Research article Special Issues

Sustainability evaluation of green building construction based on a combination method of weighting and improved matter-element extension

  • Received: 04 July 2024 Revised: 07 August 2024 Accepted: 13 August 2024 Published: 20 August 2024
  • MSC : 62P30

  • In light of the pressing global challenges related to greenhouse gas emissions from the construction industry, current evaluation systems for green building construction sustainability remain limited, often overlooking sustainability domains. This study innovatively established an evaluation framework by exploring five critical domains: environmental sustainability, economic benefits, socio-cultural impacts, technological innovation, and health and well-being. Sixteen key evaluation indicators were identified using the Delphi method, with the novel inclusion of a carbon emission reduction target achievement indicator, thereby promoting the goal of carbon neutrality in green buildings. To determine a more reasonable weight distribution, this paper combined the fuzzy analytic hierarchy process (fuzzy AHP) with the entropy weight method. Additionally, the study employed a fuzzy matter-element method enhanced by genetic algorithms for precise evaluation of green building construction sustainability. The feasibility and effectiveness of the proposed model were validated through an empirical analysis of a green building project in Beijing. The results of this research provide innovative theoretical references and practical guidelines for green building construction sustainability evaluation.

    Citation: Yuanlu Qiao, Jingpeng Wang, Youguo Wang. Sustainability evaluation of green building construction based on a combination method of weighting and improved matter-element extension[J]. AIMS Mathematics, 2024, 9(9): 24418-24442. doi: 10.3934/math.20241190

    Related Papers:

  • In light of the pressing global challenges related to greenhouse gas emissions from the construction industry, current evaluation systems for green building construction sustainability remain limited, often overlooking sustainability domains. This study innovatively established an evaluation framework by exploring five critical domains: environmental sustainability, economic benefits, socio-cultural impacts, technological innovation, and health and well-being. Sixteen key evaluation indicators were identified using the Delphi method, with the novel inclusion of a carbon emission reduction target achievement indicator, thereby promoting the goal of carbon neutrality in green buildings. To determine a more reasonable weight distribution, this paper combined the fuzzy analytic hierarchy process (fuzzy AHP) with the entropy weight method. Additionally, the study employed a fuzzy matter-element method enhanced by genetic algorithms for precise evaluation of green building construction sustainability. The feasibility and effectiveness of the proposed model were validated through an empirical analysis of a green building project in Beijing. The results of this research provide innovative theoretical references and practical guidelines for green building construction sustainability evaluation.



    加载中


    [1] A. E. Oke, J. Aliu, A. Ebekozien, T. M. Akinpelu, T. M. Olatunde, O. A. Ogunsanya, Strategic drivers for the deployment of energy economics principles in the developing construction industry: A Nigerian perspective, Environ. Prog. Sustain., 43 (2024), e14351. https://doi.org/10.1002/ep.14351 doi: 10.1002/ep.14351
    [2] I. P. T. Sandaruwan, K. Manoharan, U. Kulatunga, Cradle-to-gate embodied carbon assessment of green office building using life cycle analysis: A case study from Sri Lanka, J. Build. Eng., 88 (2024). https://doi.org/10.1016/j.jobe.2024.109155 doi: 10.1016/j.jobe.2024.109155
    [3] K. Batool, G. Ali, K. U. Khan, M. A. Kamran, N. Yan, Integrating role of green buildings in achieving carbon neutrality in an era of climate emergency, Sustain. Dev., 32 (2024), 4186−4201. https://doi.org/10.1002/sd.2883 doi: 10.1002/sd.2883
    [4] J. Mao, H. Yuan, L. Xiong, B. Huang, Research review of green building rating system under the background of carbon peak and carbon neutrality, Buildings, 14 (2024), 1257. https://doi.org/10.3390/buildings14051257 doi: 10.3390/buildings14051257
    [5] M. Alvarez-Sanz, F. A. Satriya, J. Terés-Zubiaga, A. Campos-Celador, U. Bermejo, Ranking building design and operation parameters for residential heating demand forecasting with machine learning, J. Build. Eng., 86 (2024). https://doi.org/10.1016/j.jobe.2024.108817 doi: 10.1016/j.jobe.2024.108817
    [6] F. T. Liu, T. Ouyang, B. Z. Huang, J. Zhao, Research on green building design optimization based on building information modeling and improved genetic algorithm, Adv. Civil Eng., 2024. https://doi.org/10.1155/2024/9786711 doi: 10.1155/2024/9786711
    [7] C. Y. Wang, J. Y. Guo, J. Liu, Green roofs and their effect on architectural design and urban ecology using deep learning approaches, Soft Comput., 28 (2024), 3667−3682. https://doi.org/10.1007/s00500-024-09637-8 doi: 10.1007/s00500-024-09637-8
    [8] C. L. Lee, N. Gumulya, M. Bangura, The role of mandatory building efficiency disclosure on green building price premium: Evidence from Australia, Buildings, 12 (2022). https://doi.org/10.3390/buildings12030297 doi: 10.3390/buildings12030297
    [9] S. Anwer, H. Li, M. F. Antwi-Afari, A. M. Mirza, M. A. Rahman, I. Mehmood, et al., Evaluation of data processing and artifact removal approaches used for physiological signals captured using wearable sensing devices during construction tasks, J. Constr. Eng. M., 150 (2024). https://doi.org/10.1061/JCEMD4.COENG-13263 doi: 10.1061/JCEMD4.COENG-13263
    [10] A. S. Adewumi, A. Opoku, Z. Dangana, Sustainability assessment frameworks for delivering Environmental, Social, and Governance (ESG) targets: A case of Building Research Establishment Environmental Assessment Method (BREEAM) UK New Construction, Corp. Soc. Resp. Env. Ma., 2024. https://doi.org/10.1002/csr.2768 doi: 10.1002/csr.2768
    [11] M. Kamali, K. Hewage, A. Rana, M. S. Alam, R. Sadiq, Environmental sustainability assessment of single-family modular homes using performance benchmarks of conventional homes: Case studies in British Columbia, Canada, Clean Technol. Envir., 25 (2023), 2603−2628. https://doi.org/10.1007/s10098-023-02495-2 doi: 10.1007/s10098-023-02495-2
    [12] V. Nindita, P. Purwanto, J. Windarta, A comparison among the rating systems for sustainability of green building: A review, Environ. Eng. Manag. J., 22 (2023), 1037−1046. https://doi.org/10.30638/eemj.2023.085 doi: 10.30638/eemj.2023.085
    [13] S. Dubljević, B. Tepavčević, A. Stefanović, A. S. Anđelković, BIM to BREEAM: A workflow for automated daylighting assessment of existing buildings, Energ. Buildings, 312 (2024). https://doi.org/10.1016/j.enbuild.2024.114208 doi: 10.1016/j.enbuild.2024.114208
    [14] J. Chen, S. S. Wang, Y. T. Zou, Construction of an ecological security pattern based on ecosystem sensitivity and the importance of ecological services: A case study of the Guanzhong Plain urban agglomeration, China, Ecol. Indic., 136 (2022). https://doi.org/10.1016/j.ecolind.2022.108688 doi: 10.1016/j.ecolind.2022.108688
    [15] Y. J. Fan, H. F. Li, M. G. Zhang, J. Xu, Y. Chen, Research on green assessment method of AHP-EWM prefabricated building based on DEMATEL optimization, P. I. Civil Eng.-Eng. Su., 2024. https://doi.org/10.1680/jensu.23.00021 doi: 10.1680/jensu.23.00021
    [16] P. Zhang, Research on the use of BIM technology in green building design based on neural network learning, IEEE Access, 12 (2024), 94784−94792. https://doi.org/10.1109/ACCESS.2024.3421540 doi: 10.1109/ACCESS.2024.3421540
    [17] Y. Pan, Y. Shen, J. Qin, L. Zhang, Deep reinforcement learning for multi-objective optimization in BIM-based green building design, Automat. Constr., 166 (2024). https://doi.org/10.1016/j.autcon.2024.105598 doi: 10.1016/j.autcon.2024.105598
    [18] U. Yuzgee, E. Dokur, M. Balci, A novel hybrid model based on Empirical Mode Decomposition and Echo State Network for wind power forecasting, Energy, 300 (2024). https://doi.org/10.1016/j.energy.2024.131546 doi: 10.1016/j.energy.2024.131546
    [19] Y. Wang, J. Ren, L. Zhang, D. Liu, Research on resilience evaluation of green building supply chain based on ANP-fuzzy model, Sustainability, 15 (2023). https://doi.org/10.3390/su15010285 doi: 10.3390/su15010285
    [20] F. Yu, J. Wang, S. Dong, S. Ding, B. Han, Understanding the effect of non-carbon-based nanoinclusions on chloride penetration resistance and chloride binding capacity of ultra-high performance cementitious composite, J. Build. Eng., 90 (2024). https://doi.org/10.1016/j.jobe.2024.109460 doi: 10.1016/j.jobe.2024.109460
    [21] C. Lyu, J.Hu, R. Zhang, W. Chen, P. Xu, Optimizing the evaluation model of green building management based on the concept of urban ecology and environment, Front. Ecol. Evol., 10 (2023). https://doi.org/10.3389/fevo.2022.1094535 doi: 10.3389/fevo.2022.1094535
    [22] P. Xiang, S. Yang, Y. Yuan, R. Li, Integrated measurement of public safety risks in international construction projects in the belt and road initiative, Eng. Constr. Archit. Ma., 2024. https://doi.org/10.1108/ECAM-11-2023-1102 doi: 10.1108/ECAM-11-2023-1102
    [23] J. Q. Zhang, H. Zhao, Z. L. Guo, Fuzzy gray clustering evaluation of green building operation effect: A case study of Shenzhen Bay One, China, Kybernetes, 52 (2023), 5977−6000. https://doi.org/10.1108/K-04-2022-0623 doi: 10.1108/K-04-2022-0623
    [24] W. Kong, H. Luo, Z. Yu, Y. Li, C. Wang, X. Meng, Economic evaluation of retrofitting existing buildings from a sustainability perspective: Global trends and bibliometric analysis, Environ. Dev. Sustain., 2024. https://doi.org/10.1007/s10668-024-04663-w doi: 10.1007/s10668-024-04663-w
    [25] S. Ma, Y. Wu, Y. Jiang, Y. Li, G. Sha, Research on two-stage optimization control method for energy storage systems based on multi service attribute utility evaluation, Energ. Source. Part A, 46 (2024), 3041−3060. https://doi.org/10.1080/15567036.2024.2308647 doi: 10.1080/15567036.2024.2308647
    [26] A. Aydogdu, S. Gül, T. Alniak, New information measures for linear Diophantine fuzzy sets and their applications with LDF-ARAS on data storage system selection problem, Expert Syst. Appl., 252 (2024). https://doi.org/10.1016/j.eswa.2024.124135 doi: 10.1016/j.eswa.2024.124135
    [27] Y. Y. Liu, R. Y. Wang, T. T. Wan, A method determining critical operating parameters for landing aircraft based on runway pavement skid resistance, Int. J. Pavement Eng., 25 (2024). https://doi.org/10.1080/10298436.2024.2346286 doi: 10.1080/10298436.2024.2346286
    [28] D. D. Zheng, G. J. Wang, Y. J. Li, Reinforcement model of green building materials based on grey neural networks, Wirel. Commun. Mob. Com., 2022 (2022). https://doi.org/10.1155/2022/4589401 doi: 10.1155/2022/4589401
    [29] G. F. Ma, T. Y. Liu, S. S. Shang, Improving the climate adaptability of building green retrofitting in different regions: A weight correction system for Chinese national standard, Sustain. Cities Soc., 69 (2021). https://doi.org/10.1016/j.scs.2021.102843 doi: 10.1016/j.scs.2021.102843
    [30] S. Yin, B. Z. Li, Academic research institutes-construction enterprises linkages for the development of urban green building: Selecting management of green building technologies innovation partner, Sustain. Cities Soc., 48 (2019). https://doi.org/10.1016/j.scs.2019.101555 doi: 10.1016/j.scs.2019.101555
    [31] M. M. A. Flores, N. A. M. Castillo, V. Á. Vázquez, I. H. Orozco, O. S. Mata, L. A. P. Torres, Environmental impacts estimation by life cycle assessment of bioanodes fabricated from devilfish bone chars and their application in microbial fuel cells to produce bioenergy, Energ. Sources Part A, 46 (2024), 4123−4136. https://doi.org/10.1080/15567036.2024.2329812 doi: 10.1080/15567036.2024.2329812
    [32] J. Shang, Q. Xu, J. Yang, M. Guo, Study on quantitative estimation method of energy saving and emission reduction of renewable energy system based on fuzzy matter-element method, Sustain. Energy Grids, 38 (2024). https://doi.org/10.1016/j.segan.2023.101223 doi: 10.1016/j.segan.2023.101223
    [33] A. M. Hassan, Y. T. Negash, F. Hanum, An assessment of barriers to digital transformation in circular construction: An application of stakeholder theory, Ain Shams Eng. J., 15 (2024). https://doi.org/10.1016/j.asej.2024.102787 doi: 10.1016/j.asej.2024.102787
    [34] M. A. Anshebo, W. J. Mengesha, D. L. Sokido, Selection of the most appropriate sustainable buildings assessment categories and criteria for developing countries: Case of Ethiopia, J. Urban Plan. Dev., 149 (2023). https://doi.org/10.1061/JUPDDM.UPENG-4189 doi: 10.1061/JUPDDM.UPENG-4189
    [35] L. Li, S. Xiao, Z. Liu, C. Wu, S. Li, Study of the factors influencing the life cycle cost of green buildings using SEM-SD method, J. Asian Archit. Build., 2024. https://doi.org/10.1080/13467581.2024.2347956 doi: 10.1080/13467581.2024.2347956
    [36] S. Ouyang, X. Shan, Q. Deng, Z. Ren, W. Wu, T. Meng, The evaluation national green building index based on a survey of personnel satisfaction: The case of Hubei Province, China, Buildings, 14 (2024). https://doi.org/10.3390/buildings14040868 doi: 10.3390/buildings14040868
    [37] X. Chen, H. Wang, J. Zhang, H. Zhang, A. T. Asutosh, G. Wu, Sustainability study of a residential building near subway based on LCA-Emergy method, Buildings, 12 (2022). https://doi.org/10.3390/buildings12050679 doi: 10.3390/buildings12050679
    [38] W. Zhao, P. Peng, B. Guo, X. Deng, W. Wu, Comprehensive social cultural and economic benefits of green buildings based on improved AHP-FCE method, Buildings, 13 (2023). https://doi.org/10.3390/buildings13020311 doi: 10.3390/buildings13020311
    [39] I. Zasada, M. Weltin, F. Zoll, S. L. Benninger, Home gardening practice in Pune (India), the role of communities, urban environment and the contribution to urban sustainability, Urban Ecosyst., 23 (2020), 403−417. https://doi.org/10.1007/s11252-019-00921-2 doi: 10.1007/s11252-019-00921-2
    [40] H. X. Liu, B. Q. Lin, Ecological indicators for green building construction, Ecol. Indic., 67 (2016), 68−77. https://doi.org/10.1016/j.ecolind.2016.02.024 doi: 10.1016/j.ecolind.2016.02.024
    [41] Y. Miao, D. S. F. Yu, W. Tan, S. S. Y. Lau, S. S. Y. Lau, Y. Tao, Crafting sustainable healthcare environments using green building ratings for aging societies, Sustainability, 16 (2024). https://doi.org/10.3390/su16051954 doi: 10.3390/su16051954
    [42] S. Jain, V. K. Jain, S. Mishra, Fuzzy-AHP based optimal RSU deployment (Fuzzy-AHP-ORD) approach using road and traffic analysis in VANET, Ad Hoc Netw., 161 (2024). https://doi.org/10.1016/j.adhoc.2024.103529 doi: 10.1016/j.adhoc.2024.103529
    [43] A. Elomiya, J. Křupka, S. Jovčić, V. Simic, L. Švadlenka, D. Pamucar, A hybrid suitability mapping model integrating GIS, machine learning, and multi-criteria decision analytics for optimizing service quality of electric vehicle charging stations, Sustain. Cities Soc., 106 (2024). https://doi.org/10.1016/j.scs.2024.105397 doi: 10.1016/j.scs.2024.105397
    [44] A. Cao, X. Ma, Z. Cheng, J. Zhang, Y. Hou, Rated load state performance assessment and analysis of ultra-supercritical coal-fired power plant, Energ. Sources Part A, 46 (2024), 4579−4592. https://doi.org/10.1080/15567036.2024.2332467 doi: 10.1080/15567036.2024.2332467
    [45] Z. Yang, J. Zhan, C. Wang, W. Liu, H. Wang, C. Bai, Spatial spillover effects of conversion of new and old driving forces on high-quality development: Evidence from 283 cities in China, Sustain. Cities Soc., 108 (2024). https://doi.org/10.1016/j.scs.2024.105487 doi: 10.1016/j.scs.2024.105487
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(722) PDF downloads(71) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog