzzy Syst., 28 (2020), 2996–3007. https://doi.org/10.1109/TFUZZ.2019.2946526 doi: 10.1109/TFUZZ.2019.2946526
    [14] F. Fatimah, Analysis of tourism facilities using $N$-soft set decision making procedures, J. RESTI, 4 (2020), 135–141. https://doi.org/10.29207/resti.v4i1.1536 doi: 10.29207/resti.v4i1.1536
    [15] J. C. R. Alcantud, G. Santos-García, M. Akram, OWA aggregation operators and multi-agent decisions with $N$-soft sets, Expert Syst. Appl., 203 (2022), 117430. https://doi.org/10.1016/j.eswa.2022.117430 doi: 10.1016/j.eswa.2022.117430
    [16] P. K. Maji, A. R. Roy, R. Biswas, Fuzzy soft sets, J. Fuzzy Math., 9 (2001), 589–602.
    [17] P. K. Maji, R. Biswas, A. R. Roy, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083. https://doi.org/10.1016/S0898-1221(02)00216-X doi: 10.1016/S0898-1221(02)00216-X
    [18] J. C. R. Alcantud, S. C. Rambaud, M. J. M. Torrecillas, Valuation fuzzy soft sets: A flexible fuzzy soft set based decision making procedure for the valuation of assets, Symmetry, 9 (2017), 253. https://doi.org/10.3390/sym9110253 doi: 10.3390/sym9110253
    [19] M. Akram, A. Adeel, J. C. R. Alcantud, Fuzzy $N$-soft sets: A novel model with applications, J. Intell. Fuzzy Syst., 35 (2018), 4757–4771. https://doi.org/10.3233/JIFS-18244 doi: 10.3233/JIFS-18244
    [20] A. Adeel, M. Akram, N. Yaqoob, W. Chammam, Detection and severity of tumor cells by graded decision-making methods under fuzzy $N$-soft model, J. Intell. Fuzzy Syst., 39 (2020), 1303–1318. https://doi.org/10.3233/JIFS-192203 doi: 10.3233/JIFS-192203
    [21] D. Zhang, P. Y. Li, S. An, $N$-soft rough sets and its applications, J. Intell. Fuzzy Syst., 40 (2021), 565–573. https://doi.org/10.3233/JIFS-200338 doi: 10.3233/JIFS-200338
    [22] F. Fatimah, J. C. R. Alcantud, The multi-fuzzy $N$-soft set and its applications to decision-making, Neural. Comput. Appl., 33 (2021), 11437–11446. https://doi.org/10.1007/s00521-020-05647-3 doi: 10.1007/s00521-020-05647-3
    [23] T. Mahmood, U. Rehman, Z. Ali, A novel complex fuzzy $N$-soft sets and their decision-making algorithm, Complex Intell. Syst., 7 (2021), 2255–2280. https://doi.org/10.1007/s40747-021-00373-2 doi: 10.1007/s40747-021-00373-2
    [24] U. Rehman, T. Mahmood, Picture fuzzy $N$-soft sets and their applications in decision-making problems, Fuzzy Inf. Eng., 13 (2021), 335–367. https://doi.org/10.1080/16168658.2021.1943187 doi: 10.1080/16168658.2021.1943187
    [25] M. Akram, M. Sultan, J. C. R. Alcantud, M. M. A. Al-Shamiri, Extended fuzzy $N$-Soft PROMETHEE method and its application in robot butler selection, Math. Biosci. Eng., 20 (2023), 1774–1800. https://doi.org/10.3934/mbe.2023081 doi: 10.3934/mbe.2023081
    [26] M. Akram, G. Ali, J. C. R. Alcantud, New decision-making hybrid model: Intuitionistic fuzzy $N$-soft rough sets, Soft Comput., 23 (2019), 9853–9868. https://doi.org/10.1007/s00500-019-03903-w doi: 10.1007/s00500-019-03903-w
    [27] Q. Dong, Q. Sheng, L. Martnez, Z. Zhang, An adaptive group decision making framework: Individual and local world opinion based opinion dynamics, Inf. Fusion, 78 (2022), 218–231. https://doi.org/10.1016/j.inffus.2021.09.013 doi: 10.1016/j.inffus.2021.09.013
    [28] Z. Li, Z. Zhang, Threshold-based value-driven method to support consensus reaching in multicriteria group sorting problems: A minimum adjustment perspective, IEEE T. Comput. Soc. Syst., 2023. https://doi.org/10.1109/TCSS.2023.3251351
    [29] Z. Li, Z. Zhang, W. Yu, Consensus reaching for ordinal classification-based group decision making with heterogeneous preference information, JORS, 2023. https://doi.org/10.1080/01605682.2023.2186806
    [30] R. E. Bellman, L. A. Zadeh, L. A. Decision-making in a fuzzy environment, Manage. Sci., 17 (1970), 141–164. https://doi.org/10.1287/mnsc.17.4.B141 doi: 10.1287/mnsc.17.4.B141
    [31] T. L. Saaty, Axiomatic foundation of the analytic hierarchy process, Manage. Sci., 32 (1986), 841–855. https://doi.org/10.1287/mnsc.32.7.841 doi: 10.1287/mnsc.32.7.841
    [32] C. L. Hwang, K. Yoon, Methods for multiple attribute decision making, In: Multiple attribute decision making, Berlin, Heidelberg: Springer, 1981. https://doi.org/10.1007/978-3-642-48318-9_3
    [33] B. Roy, The outranking approach and the foundations of ELECTRE methods, Theor. Decis., 31 (1991), 49–73. https://doi.org/10.1007/BF00134132 doi: 10.1007/BF00134132
    [34] M. Akram, M. Sultan, J. C. R. Alcantud, An integrated ELECTRE method for selection of rehabilitation center with $m$-polar fuzzy $N$-soft information, Artif. Intell. Med., 135 (2023), 102449. https://doi.org/10.1016/j.artmed.2022.102449 doi: 10.1016/j.artmed.2022.102449
    [35] S. Opricovic, G. H. Tzeng, Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS, Eur. J. Oper. Res., 156(2004), 445–455. https://doi.org/10.1016/S0377-2217(03)00020-1 doi: 10.1016/S0377-2217(03)00020-1
    [36] W. K. M. Brauers, E. K. Zavadskas, Project management by MULTIMOORA as an instrument for transition economies, Technol. Econ. Dev. Eco., 16 (2010), 5–24. https://doi.org/10.3846/tede.2010.01 doi: 10.3846/tede.2010.01
    [37] G. Ali, M. Akram, Decision-making method based on fuzzy N-soft expert sets, Arab. J. Sci. Eng., 45 (2020), 10381–10400. https://doi.org/10.1007/s13369-020-04733-x doi: 10.1007/s13369-020-04733-x
    [38] H. Zhang, D. Jia-Hua, C. Yan, Multi-attribute group decision-making methods based on Pythagorean fuzzy $N$-soft sets, IEEE Access, 8 (2020), 62298–62309. https://doi.org/10.1109/ACCESS.2020.2984583 doi: 10.1109/ACCESS.2020.2984583
    [39] C. Jana, Multiple attribute group decision-making method based on extended bipolar fuzzy MABAC approach, J. Comput. Appl. Math., 40 (2021), 227. https://doi.org/10.1007/s40314-021-01606-3 doi: 10.1007/s40314-021-01606-3
    [40] C. Jana, M. Pal, J. Wang, A robust aggregation operator for multi-criteria decision-making method with bipolar fuzzy soft environment, Iran. J. Fuzzy Syst., 16 (2019), 1–16. https://doi.org/10.22111/IJFS.2019.5014 doi: 10.22111/IJFS.2019.5014
    [41] J. P. Brans, P. H. Vincke, A preference ranking organisation method (The PROMETHEE method for multiple criteria decision making), Manage. Sci., 31 (1985), 647–656. https://doi.org/10.1287/mnsc.31.6.647 doi: 10.1287/mnsc.31.6.647
    [42] M. Goumas, V. Lygerou, An extension of the PROMETHEE method for decision making in fuzzy environment: Ranking of alternative energy exploitation projects, Eur. J. Oper. Res., 123 (2000), 606–613. https://doi.org/10.1016/S0377-2217(99)00093-4 doi: 10.1016/S0377-2217(99)00093-4
    [43] M. Gul, E. Celik, A. T. Gumus, A. F. Guneri, A fuzzy logic based PROMETHEE method for material selection problems, Beni-Suef Univ. J. Basic Appl. Sci., 7 (2018), 68–79. https://doi.org/10.1016/j.bjbas.2017.07.002 doi: 10.1016/j.bjbas.2017.07.002
    [44] F. Feng, Z. Xu, H. Fujita, M. Liang, Enhancing PROMETHEE method with intuitionistic fuzzy soft sets, Int. J. Intell. Syst., 35 (2020), 1071–1104. https://doi.org/10.1002/int.22235 doi: 10.1002/int.22235
    [45] R. Krishankumar, K. S. Ravichandran, A. B. Saeid, A new extension to PROMETHEE under intuitionistic fuzzy environment for solving supplier selection problem with linguistic preferences, Appl. Soft Comput., 60 (2017), 564–576. https://doi.org/10.1016/j.asoc.2017.07.028 doi: 10.1016/j.asoc.2017.07.028
    [46] W. Zhang, Y. Zhu, D. Wang, S. Zhao, D. Dong, A multi-attribute decision making method based on interval Pythagorean fuzzy language and the PROMETHEE method, In: Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery, Cham: Springer, 2019. https://doi.org/10.1007/978-3-030-32456-8_88
    [47] F. Feng, H. Fujita, M. I. Ali, R. R. Yager, X. Liu, Another view on generalized intuitionistic fuzzy soft sets and related multiattribute decision making methods, IEEE T. Fuzzy Syst., 27 (2019), 474–488. https://doi.org/10.1109/TFUZZ.2018.2860967 doi: 10.1109/TFUZZ.2018.2860967
    [48] F. Feng, M. Liang, H. Fujita, R. R. Yager, X. Liu, Lexicographic orders of intuitionistic fuzzy values and their relationships, Mathematics, 7 (2019), 166. https://doi.org/10.3390/math7020166 doi: 10.3390/math7020166
    [49] H. Liao, Z. Xu, Multi-criteria decision making with intuitionistic fuzzy PROMETHEE, J. Intell. Fuzzy Syst., 27(2014), 1703–1717. https://doi.org/10.3233/IFS-141137 doi: 10.3233/IFS-141137
    [50] R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE T. Fuzzy Syst., 22 (2013), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [51] T. Y. Chen, A novel PROMETHEE-based outranking approach for multiple criteria decision analysis with Pythagorean fuzzy information, IEEE Access, 6 (2018), 54495–54506. https://doi.org/10.1109/ACCESS.2018.2869137 doi: 10.1109/ACCESS.2018.2869137
    [52] A. Mardani, A. Jusoh, E. K. Zavadskas, Fuzzy multiple criteria decision-making techniques and applications-Two decades review from 1994 to 2014, Expert Syst. Appl., 42 (2015), 4126–4148. https://doi.org/10.1016/j.eswa.2015.01.003 doi: 10.1016/j.eswa.2015.01.003
    [53] M. J. Manton, L. Warren, A Confirmatory Snowfall Enhancement Project in the Snowy Mountains of Australia. Part II: Primary and Associated Analyses, J. Appl. Meteorol. Climtol., 50 (2011), 1448–1458. https://doi.org/10.1175/2011JAMC2660.1 doi: 10.1175/2011JAMC2660.1
    [54] D. Pamucar, M. Deveci, F. Canitez, D. Bozanic, A fuzzy full consistency method-Dombi-Bonferroni model for prioritizing transportation demand management measures, Appl. Soft Comput., 87 (2020), 105952. https://doi.org/10.1016/j.asoc.2019.105952 doi: 10.1016/j.asoc.2019.105952
    [55] H. M. Ridha, H. Hizam, S. Mirjalili, M. L. Othman, M. E. Ya'acob, M. Ahmadipour, Innovative hybridization of the two-archive and PROMETHEE-II triple-objective and multi-criterion decision making for optimum configuration of the hybrid renewable energy system, Appl. Energy, 341 (2023), 121117. https://doi.org/10.1016/j.apenergy.2023.121117 doi: 10.1016/j.apenergy.2023.121117
    [56] A. B. Super, J. A. Heimbach, Evaluation of the bridger range winter cloud seeding experiment using control gages, J. Climatol. Appl. Meteorol., 22 (1983), 1989–2011.
    [57] Y. Yang, T. Gai, M. Cao, Z. Zhang, H. Zhang, J. Wu, Application of Group Decision Making in Shipping Industry 4.0: Bibliometric Analysis, Trends, and Future Directions, Systems, 11 (2023), 69. https://doi.org/10.3390/systems11020069 doi: 10.3390/systems11020069
    [58] J. P. Brans, Ph. Vincke, B. Mareschal, How to select and how to rank projects: The PROMETHEE method, Eur. J. Oper. Res., 24 (1986), 228–238. https://doi.org/10.1016/0377-2217(86)90044-5 doi: 10.1016/0377-2217(86)90044-5
    [59] J. Ye, T. Y. Chen, Pythagorean fuzzy sets combined with the PROMETHEE method for the selection of cotton woven fabric, J. Nat. Fibers, 19 (2022), 12447–12461. https://doi.org/10.1080/15440478.2022.2072993 doi: 10.1080/15440478.2022.2072993
    [60] M. Kirisci, I. Demir, N. Simsek, N. Topa, M. Bardak, The novel VIKOR methods for generalized Pythagorean fuzzy soft sets and its application to children of early childhood in COVID-19 quarantine, Neural Comput. Appl., 34 (2022), 1877–1903. https://doi.org/10.1007/s00521-021-06427-3 doi: 10.1007/s00521-021-06427-3
    [61] Z. Hua, X. Jing, A generalized shapley index-based interval-valued Pythagorean fuzzy PROMETHEE method for group decision-making, Soft Comput., 27 (2023), 6629–6652. https://doi.org/10.1007/s00500-023-07842-5 doi: 10.1007/s00500-023-07842-5
    [62] M. U. Molla, B. C. Giri, P. Biswas, Extended PROMETHEE method with Pythagorean fuzzy sets for medical diagnosis problems, Soft Comput., 25 (2021), 4503–4512. https://doi.org/10.1007/s00500-020-05458-7 doi: 10.1007/s00500-020-05458-7
    [63] C. Jana, M. Pal, A robust single-valued neutrosophic soft aggregation operators in multi-criteria decision making, Symmetry, 11 (2019), 110. https://doi.org/10.3390/sym11010110 doi: 10.3390/sym11010110
    [64] M. Alipour, R. Hafezi, P. Rani, M. Hafezi, A. Mardani, A new Pythagorean fuzzy-based decision-making method through entropy measure for fuel cell and hydrogen components supplier selection, Energy, 234 (2021), 121208. https://doi.org/10.1016/j.energy.2021.121208 doi: 10.1016/j.energy.2021.121208
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1405) PDF downloads(126) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(23)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog