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1. Introduction

Fractional (non-integer) calculus is a strong tool for studying all kinds of complicated problems
in applied science and engineering. Because nonlocal properties are suitable to specify memory
phenomena in several real-world problems, fractional differential equations are required to explain
intricate processes more precisely than differential equations (DEs) of integer order, see [1-4]. There
are various distinct definitions of fractional integrals and derivatives in the literature. However,
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fractional operators in the context of Riemann-Liouville (RL) and Caputo senses are the most popularly
used, see a variety of fractional operators, [5—8] and references therein. Recently, a new class of
fractional derivative operators with proportional terms was developed and studied in [9, 10]. After
that, Ahmed et al. [11] presented the idea of the Hilfer-type proportional fractional derivative operator
(HPFDO), and Mallah et al. [12] proposed the y-Hilfer proportional fractional operator (-HPFDO).
For further information on the advantages of these fractional derivatives, refer to the following
studies in regard to, e.g., glass forming materials [13], advection-diffusion [14], Cauchy-problem [15],
filtration processes [16, 17], and calcium diffusion [18].

Integral inequalities are applied in all kinds of mathematical areas, approximation theory,
spectral analysis, statistical analysis, distribution theory, and so on. Due to the importance of
integral inequalities and their applications in the qualitative theory of DEs, they are important in
many disciplines of engineering and applied science [19]. The Gronwall inequality, proposed by
Gronwall [20], is one of the most well-known integral inequalities. It has gained popularity because
it is a useful instrument for analyzing the sufficient conditions of the qualitative and quantitative
properties of solutions for nonlinear integral equations and DEs with integer-order and fractional-
order by providing explicit bounds for solutions. There has been a steady increase in interest in this
field of study to fulfill the demands of numerous applications of these properties. Many researchers
have developed fractional Gronwall inequalities, employing a variety of methodologies to investigate
and propose these inequalities. For more modern works on the Gronwall inequality with a variety of
fractional operators, see [21-28]. Parallel to the increasing interest in the qualitative theory of DEs
under various fractional operators, many researchers have discussed the existence and uniqueness of
the solutions to these equations by using the well-known fixed point theorem. Meanwhile, the stability
of Ulam-Hyer (UH) type is critical in the qualitative theory of linear and nonlinear DEs proposed by
Ulam [29] and Hyers [30]. Rassias [31] extended the UH stability in 1978 to develop the stability of
Ulam-Hyers-Rassias (UHR) type. The UH stability is the most effective stability approach analyzed. It
is a form of data-dependent solution with applications in optimization, biology, economics, and other
fields. Typically, we will study the existence and uniqueness of the solutions to the proposed problem
in the first stage, followed by consideration of relevant differential inequalities. When the proposed
problem under discussion has UH stability, there is a solution to the proposed problem so that both
solutions are close enough. In addition, Wang et al. [32] proposed the fractional UH stability in 2011.

To understand our motivation to do this work, some inspirational works will be presented. In 2014,
Wang and Li [33] introduced new ideas for Mittag-Leffler-Ulam (ML-U) stability of solutions for
Cauchy-type problems under fractional Caputo derivatives using an extended Gronwall inequality,
which differ from Ulam stability: Mittag-Leffler-Ulam-Hyers (ML-UH) stability, Mittag-Leffler-Ulam-
Hyers-Rassias (ML-UHR) stability, and their generalization stabilities. Not long after that, in 2018, by
applying fixed point techniques and the Mittag-Leffler (ML) function, Gao et al. [34] investigated the
existence and uniqueness of solutions to nonlocal Cauchy-type problems under the Hilfer fractional
derivative. In 2019, a generalized Gronwall inequality in the context of y-Hilfer fractional operators
was introduced by Sousa and Oliveira [23]. It was applied to nonlinear y-Hilfer Cauchy-type problems.
Later, Kucche et al. [35] offered a method for solving the -Hilfer fractional Cauchy-type problems
explicitly in terms of ML function. They proved the existence of the solutions for the proposed problem
by using the Weissinger fixed point theory. By using an extended Gronwall inequality, Liu et al. [36]
studied the existence, uniqueness, and ML-UH stability of the solutions to the y-Hilfer fractional delay
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differential equations. Alzabut et al. [24] investigated a new form for Gronwall inequality under the
proportional fractional operators, and they proved the uniqueness of solution to proportional fractional
delay DEs. In 2021, by using fixed point theory of Banach’s and Schaefer’s types, Almalahi and
Panchal [37] established existence, uniqueness, and ML-U results for nonlocal problems of the form

HDZ;ﬁgwu(T) = Au(t) + f(r,u(t)), ac(l,2), Be[0,1], t€((a,b],

(1.1)
u(a) = 0, u(b)—Zu, Yu&), Eebl, i=1,2,...,m, meN,

where 7D is the y-Hilfer fractional derivative of order @ and type 8, ¥ = a + (2 — @), I°V is
the y-fractional integral of order 6 > 0, y; € R,andi = 1,2,...,m, 4 < 0, and f € C((a,b] X R, R).
In 2023, Almalahi et al. [38] investigated sufficient conditions of the existence and uniqueness of
the solutions for -Hilfer fractional integro-differential equations by using Banach’s and Schauder’s
fixed point thoerems with Holder’s inequality. They analyzed ML-U stability results by utilizing an
extended Gronwall’s inequality. Recently, Sudsutad et al. [28] constructed a generalized version for
Gronwall inequality in the sense of the -HPFDO. By using Banach’s fixed point theorem, they proved
a uniqueness result for nonlocal Cauchy-problems under the ~-HPFDO, and a variety of ML-U stability
results are analyzed.

A lot of works are interested in investigating fractional-order coupled systems, which arise in
models for bioengineering [39], financial economics [40], dynamics [41], and so on. In 2023, Almalahi
et al. [42] considered the existence and stability results for a y-Hilfer-type coupled system of sequential
fractional differential equations, while the nonlinear coupled hybrid systems under the Hilfer fractional
derivative operator (HFDO) were discussed in [43]. In 2022, Samadi et al. [44] studied a non-local
coupled system of the HPFDO. In 2023, Ahmad and Aljoudi [45] investigated existence and uniqueness
results for a coupled system of fractional differential equations with non-local integral conditions
involving the Hilfer-Hadamard fractional derivative operator. For some features of the »-HPFDO, we
refer the reader to the work [12]. It is worth noting that research on coupled systems of the ¢-HPFDO
is limited and requires additional development. Motivated by previous modern works [26,28,33,37],
we discuss the following nonlinear coupled Cauchy-type system under nonlocal integral conditions
involving the -HPFDO as follows:

ANty = Lu() + f(ru(®),v(@), TE(a,bl, 0<a<b,
HROP (1) = v(1) + g(r, u(@), (D), T€(abl, 0<a<b,

u@) =0, u(b)= Z@lf W), Eelab], i=1,2,....m, meN, (1.2)

v(a) =0, v(b):zﬂjpfif: u(my), nj€@bl, j=12,....,n, neN,
=1

where HD “BY s the Y-HPFDO of order a; € (1,2), k= 1,2, and type B € [0, 1], p € (0, 1], a < vy :
ay + (2 a)B, A <0,k=1,2,and f, g € C(la, b] xR*,R), pI Z+ is the ¥-Hilfer proportional fractional
integral operator (-HPFIO) of order g € {6;,0;} > 0,0;,u; €R,i=1,2,...,m,and j=1,2,...,n
The structure of this paper is as follows: Section 2 is separated into three subsections. The first part
provides elementary ideas on the y-HPFDO and the -HPFIO, some lemmas, and the basic properties
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of the ML functions that are used throughout this paper. Meanwhile, an extended Gronwall inequality
in the context of the Y-HPFIO is analyzed in the second part. Section 3 derives an analogous integral
equation to the linearly linked y-Hilfer proportional system via constant coefficient in the context of the
ML kernel. Section 3 is divided into two subsections. The uniqueness of the solutions to the proposed
coupled system is established in the first part using Banach’s fixed point theory, and a variety of ML-
UH stability results are studied in the second part. However, we show numerical examples to present
theoretically applicable results in Section 4, while the conclusion part is offered in the last section.

2. Preliminaries

2.1. The y-Hilfer proportional fractional operators (y-HPFOs)

Assume that L9(, R) is a Banach space of all Lebesgue measurable 6 : J — R supplemented with
the norm [|6||z4(q) < +o0, where J := [a,b], and U = C(J,R) is the Banach space of a continuous
function from J to R supplemented with |[u]| = sup,,{[u(7)|}. Assume that g is an integrable function
on J and ¥ € C'(J,R) is an increasing function with ¢’(7) # 0 for all T € J. For easily calculation,
we provide the notation

\I,:Z—I(T’ 5) = e’%(wm—w(s»(w(ﬂ —y(s) . (2.1)
Definition 2.1. [9,10] Let a > 0, p € (0, 1]. The Y-RL-HPFIO of order « of g is given by
: 1 T “
a;y _ a-1 ’ _ a-1_-s
pIm g(r) = @) Wy, (r 9)g( (s)ds, T(e) = f s e ’ds, s> 0. (2.2)
P a 0

Definition 2.2. [9,10] Let a > 0, p € (0, 1]. The ¥-RL-HPFDO of order « of g is given by

R : n—a; Df;‘// ’
SR = o T ) = f ¥y (7, $)g(W (s)ds, (23)

where n = [a] + 1, [a] denotes the integer part of a, and pD";‘/’ = pD‘/’ . pD'/’ ‘e pD'/’ and

n-times

g'(0)
De(r) = (1 - p)g(t) + . (2.4)
oY 8 P8 p e
Definition 2.3. [9,10] Let a > 0, p € (0, 1]. The ¥-Caputo-PFDO of order « of g is given by
. : 1 T
C~asy _ n—ay ny _ n—-a—1 ny ’
8=, 1,77, D"e(r) = mj; Wy, (1,9), D g(s)y (s)ds. (2.5)

Definition 2.4. [12] Leta € (n—1,n),n e N, p € (0,1], B € [0,1], g € C'(J,R), and ¥y € C'(J,R),
forall T € J. The y-HPFDO of order a and type 8 of g is given by

H By _  7Bm—a)y ny (1-B)(n—a)y _  7Bm—a)y v
p Da+ g(T) - pIa+ (pD )pIa+ g(T) - pIa+ pDaJr g(T) (26)

From Eq (2.6), we obtain the following two derivative types:
n n—a;y : _
pD pI ~ &) if =0,

o g(r) :{ vt ey 27
oL P if B=1
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Lemma 2.5. [9,10] Letp € (0, 1] and a; > 0, i = 1,2. If g is continuous defined on J, we have

]'Clllﬁ I(Yzl// (T) — a1+az¢ (T) — Gzlﬁ 7o lﬁg(T).

p~at p~a* pa+ pa+pa+

Lemma 2.6. [9,10] Letp € (0,1]and a; € (n— 1,n] withO < a, < @y, n €N, i = 1,2. Then,

SO0 ThVe(r) = T8 g(1).

Lemma 2.7. [12] Letp € (0,1], € [0,1],anda € (n—1,n), y € (n—1,n), y := a + B(n — a), where
neN. IfgeCy(J)and I Z:Wg € C) (), then we obtain

-Z-Cll//HDdﬂl// (T): (T)_i \Ily_j(T ) ( ]7¢ (a)) (2 8)
p~at p 8 8 < P Ty —j+1)¥ @ 8 ‘

Lemma 2.8. [28] Letp € (0,1], 8€[0,1], and a; € (n—1,n), i = 1,2 with ay > ay + B(n — a,) where
neN. Ifg e C'(J,R), then

AR 1ele(r) = T V(). (2.9)
Proposition 2.9. [9,10] Letra >0, 6 > 0, and p € (0, 1]. Then we have
I'(6) _
aw 5-1 5—1+a
L9 )| = ey B ma) (2.10)
Proposition 2.10. [12] Leta € (n—1,n), B [0,1, p€ (0,1, y =a+B(n—a), n = [a] + 1. Then
we have °T(6)
Heaa B [\go-1 _ P o-1-a
Bt |99 ()| = fo_w W ma, >0 SeR (2.11)

Now, we give some details about the classical and generalized ML functions, E, and E,g,
respectively, which are applied throughout this paper.

Lemma 2.11. ( [46], Lemma 2, Page 1862). Let a; € (0, 1), i = 1,2. If the three functions E,,, E,, a,,
and By, 4, +a, are nonnegative functions, we obtain the following relations:

1
Ee 040, (2) £ =——, V2 <0, (2.12)

E, =E, <Il, E4na <
1(Z) 1,1(Z) 1s I(Z) F(Cl’] + a/z)

L(ay)’
Wlth Ea] (O) = 1: Ea],al(o) = 1/F(Cl’1), Eal,al+az(0) = 1/1—‘(“1 + a’z), and
Zk

kzz(; T((k+ Day + @)’

zeR, a,a > 0.

(o) k
Z <
E = _ E =
@ (@) k:O I'(ka; + 1) and . B m ()

In addition, for any A < 0 and 7y, T, € I, we get the following result:

Eoy 40 (A(Y(T2) = Y(a)™) — Eoy oy +a (AY(T1) — Y(@)") as 1, - 1.
Lemma 2.12. [28] Let @, 6, u € R*, and A € R. Then, we have the following properties:

B 957 (1, B,us(p ™ (W(0) - w(@)")| = p"¥ " (1.0) Bypoal Ao (0(T) — (@))),

1
[ OB W@ - w@))] = DT @B (7 (W) - p@)).
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Lemma 2.13. [28] Leta > 0,8>0,k>0,p € (0,1], 1 €R, and g € C(T,R). Then
Aol [ f T W5 (7, )Eqa(A0™(U(7) - w<s>)“)g<s)w'<s>ds]
= ,% f (2, 5) B (A (D) — (5)) N (W (5)d. 2.13)
Lemma 2.14. [28] Let(n+ Da>k>0,8>0,p € (0,11, A€ R, and g € C(J,R). Then,
i [ f T Wi (@, 9)Baa(Ap ™ (Y(7) - w<s>)")g<s>w'<s)ds]
= o f T W5 (1, 9B ai(Ap™ (W(T) = () )g(s)W (s)ds. (2.14)

2.2. A generalized Gronwall inequality via y-HPFIO

Theorem 2.15. (A generalized Gronwall’s inequality via the y-HPFIO) Suppose that p, @; € R”,
i=1,2 and y € C'(J,R) is an increasing function so that y'(t) # 0, Yt € J. Suppose the following
properties:

(Py) The functions u(t), v(t), and k; are nonnegative locally integrable on [ fori =1,2;
(Py) ¢i(1) are nonnegative, nondecreasing, and continuous functions defined on T € , i = 1,2, such
that ¢;(t) < ¢, where ¢; € R fori=1,2.

If
W) < k(@) +p" (@) (1), 10 v(T), (2.15)
W) < k(1) + P T(@)da(0), T u(t), (2.16)
then
o " [M@)T(@2)¢1 D@ iarsan-
w1 < k(@) +p"T(a)g (1), I8 k(1) + f ; lr(k(; ;az))z pherre-l(g )
X (k1(5) + p" T(@)p1(8), T2 ka(9)) W/ (s)ds, 7€ T, (2.17)
o "o [Tl (@) @)@ ko
WD) S Kol®) + P a0, T K (7) + f R ey )
X (ka(5) + p"T(@)pa(8), T3 ki () W (s)ds, T€T. (2.18)

Proof. Define two operators

Biv(1) = ¢(7) f W' (s (s)ds  and  Bou(t) = ¢a(7) f W2 (7, yu(s)y (s)ds.
From (2.15) and (2.16) imply that
u(t) < k() +Bv(r) and v(1) < k(1) + Bou(r). (2.19)
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By using (2.19) with the monotonic property of 8, and 8,, we have
wt) < k(1) + Bv() < k(1) + Biko(T) + B1Bok (1) + B1 BB 11y (1) + (B18,)*u(7).

By iterative procedure, form =1, 2, ..., we get
m—1 m—1
u(® < D (BiB) 1) + ) (BB Biwo(r) + (B1B:)"u(), 7€,
k=0 k=0

where (B,8,)% (1) = k(7). Similarly, for T € J, one has
m—1 m—1

V(1) < ) (BB 1a(T) + D (BB Baki () + (B281)"v(0),
k=0 k=0

where (8,81)k (1) = k2(7). Next, we will show that
L@ (2)¢1 (1) ()] e ta)-1

(B:1B)"u(r) < f [ Ton(ar + @) v (1, Hu(s)y'(s)ds, (2.20)
(BQBl)mV(T) < fT [r(allzl(_":zij?-l'—(zii(‘r)] \Pg(mﬂn)—l(n s)v(s)g[/(s)ds, (221)

and (8,86,)"u(t) — 0 and (B,B,)"v(tr) > 0asm — oo fort € J.
Note that (2.20) holds when m = 1 with the property that ¢,(7) is a nondecreasing function, ¢,(s) <
¢,(7), for any s < 7, that is,

(B818y)u(t)

$1(7) f ¥, S)(¢2(S) f Wil (s, r)u(r)w%r)dr)w'(s)ds

IA

$1(T)pa(7) f ( f W (T )Wy s, r>w'(s>ds) u(r)y’ (rydr

IA

$1(1)pa (1) f ( f e 7 YOV (1) = y(5))" !

p—1

xe OO () =y (s ()
- oo [ " o o

><( f (W) = ()™ (W(s) - w(r))‘”_lel"(S)dS)u(r)w'(r)dr- (2.22)
By modifying the variables ¥(s) — ¥/(r) = z(¥(1) — ¥(r)), inequality (2.22) reduces to

$1(1)g2(7) f T OO () - ()

s =) [ ws) - ,
X(f [“ww—mn] [w(r)—wm] sl ar

T 1

¢1(T)¢2(T)f ‘I’Z‘mz_l(?’, s)(f (1 —Z]al_lZ“z_ldz)u(s)w’(s)ds
a 0

_ f‘r F(a1)F(a2)¢1(7)¢2(T) \Pal+az—l

[(a; + ay) v

(B1B2)u(7)

(t, )u(s)Y'(s)ds.
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Let inequality (2.20) hold when m =k, fork = 1,2, .., that is,
" [M@)T(@)$1 (M2 e ran- ,
(818, u(r) < f DL syu( sy (5.
For m = k + 1, by using mathematical induction, we have
(B8182) " u(r)
" [M(@)T(@)¢1 (DD ptarsan-1 :
< B8, ( ) Tk(@, + ) ‘I’w (T, S)u(sW' (s)ds
< f r(all)F(QZ)¢1(T)¢2(T)\PQI+<12 . 5)
a I'(a; + a2)
[T(a)T(@2)$1(s)¢a(s)]* k(a1 +a2)—1 , ,

X (L Fk(@, + ) ‘I’ (s, Nu(r)y' (rdr | (s)ds

. [M@r@)p 6@ (7 i)

['(a; + a)l'(k(a; + az))
X ( f (1) — ()™ (W(s) - w<r>)"<“”“”‘1w'<s>ds) u(ryy' (r)dr

_ [C(a)T(@)¢1 (Do (D] [ e‘%l(w(r)—z//(r))( (T — () D2

(e + a)l(k(e; + a2))
X( f‘r - M]al+a2_l [Mlk(al+a2)_l
SRS A Y(T) - ()

r r ! = +1) (a1 +a2)-
= [r81)+(322))ﬁ(11§(2?2+(2]2)) &5 WOy (r) — g (ry) R

1
X(f [1 _ Z]111+(l2—1 Zk((ll+az)—1dz)u(r)w/(r)dr

0
_ fT [C(a)T (@)1 (D)da(0)]! b+ D@ +a)-1

l//’(s)ds)u(r)d/'(r)dr

T((k + D(e1 + @) v (7, u(r)y (r)dr.

In the same process of the proof of inequality (2.21) with the property ¢;(s) < ¢,(7), for any s < T,
we get

" [N (@)$1 (M2 riyiarsan- ,
(BB vl < f | R+ D+ ;»] B ey
Now we show that (8,8,)"u(r) — 0 and (B,8;)"v(t) - 0asm — oo fort € J. Since ¢,
¢ € C(J,R), then, by Weierstrass’s theorem [47, 48], there are positive constants ¢} and ¢3 such that
$1(7) < ¢ and ¢,(7) < ¢; for any ¢ € J, which yields that

) “[Fenr@eg]” ,
(B18B)"u(r) < f Ton(@ + @) ‘I’w (T, S)u(sH' (s)ds. (2.23)

Since u is nonegative and locally integrable on 7, then u is bounded on J. There exists a positive
constant M, such that |u(7)| < M,. Inequality (2.23) can be re-written as

m M, ¥ gl +an m
(B182)"u(t) < Tm@ ta) D [Tl T(@2)g1 655 (b, )| (2.24)
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By applying Stirling’s formula, n! ~ V2rn(n/e)", to (2.24), which implies that

(ay+ay) ym
C(aDT(a2)p; 3, " (b, a) (
(BB u(r) <« — 2 [ 2 1 )" ] , (2.25)
\/27((“1 + CYz) mm((zl+<12)+§

and this yields that (8,8,)"u(t) — 0 as m — co. We obtain that

. & [Ta)T '
u) < K1(T)+¢1(T)f 11;:;1—1(7_’ S)Kz(s)l/,’(s)ds+f Z[ (QIIZ(IE?;?(T(Z;Z))Z(T)]

k=1

X‘I’];,(mmz)_] (7, 5) (Kl () + ¢1(s) fs ‘P:;l_l(s, r)Kz(r)t,//(r)dr) W' (s)ds.

Then, inequality (2.17) is obtained. Obtaining inequality (2.18) follows a similar process. O

If we take ¢;(t) = b for i = 1,2 in Theorem 2.15, then we obtain the following result.

Corollary 2.16. Assume that a;, i = 1,2, p, and ¢ € C(J,R) is an increasing function so that
W'(t) # 0 for all T € J. Assume that the functions u(t), v(t), and k;(t) are nonnegative locally
integrable on J, ¢p;(t)=b >0,i=1,2. If

u(t) < k() +bp"T(a),Iv(1), 1€, (2.26)
V1) < )+ bp"T(@) I3 (), 1€, (2.27)
then,
e [preore]|
u(r) < k(1) +bp"T(a), I8 k(1) + f ; @ T o) P ez, )
X (k1(5) + bp™ T(@), Tt ka(5)) ¥/ (s)ds,  T€ T, (2.28)

e & [Prenra@)|

V(1) < K(T) + b2 T(@y) TV k(1) + f Marra)=l oz oy
AT e ; ; T(k(a) + @) *

X (ka(5) + bp" T(@2) T2 k1(5)) W/ ()ds, T€T. (2.29)

a+

Corollary 2.17. By the assumptions in Theorem 2.15, assume the functions k;(t) are nondecreasing on
te9J,i=1,2 Then,

$1(Dka(T)Y, (1, 0)

u(0) < |1 (0) + — ]Ealmz(r(al)r(az)czsl(r)«zﬁz(f)(w(r) Sg@)t),  (2.30)
o (D1 (W (b, )
V(1) < [Kz(T) " — ]E (C(@)T(@)é (D@ — @)™  (2.31)

Proof. Applying (2.17) and (2.18) provided ¢;(t) are nondecreasing functions for any 7 € J imply
that x;(s) < k;(t) fori = 1,2,
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[C@nT@)¢1 (DD itarzan-

W) < k(@ +p"T(a)d) (1), 10" (1) + f Z Tkie, + 22)) ) (T, 5)
X (k1(5) + p" (@)1 (0), T ka(9)) @/ (5)ds
1 . [T(@)T(@2)¢1 (DD i ras
o e S ALY 3 e ><T,a>]

k=1
[T (@)1 (D)) Wy (7, a)
Z Tk(a; +az) + 1) '

1
[Kl (7) + a—1¢1(T)Kz(T)‘PfZ' (7, a)]

k=0

p-1

Since 0 < ¢ 7 YOV < 1 foralla <t < b, we have

1 v
u(t) < [Kl (1) + a—1¢1(T)Kz(T)‘I‘fZ‘ (b, a)] Eay 0 (T(@)T(@2)1 (Do (D)(Y(T) = (@) ™).

Then, inequality (2.30) is obtained. In the case of inequality (2.31), obtaining it follows a similar
process. O

2.3. The linear coupled y-Hilfer proportional system via constant coefficient

In 2023, Sudsutad et al. [28] presented the Cauchy-type problem with constant coefficient in the
context of y~-HPFDO

H@”’ﬁ;”bu(T) =Au(t)+h(rt), aem-1,n), pel0,1], p€(0,1], T €(a,b], 2.32)
pI(ifwu(a) =c¢j, c;eR, j=1,...,n, a<y=a+n—-a)f, 1<0, j—y>0, '
which has an explicit solution in form of the ML function
u(® = Z — L (2,0) Byt (A9 (A7) = )"
+—f Yy 11, 8) Bao(A0™ (Y(1) — () ()¢ (s)ds. (2.33)

Next, we demonstrate the following auxiliary lemma to determine the solution of the proposed
coupled system (1.2).

Lemma 2.18. Suppose that g € [0,1], p € (0,1], h; € C(T,R), fori = 1,2, and ©,0, # A|A,. Then,
the unique solution of the proposed problem

" D u(r) = Lu(t) + (1), @€ (1,2), yi=a+Q2-a)B, TE(a,bl,
A1) = v() + (1), @ €(1,2), v =ar+@2- @B, 7€ (a,b],

w@ =0,  ub)= Ze,pfj; W&,  &eabl, i=1,2....m, (2.34)

v(a) =0, v(b)—zu,p “uty), mpe@bl, j=12...n,
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can be presented under the equivalent integral equations as follows:

¥, a) N
M(T) - p71—1(® @2 _ A A ) Eala?’l (/llp (w(T) - lﬁ(a)) ):|
X ®2( pw f P 01y By gy (1P~ (W0,) = ()™ i ()W (s)ds
1
+IE \sz—l (b, 8) By, (L2p™ > (W(b) — Y())* Yo ()Y (s)d s)
N 91’ i i+ar— —a @ ’
—Az(zlmf Wy (& 9)Bay grvas (a2 (W(E) = Y(5) ™ a(s)Y (s)ds
i=1 a
1 b
o |09 B (07 ()~ 91(9)” )h1<s>w'<s>ds)]
1 ’ (¢31 ’
e W7, 5) By (10" (0(7) = ()" i (s (5)ds. (2.35)
~ ‘Pf_l(r, a) . o
() = pyz_1(® 0, — A|Ay) Eﬂzo’z(/lZP (‘/’(T) - l//(a)) )]
g AI( " 2 g f W 0 9B gy (1™ (W0 = ()" i) (5)ds
tom Tsz‘l(b, $) Bay.an(op™ > ((b) — w<s>)“2)hz<s>w’<s>ds)
= 01’ ! i+an— —a @ ’
_QI(Z P f W& ) By 5000 (Ao (W(E) — () ™o)D (s)ds
i=1 a
1 b
oo | T 09 By (g™ 0) — vy (s)W(s)ds)]
1 T
+E ‘I’Zz_l(r, 8) Eap.ar (120" (W (1) — () o (s)Y (s)ds, (2.36)
where
¥y b,a) .
A =~ Bun (™ 00) ~v@)™), k=12, (2.37)
"y (@ a)
® = ) = i) o Bavgpen (0 () — (@)™, (2.38)
J=1
6, (€ a)
© = ), ifs—l Eay 61072 (Ao (&) = p(@))™). (2.39)

i=1
Proof. By applying (2.33), the general solution for the proposed coupled system (2.34) has the form
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a
u®) = o Ba (e 0 (@)
P (1, a)
& ZM a1 (o™ (WD) — (@)™)
1
vz I 0,8) By (™ 00) = ) Vi () (5)ds,
d \Pf‘l(r, a) .
v(r) = PVT Eayy, (0™ (Y (1) — ¢(a))™)
&Y (1, q)
+2ZI)T Eaz,yz—l(/lZP_az(l/’(T) - w(a))az)

‘P‘“ (1, 8) Bayar (1202 (W(T) = (5)) Yo ()W (5)ds,

0'2

where ¢, = 7. u(a) € Rand dy = ,7.."*"v(a) € R for k = 1,2.

(2.40)

(2.41)

Setting 7 = a to (2.40) and (2.41) with lim,_,,(¥/(7) — ¥(a))* > = o0, i = 1,2, we obtain ¢; = d, = 0.

Setting 7 = b to (2.40) and (2.41), we have

clwgl‘l(b,a)

u(b) o

Eoyn (Lo~ (¥(B) — ¥(@))™)

E(II o1-1 (/llp_al (l/’(b) - lr//(a))a1 )

1 «
o [ 009 B (™ 0 = 06 oW (9

4V} (b,a) )

7 Baun(p™ (0 (b) - Y(@))™)
P

&L¥22(b, )

+2ZT Easys1 (Ap™ (W) = ¥(@)™)

‘P"z "B, 5) Bay a0y (0™ 2 (W(B) — () Ya(s)Y/ (5)ds.

v(b)

+
p
By applying Lemma 2.13 and Lemma 2.12 to (2.40) and (2.41), we obtain that

Z 15, 75 u(n))

c :u'\PYI 1 Qj(ﬂ‘»a) o
= e (T (W) — @) ™)

p71_1+é’j

Y1—240;j
G j\P¢l '(nj,a)
+ P —2+9;

Eal,yl—l+gj(/11p_m (lﬁ(ﬁj) - '70(51))01 )

w1+Q, f lPal+Q] (77], S) Eal (11+QI(/11P_01(1,0(77]) - (S))a1 )]’ll(S)Iﬂ (S)ds

(2.42)

(2.43)

(2.44)
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24455

and

Z 6, 77 v(&)

di6,97 " (&, a)
- By yn+,(Aap™ (&) — w(@))™)

pyz 1+6;

d29 P a)

p’yz —2+46;

Eo, yo-146,(A2p " (Y(&) — W(a))™)

0; @
* f WG ) By agen (Aap 2 (W(E) — W() (oW (s)ds.  (2.45)

From the nonlocal integral conditions with (2.42), (2.43), (2.44), and (2.45), we obtain the system

-0
A1C1 - ®2d1 = Z f \P(s razs 1(61 S)Eaz 6+az(/12p_a2(w(§l) - l//(s))az)hZ(s)lr// (S)dS

— p5+(1/2
1 ] ’
—[g ‘Pa‘_l(b,s) Eo, o (210~ (Y(b) — ¥($))" Y ()Y (s)ds, (2.46)
Orc1 — Moy = —pr f W s 9B gy (0™ (W) = () Vi (W ()ds
+E f ‘PZZ_I(b, $) Eay.ar (A2p™ 2 (Y (b) = y(5))* o (s)y (s)ds. (2.47)
As a result of the solution of Eqs (2.46) and (2.47), it follows that
1 1
@ mM f Wy (B, 5) By, (20~ (WD) = Y(5) ™ Yha() (5)ds

_Zpé)ﬁm f \Pgﬁm l( Mjs $)Eo, 9,+m(/11p_a‘(lﬁ(77]) l//(s))al)hl(s)w (S)ds)

_Az( P i f W By g0 (Ao (WED — () V)W ()
i=1 a

1 b
|9 B (T ) ) )m(s)w'(s)‘”)}’
1 1
dy = m[A ( o f Wy~ (b, $) Eayan (Aop™ (D) = ()™ Vo) (s)ds

_ZPQ T f \1191“’1 l( 1) $)Ba, Q/+fll(/11p_m(lp(77]) W()" i ()’ (s)ds)

0
-0, ZW ‘1’6”2 (& ) 64a: (Aap™ 2 (W(E) = Y(8)) oW (s)ds
porer J,

i=1

1 b
o W57 (b, ) By (410" ((b) — (5))™ )hl(S)l//'(S)dS)]-
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Then, after inserting ¢; and d; for i = 1,2, into (2.40) and (2.41), we obtain (2.35) and (2.36),
respectively.

On the other hand, direct computation easily confirms that the reverse scenario is correct. The proof
is finished. O

3. Main results

In view of Lemma 2.18, we provide a fixed point problem related with (u,v) = Q(u, v). Define the
operator Q : Ux U — U x U, that is Q(u, v)(1) = (Q(u, v)(1), Q> (u, v)(1))” , where

Qi (u, v)(7)
¥, a)
PO, ®z —AIA )

Em 1 (/11,0_01 (lﬁ(T) - lp(a))al )]

x| @, - B ‘P 01y 9By yr0n (1™ (@07) — Y(8)) ™ o ()W (5)ds
pQ} 1

+pa2 ‘P"z '(B, 9) Bayay (o™ (W (D) = Y())™) G ()Y (S)dS)

_AZ( pa,-l}m f W5 By 00 (Do~ 2 (W(E) = Y(9))™) G (W (s)dls
i=1 a

1 ’ @] ’
_F ‘P:Zl_l(b, 5) Bay 0, (2107 (W(B) — ()" ), ()Y (s)ds)]

om 0,9 By, (0™ (00) — Y VP (W (5, (3.1)
Q. 1)(")

¥ (r,a)
PO, ©; -~ Midy)

B (™ (1) — w(a»‘”)]

X

Al - Ta \PQH'(YI ( nj, S)Em Q,+a|(1lp_m(¢’(n]) - l//(s))al)Fu v(S)lﬁ (S)dS
ij 1

1
+ =) ‘PZz_l(b, $) By 0, (2p™ (YD) - w(s))“z)Gu,v(s)w'(@ds)

—®1( e f W () B gyras (o™ (WED — Y()) G (I (5)ds

1 @ /
_pTl \P:Zl_l(ba S) Em,m (/llp_al (lﬁ(b) - lﬂ(s)) )Fu,v(s)w (S)ds)]

¥ (1 8) B (0™ (1) = (5)™)Cuun ()0 (5)dls, (32)

with F, (1) = f(r,u(7),v(7)) and G, (1) = g(r,u(r),v(7)). Accordingly, the product space (U X
U, ||(#, v)||) is a Banach space supplemented with the norm [|(x, v)|| = |lul| + ||[v|| and the existence of
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fixed points of Q corresponding to the existence of the solutions for the proposed coupled system (1.2).
For ease of computation, we give some symbols:

¥y 0. a) k=1,2 33
W1k m, =1,2 (3.3)
7.0 k=12 (3.4)
w = b = b b .
2 P 1T (1,)]0,0, — AjA,|
BV (b,a) & Il ¥y (@)
Y = —Y . BT e{ALO)k=1,2, 3.5
w3(E,T) T + 1) ]Z:; o T (0, + 1) {Ak, O} (3.5)
BN (b.a) & 6N E a)
Y = — Y . BT E(ALO)k=1,2, 3.6
w(ET) = e 21 o (A, O} (3.6)
Q) = w1t w1w3(A2,0;) + W pw3(O, Ay), (3.7)
Q) = Win+ wr1wa(O, Ar) + wrrwa(Ay, Oy). (3.8)

3.1. Uniqueness result by Banach’s fixed point theorem

By using Banach'’s fixed point theorem, the uniqueness result for the proposed coupled system (1.2)
is proved in this subsection.

Lemma 3.1. [49] Assume B is a non-empty closed subset of a Banach space U. Then, any contraction
mapping Q from B into itself has a unique fixed-point.

Theorem 3.2. Suppose ¢ € C*(J,R) where /(1) > 0, T € J, and f, g € C(J x R%,R), satisfying the
following assumption:

(Ay) There are constants L > 0 and K > 0 so that
lf(r,ur,v) = f(ryup, vo)l < Luy —wo| + vi=va), T€T, uvi €R, i=1,2. (3.9)
lg(r, ur, vi) = (T uz, )l S K (luy —ua| + vi =wal), 7€ J, wi,vi €R, i=1,2.  (3.10)
Then, the proposed coupled system (1.2) has a unique solution provided that

QL+ QK < 1. (3.11)

Proof. Define sup, . ; [Foo(7)| := F < o0, sup,. 4 |Goo(7)| := G < 0, and a bounded, closed, and convex
set Bg € U X U where Bg := {(i#,v) € U X U : ||(u, v)|| £ R} such that the radius

R > 917: + ng
1 - [QIL + qu(]

> 0.

Now, the process of the procedure is divided into two processes:
Step 1. We show that QBg C Bg.
For any (u,v) € Bg, 7 € J, we have

(@I < [Fup(7) = Foo(Dl + [Foo (Dl < L(lull + W) + F, (3.12)
Guy(@I < 1Gun(7) = Goo(D + [Goo (D] < K (lull + VD + G (3.13)

A
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By applying properties in Lemma 2.9 and Lemma 2.11 with (3.12) and (3.13), we obtain

1Q; (u, v)(T)
‘I’l‘_l(r, a) |
P00, — AjA,|

By (0™ (00 — (@)™ ]

><|®2|( L“ f WG, 5) [Baygvan (1™ (00, = ()™ IBun ()1 ()5
= P

b
09[R (o0~ y(5)") lGu’v<S>l¢’<S>dS)

0 > i an ’
+|A2|( L' f W& 8) [Baysvar (ap ™ (W(E) = 4(5))™)] 1Gun ()W (s)d s
\le‘%b, $) [Eay o (A1 (W(b) — w()™)] |Fu,v<s>|w'<s>ds)]
o w (7, 9) [Bayor (1ip™ (1) = ()™)| IFun (I (5)d s
‘Im (1, a) I M (), @)
v ? JV J?
< |5 T0)0,0, - A, AZ|H'®2'(W””” + vl +ﬂ; P T(o; +a1)

Y52(b, a) 6,195 (& a)
[7<<||u||+||v||)+g]m) |A2|([7<(||u||+||v||)+§]Z TG+ 0
HL F s 7l 0
+H[Lllull + VI + ]m) + [ L(lull + VID + ]m

_ [ W . Vb, a) (IAzI‘P“l(b ,a) Z |®2||Nj|lyij+m(77j’a))]
= |pmT(@ + 1) pn-I0(1))10,0; — A A\ p* T(a; + 1) P2+ (0 + ay)
(b, a) 10,|¥* (b, a)
v ’ /A
Ll + )+ 7+ e AlAzl(p"ZF(a/z =
" A6V (& @)
Z] TG T4y )[(K(nun + vl + 6]
= [wl,l + Wy 1 w3(Ay, O [ L ull + IIVIl) + F ] + w2,1w4(®2,A2)[7< (el + VI + G]
< [L(wrg + wr1w3(A2,07)) + Kwa1wa(O,, Ay)]R

w1, + wa1w3 (A2, 02))F + Wy 1W4(Or, Ar)G.

Similarly, we obtain the following result:

1Qu(ut, V(D)
¥ (b, a) O bya) &y A
d L 2 oy O TN Gl + vl + ]
P T (72)1010, — A Ao\ p*T(; + 1) = pr e+ a
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[ e ¥ (b,a) AIE B0 i ©1116.15 (&, @)
pel(a+ 1) p 'T(12)010; — A\ pT(ar + 1) &4 po* L5 + ar)
X[K (lull + V) + G]
w2 2w3(O1, AD[L (lull + V) + F ] + [wi2 + wapws(Ar, ODI[K (llull + [VI) + G]
[Lwrpw3 (01, Ar) + K(wi 2 + wrpwa(Ay, 01))]R
+w2 w3 (01, ADF + (w12 + wrpwa(Ay,01))G.
Consequently, [|Q(u, v)|| < [Q1L + LK|R + Q1F + QG < R, which implies that QBg C Bg.
Step 2. We will show that Q is a contraction.
Now, let (u;,vy), (#2,v,) € UX U and for all T € J, we have
[Euy 0 (8) = Foppoy (5)] L(Jluy — up|l + |lvi = vall), (3.14)
Gy 0, (8) = Gy, (8)) K (luy — uall + [[vi = wal). (3.15)

By applying Lemma 2.9 and Lemma 2.11 with (3.14) and (3.15) again, one has
Q1 (1, vi)(T) = Qi (12, v2)(7))

IA

IA

IA

B ‘Pl‘_l(‘r, a) ]
e T ()00, - AA,]
Y Il P ,
X[|®2|( Z pg-f+alr(;j +ap) lePj+ 1 l(nf’ NE 0, () = Fup oy (9 (5)ds
=1 a
1 b |
+pa2r(a, ) f ‘sz (D, 9)IGy, ., (s) = Guz,vZ(s)Iw'(s)ds)
2 a
N |64l Y it ,
A \P i 2 ) Gu , _ Gu ) d
3 2'( 2 ray Jy o E M) = G (s
1 b |
+pa1r(a, ) f \PZI_ (b, IE,, 1, (s) — FMZ,VZ(S)lw'(s)dS)]
1 a

1 T
+——— | ¥, (1, 9)IF,, 0, (8) = Fuy o, ()Y (5)d's
T f M) ( W' (s)

Y7 (b, a) T (5, @)
v ’ Jhy J»
® E - + -
[p%—lr(yl)|®1®z—A1Azl]' 2'( g, +ap M el + = el

¥, (b, a)
Ty 1y L~ wall + i - VzH])

- |91'|‘I’((;"Jray2 &, a)
+|A2|( > o az)w[nul — |+ vy = vall

i=1

IA

J=1

\le (b, a) \le (b, S)
t— - + - + — - + _
pmr<a1+1)£[””1 o] + v vz||]) v 5 Ll =l + vy = vl
_ [ qul(b’a) . \Illl—l(b,a) (|A2|\Ifgl(b,a)+Z”:|@)2||Mj|\ljij+m(nj,a))]
p"T(a + 1)~ pr ' T)I010; = Aidy\p" T + 1)~ & p™iT(g; + a1)
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xlﬁ[ll I+l ||] + l%ﬁl(b, a) |®2|‘P32(b, a)
uy — up Vi — V2 o IT(y)O10, — A A\ p®2T(ay + 1)

Sitar
+§]mﬂzikifi?“ [ = sl + vy = v

= [wi1 + wy1w3(Ar, @) L[[luy — o]l + [[vi = v2l]
+W2,104(02, A) K[l — upll + [[vi = vall]

< (w1 + W 1w3(A2, 02)).L + wr1w4(02, Ay K]R. (3.16)

On the other hand, we get

Q2 (11, vi)(T) — @ (uz, v2)(7)]

wW22w3(O1, A L|luy — us|l + [[vi = wall]

Hwio + Wrwa(AL ODIK]lluy — sl + [lvi — vall]

[w220w3(O1, AL + (w12 + wrpwa(Ar, B))K]R. (3.17)

IA

From (3.16) and (3.17), one has ||Q(u;,vi) — Q(uz, vo)|| < [Q1L + QKR. Since QL + QK < 1,
then, Q is a contraction mapping. Then, by Lemma 3.1, Q has unique fixed point, which is the unique
solution of the proposed coupled system (1.2). O

3.2. The Mittag-Leffler-Ulam stability and its generalization

This section proves the ML-U stability for the proposed coupled system (1.2) by means of the
integral representation of its solution provided by u(7) = Q;(u, v)(t) and v(1) = Q,(u, v)(1), where Q,
and @, are defined by (3.1) and (3.2), respectively. Next, we give some definitions of ML-UH stability
for the proposed coupled system (1.2). Let A < 0 and f, g € C(J X R%,R).

Definition 3.3. The proposed coupled system (1.2) is called ML-UH stable, if there exist € > 0, €, > 0
so that, for every € > 0, and for any solution (u*,v*) € U X U of

[F D0 u* (1) — L' (1) = By o (1)
[FDEFv (1) = 42" (1) = Gy (7|

IA

e, 17€J, (3.18)
e, 17€J, (3.19)

IA

there is a solution (u,v) € U X'V of the proposed coupled system (1.2) satisfying

(1, v) = @, VN < (€ + CEBy, 1oy (ko (W(T) — (@)™ ™), k>0, T€J. (3.20)

Definition 3.4. The proposed coupled system (1.2) is called generalized ML-UH stable if there are
two functions xys, X, € CR*,R") with x(0) = 0 = x,(0), so that for every € > 0, and for any
(w*,v) e UxUof
[ D5 (@)~ 4’ (@) = B @] < x0T, (3.21)
|F D (1) = 1" (1) = G e ()| < (D), TET, (3.22)

A\

there is a solution (u,v) € U X U of the proposed coupled system (1.2) satisfying
(2, v) = @V < (Op(€) + Xg(O)Bay oy (Kpg(W(T) = (@)™ ™), k720, 7€F.  (323)
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Definition 3.5. The proposed coupled system (1.2) is called ML-UHR stable with respect to another
Sfunction ®(7) if there exist €, > 0, €,, > 050 that for every € > 0, and for any solution (u*,v*) € UxU

of
D0 U (1) — L' (7) = By (0)|| < €®(r), TET, (3.24)
||Hz>“2ﬁ ") = v (1) = G (7)]| € €D(1), TEJ, (3.25)

A

there is a solution (u,v) € U X V of the proposed coupled system (1.2) satisfying

I, v) — ", V) < (€, + €4, )eD(T)Eqy 10, (Kfy 0 (W(T) — (@) ™), 1€, (3.26)

where K, o, 2 0.

Definition 3.6. The proposed coupled system (1.2) is called generalized ML-UHR stable with respect
to another function ©(t) so that for every €; > 0, i = 1,2, and for any solution (u*,v*) € U X U of

D0 w (1) = ' (0) = For e ()| € @(1), 7€, (3.27)
||Hz>“2“v (1) = L' (1) = Gy ()| o), 7€, (3.28)

IA

there is a solution (u,v) € U X V of the proposed coupled system (1.2) satisfying

G, v) = @, v < (€ + € )DDEoy a0, (K00 (Y1) = (@) ), (3.29)
foranyt e J, €, €, >0, and kg, g, > 0.

Remark 3.7. Let (u*,v*) € U X U be the solution of (3.18) and (3.19) if and only if there exist w,- ,~ €
U X U (depends on (u*,v*)) so that

(i) Wi (O] < €10, (10~ @+ (Y(1) — (@)™ ™), € = max{er, &}, 1* = max{|4], |}, T € T.
(ii) HD“‘M' () = A4uw(m) + f(nu(0),v'(1) + we (1) and Hbamw () = Apv'(r) +
g(T w (1), vi(1)) + wy (1), TET.
Remark 3.8. Let (u*,v*) € U X U be the solution of (3.24) and (3.25) if and only if there exist z,»,» €
U x U (depends on (u*,v*)) so that

(i) |zur v (T)I < €D(T)E g, 10, (U0~ (Y(1) — (@)™ ™), € = max{er, €&}, 1* = max{|], ||}, T € T.
(ii) DI Pty = (@) + fut(0),v (1) + W, (1) and HiD” Vi) = vi(r) +
g(T u (1), v (1) + 20 (1), TE T.

Lemma 3.9. Let o; € (1,2), i = 1,2, B € [0,1], and p € (0,1]. If (u*,v*) € U x U satisfies
inequalities (3.18) and (3.19), then (u*, v*) satisfies the inequalities

IA

A]E,

@

1 ’ a ,
R T f WO (1, $)Eq 0y (10 (W) = Y(9))™Eue (I (5)dls

Aze,

IA

1 T
v (T) u WV (T) - /ﬁ f Tiz_l(‘r’ S)Eaz,ozz(/bp_az(w(T) - l//(S))az)GIu*’v*(S)lﬁ,(S)dS

where
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vl q)
My (@) = . Eoyo0 (110~ (0(7) = 9(@))"")
o Pr7HO10; — AjAy) T
1 (P o
x ®2(72 f W2 (D, 5) B on (o™ (W(B) = Y(5))"™) G ()0 (5)ds
—Z T f W (s, $)E gy (10 (007) = ()™ By (50 (s)ds)
J=1
91’ i Oitax—1 —a @ ’
_AZ( Z ptsi—‘*'az f \Pw (é:ia S)Eaz,éﬁaz(/bp (l//(fl) - lﬂ(S)) )Gu*,v*(s)w (S)dS
i=1 a
1 b
|09 B () = ) )Fm,v%s)w'(s)ds)], (3.30)
N 3 \Plz—l(‘r, a) & Fap o
u*,v*(T) - p72_1(®1®2 — A1A2) le,)’z( 20 (lﬁ(T) - lﬁ(a)) )]
1 b
X Al(pT f W2 (b, $) Egyan(Aap > (0(b) — 0())) G () (5)ds
-Z f WY 0 B (1107 (WO1) = () Vo (I (s)ds)
gi i i+an— - ay ’
_®1(Z o f PN (& 9By 000s (A0 2 (W(E) = Y(5)) )G (I (5)dls
i=1 a
1 (? ,
o | 09 B (o™ 00) = () I)Pu*,vws)zp'(s)ds)], (3.31)
and
N _ |IJJ|\PQJ+Q| 1( /‘,CZ)E /_1* —(a]+a2)( )a1+az)
KWE,71) = wz,k[|~|(JZ‘pgﬁal (o, + an) ar+ar2(A°P Y(n;) —y(a)
\Paz(b’ a) 5 a+a
+ d Em+az,az+1(/I*P_(QIWZ)(w(b) —W(a)) : 2))

p*
10 a) ]

* _—(a1+ay) N aj+ar

+|T|(Z p6i+az—2r‘(6i + az)Eal+l¥2,2(/1 P e (lﬂ(fz) lﬂ(a)) )

i=1

Yo' (b,a) . o
e Buranan (UG 0) — g(@)™ >)]

\ng(b, a) Jx —(a)+az) a+as
" Borrarast (Up~ WD) — @) ),  k=1,2. (3.32)

P

Proof. Assume (u*, v*) is the solution of (3.18) and (3.19). By using property (ii) of Remark 3.7, we get
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gDZi’ﬁgwu*(T) = L' (T) + By o (T) + Wi o (1), T € (a, b),

Ap0B (1) = Lv' (1) + G o (1) + Wi (7), T € (a, b,

u'(a) =0, u(b)_Ze,pfjfv*(gl &e@bl, i=1,2,...m, (3.33)

V@) =0, Vb= Zu,-pfif””u M), n€abl, j=12....n
In view of Lemma 2.18, the solution of the proposed system (3.33) is

W@ = M)+ pi f () By (™ () = )" o (W ()
[ ¥\ (7, a)

+ p71—1(®1®2 _ A1A2) Ealm (/llp_al (W(T) - lﬁ(a)) l)

1 b
: ®2(p7 f W (D, 5) By ap (Ao (0(B) = ()™ W () (5)ds

_ZpQ/+al f \PQJHII 1( J S)Ea/l @,+a1(ﬂlp_al(lﬁ(77]) w(s))wl)wu R (S)l,ﬁ (S)ds)

_AZ( P p f B OB (Ao WAE) — () Wi (W ()
i=1 a

1 .
o [ 69 B 00 - v l)wu*,v«s)w'(s)ds)]

— | 5@ 9) Bayan (1™ (@(T) = () Wi (I ()L, (3.34)
and
1 %) ’
VO = N @+ = f W97, 5) B (op™ > (U(7) = Y(5))™) Gy (50 (5)dls

v (r,a)
+
[P”_l(@le)z SEASTAYY

By (™ () — w(a»”)]

X

1 (? N
Al(pq f WS (b, 5) Eapa (120" (W(B) = Y(5)) Wy - (I (5)ds

—pr f WS 0 5B v (1P~ (W) = () W (D <s>ds)

—®1( po f W OB g0 (A WE) = Y)W (W ()
i=1 a

1 b
“om W5 (b, 5) Bayor (Lo~ (D) — l/’(s))al)Wu*,v*(S)l//(S)ds)]
1 T
o Wy (7, 9) Bay 0 (o™ 2 (W(7) = Y1) Wi oo ()Y (5)dls, (3.35)
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where M, ,~(t) and N, ,-(7) are provided by (3.30) and (3.31). Now, we apply property (i) of
Remark 3.7, Lemma 2.9, Lemma 2.11, and Lemma 2.12 with (3.34), which implies that

1 T (03] ’
M*(T) - Mu*,v*(T) - E f \Pgl_l(T’ S) Em,m (/llp_a] (l//(T) - (»[’(S)) )Fu*,v*(s)w (S)dS

1—1
v, (a0 ]b()l(zgz |t
2
PN IT()]010, — A A, porral (o) + ay)

=

" itap— ’ 1 ’ az2— /
X f 0 e W (s + s f P (b, )Wy (W (s)ds)

N |01| ! 6,‘+& -1 ’
*'AZ'(Zpémzr(@mz) G S (O (s

i=1

1 ’ a)— ’
@D f W (b, )l (Y (s)ds)

vl (b, q) n ,
e{[ 1 y H|®2|(Z _ |l
P T ()00, — AjA,| P T () + ay)

=

1 T
+—— \Pal (T, S)lwu*,v*(s | ’ S)dS
sy | Wi

IA

v it % —(a)+a ap+asy s
X f B @, 9)Bayas (V0™ W(s) — g@) " W ()ds

1 b 3 v1+a@2\ 2
b [T B (T )~ @) (s)ds)
PoT(@) J,

|01| i Oi+ar—1 I* —(a1+az apt+az /
+|A2|(;pwr(5i+a2) TG )Ba 0, (U~ D (Y(5) = (@) W (s)ds

1 b 3 a1+a) ’
T f Wy By $)Eaysan (X072 (Y(5) — (@) (s)ds)]
P lr(al) a

1 b 3 +ay ’
T f W5 (B, $)Bay 10 (0™ () — (@)™ s <s>‘”}
P T(an) J,

IA

" g (s @) ;
e{[@ﬂ(z By a1 (Y (r)) — (@) )

i perra (o) + an)
TZZ (b’ a) I —(a1+az) a+az
TE(11+<12,(12+1(/1 P (lﬂ(b) - t,//(a)) )

16 (E ) _
* —(a1+az) ajta
+IA2|(Z AT 3 ag B AT E) —p@) )

i=1

\Pgl(b’ Q)E /‘1* —(a1+ayp) b a+an \P;l_l(b’ a)
T Bt O U@ )prlr(m@l@z — Ak
\Pgl(b’ a) Fx —(a1+a2) a+an
+ o Ealmzﬂﬁrl(/1 p (lﬁ(b) - w(a)) )
= A1(03,Ar)e.
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In the same process, we obtain

Vi(T) = Ny (1) = — f W52 (T, 8) Bayan (Lp™ 2 ((T) = ¥(9)) )G o (WY (5)ds
< Az(A1,®1)E.

The proof is done. O

Theorem 3.10. Under the assumptions in Theorem 3.2, the proposed coupled system (1.2) is ML-UH
stable and therefore generalized ML-UH stable on .

Proof. Let € > 0 and (u*,v*) € U x U be the function satisfying (3.18) and (3.19). Assume that
(u,v) € U x U is the unique solution of the proposed coupled system (1.2). Then, by Lemma 2.18, we
get

1 T

u(t) = My (7) + o f W57, 8) Bay oy (410~ (W(T) = ()" E, ()W (s)ds, (3.36)
1 ’ %) ’

V(1) = Nip(7) + o f YT, 8) Bayay (Aop™ 2 (W(1) = ¥(5)) )G ()Y (s)ds. (3.37)

Clearly, u(a) = u*(a), u(b) = u(b), pfgf:‘”u(n,-) = pfgg‘”u*(nj) wa) = vi(a), v(b) = v*(b), and
v(f,) =1 i vi&),i=1,2...,mand j=1,2,...,n, wh1ch yields that M, () = M, ,~(7) and
,”(T) = Ny (T) We obtain that IMu (7)) = My e (T)|

By applying Lemma 3.9 with [x — y| < [x| + [y], for any x, y € R, 7 € 7, it follows that

(1) — u(7)|
1 T @ /
< u*(T)—Mu,v(T)—p— f W' (1, )Bay 0y (A0~ (W) = Y()) " (s)W (5)ds
1
< (@) - M, v(T)_p_ f W5 (T, $)Bay 0y (A10™ (W(T) = ()" VB, ()Y (5)ds
+pal \Pal I(T S)Eal wl(/llp_m(l//(T) l//(s))al) IFu*,v"(s) - Fu,v(s)| lﬂ’(S)dS

+ |Mu,v(T) - u*,v* (T)l

% f W9 (T, 9)Bay 0 (o™ (1) = ()™’ (5) = u(s)] + V' (s) = v()IIY (s)ds
+A1(®2, Az)E.

IA

Then,

A1(Oa, Ap)p" Ty + 1) et pT(a + DL o
p(ay +1) - L‘I’Z‘(b, a) Py +1) - £‘Pa'(b a)’ Lo

[l —ull <

[iv* = vlll. (3.38)

Using the same procedure, we have

A2 (A, 0)p"I(ar + 1) N p"I(ar + DK T
€ +
pl(ay + 1) - KY )} (b,a)  p=T(ay+ 1) - K (D, )‘o a4

[llee” = ull]. (3.39)

v —vll <
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Utilizing Theorem 2.15 and Corollary 2.17 to (3.38) and (3.39) implies that

. €
||1/l M” < [p“lF(al 4 1) _ L\Pgl (b, a)
+£A2(A1, 01)p"I(az + 1)V, (b,a)
p2l(ar + 1) — 7("}’32(19, a)

(A1(®z, A)p* Ty + 1)

. ( LKT (@) + Dl(es + D) = p(@)™™ )
T T + 1) = LY (b, )llp®T(ay + 1) = K2 (b, a)] |
and
* € (0%)
IV =il < [p"2r(cy2 D) Kb (Az(Al, 0)p"I(az + 1)
KA1(Os, A)p™ T(a; + Db, a))]
p2T(a; + 1) - .E‘I’:;‘ (b, a)
XE, ( LKT (@ + DI + D) ~ g@) ™™
T\ Ty + 1) — LY (b, )][p (e + 1) = KYS (b, a)] )
Then,
(1, v) = (U, V| < (€f + )Ry, 1ay (k7 (W(T) — Y(@))™ ™),
where
1 o
& T m D= V(. a) (A1(®z, Ay)p™' Ty + 1)
LA (A1, ©)p"T(ay + DY/ (b, a)
p2l(ay + 1) — 7(‘1’;2 (b, a) )’
1 o
© = D R (A8 O T+ )
KAy, A)p" T(ay + DY (b, a)
pT(a; + 1) - L‘I’;‘ (b, a) )’
P LKT(a; + DI, + 1)
f& T [pnT(ay + 1) - L5 (b, @)llp”T(az + 1) — K (b, a)]

Therefore, the proposed coupled system (1.2) is ML-UH stable. In addition, by setting y (e) = €e

and y,(e) = €,e with y£(0) = 0 and x,(0) = 0,

1t ¥) = (" VS 7€) + X ()oK (D) = @)™ ).
Hence, the proposed coupled system (1.2) is generalized ML-UH stable. The proof is done.

Next, we define the following assumption:
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(A,) Assume @ € C(J,R) is a nondecreasing function. There is a constant €5, € R* so that for every

TeY9,
f W21, $)Ba 4oy (A0 TP (W(7) = ()" TR (s)ds < EoD(T). (3.40)

Lemma 3.11. Let a; € (1,2),i = 1,2, 8 € [0,1], and p € (0,1]. If (u*,v*) € U X U satisfies (3.24)
and (3.25), then (u*,v*) satisfies the following inequalities:

u' (1) = My (1) — % fa T W5 (T, $)Bay 0y (A0~ (W) = Y(5))" VB, o () (5)ds
< 01(02,A)Ched(7),
V(1) = Ny o (T) = pi f W52 (T, $)Bay a0 (2™ 2 (W(T) = Y(5)) )Gy (Y (5)dls
< 02(A1,0)CHed(7),

where M (1) and N, (1) are given by (3.30) and (3.31), respectively.

\P;k_l(b, a) H| |( Z |,u}|\ng+0” 1(77]', a) | )

o8, T) + [ 1 +
p*l(ay) [P T(r)010; — AjA,| — pot o+ ) pl(ar)

. [ Fkn 1(a,a) 1
+
| '(Z PTG, + az) | pi(ay)

i=1

)], Y e€OnLALk=1,2, (3.41)

where A; and ©; are given by (2.37)—(2.39), i = 1, 2, respectively.

Proof. Suppose (u*,v*) is the solution of (3.24) and (3.25). By using (ii) in Remark 3.8, we get
AU (1) = W' (1) + By (D) + 200 (1), T € (a,D),

HOPYV (@) = V(@) + G (D) + 200 (1), TE (@D,

u(a)=0, u(b)= Z Gipf6fj‘/’v*(§i) &e(abl, i=12...,m, (3.42)

via) =0, Vv(b)= Z,ujpfg’wu m;)), mnj€(@abl, j=12,...,n
In view of Lemma 2.18, the solution of the proposed system (3.42) is

1
uw'(@ = My v(T)+p_ f W5 (@ 8) Bayay (1o~ ((T) = ()™ By ue () (s)ds

¥\ (7, a)
+
[Py‘_l((al@z - AAy)

1 b
* ®2(ﬁf W2 (b, ) By (Ao (W) = () ™)z e (W (s)ds

Eoyn (1ip™ (1) — ¥(@))™)

_Z p9]+al f \ny+01 I(UJ’S)EM 9;+m(/llp_m(‘ﬁ(77]) Y()) " )zue o ()Y (8)d's
Jj=1
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- gi o itan— - (%) ’
_AZ(Z f W (G OBy (Ao W) = ()™ (W (5)ds
i=1 a

p6i+a2

1 ([ N
—— | Wb, 8) Bayor (1o (WD) — Y(s)) l)zu*,v*(s)w’(s)ds)]

PY Ja
1 ’ aq ’
o | ) By (g™ W) = () Nz (W (9, (3.43)

and

V*(T) = Nu*,v*(T)"'

(173

1 T [e%) /
f lsz_l(T, s) Eaz,az(/lzp_”(lﬁ(ﬂ - lﬁ(S)) )Gu*v*(s)w (S)dS

Eaz Y2 (/12p_a2 (LD(T) - l/’(a))az)

‘I’ZZ_I(T, a)
+
[P”_l(®1@2 - AAy)

X

1t )
Al(ﬁ f Wb, 8) Bayay (ap™ 2 ((D) = W(5)) ™)z o () (8)ds

n

j i i+a— —a ag ’
- Z al f lP,i/ 1(77]', S)Ea1,g_,-+a| (/11,0 I(l//(r]j) - Iﬁ(S)) )Zu*,v*(s)'vb (S)dS)

= ij"'ﬂ/]
N Hi ! 0i+ap—1 — @ ,
_®1(Zp6i+a2 f W, T (& 9)Eas 60y (o™ (Y(ED) — Y(8)) )z v ()Y ($)ds
i=1 a
1 b
o [0 B 00 = ) i )|
1 T
t— | T (09 B (20 (W(0) = 0(9)) )z (I (5)ds, (3.44)

a
P Ja

where M, (1) and N, ,-(7) are provided by (3.30) and (3.31). Now, we apply the property (i) of
Remark 3.8, Lemma 2.9, Lemma 2.11, and Lemma 2.12 with (3.34), we obtain

1 ’ a /
M*(T) - Mu*,v*(T) - p_ f ‘Pgl_l(.[.’ S) Em,m (/hp_m (l//(T) - W(S)) I)Fu*,v*(s)w (S)dS

149

¥ (1,q) n " "
v 2l oj+ar-1 ,
S 0 E P o )|zue d
= [py'_lr()/l)l@l@Z — A1A2|]|:| 2|( £ pgj+alr(Qj n a’l) ; " (77] S)lZ , (S)Iw (S) S

! ’ az—1 ,
+paT(a2) L Tw (b’ S)lzu*,v*(s)lw (S)dS)

N |Hl| i (5,-+a -1 ’
+|A2|(le6i+azr(5i+az) . Tw : (‘fia s)lzu*,v*(s)ll// (S)dS

1 ’ @)= ’ 1 ! a)— ,
+palr(al) L le l(b, S)lZu*,v*(S)lw (S)dS):| + m L \Pﬂl’ I(T, S)lzu*,v*(s)ll// (S)dS

v (b, a) n ,
< {[ 1 . ][l@ﬂ( Z — i
P T (y)©10; — AjAy] 2T () + )

J=1
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1j _
X f \Piﬁm—l (nj, S)Ea|+az (/l*p_(“”‘”)(gb(s) _ l,//(a))m-'—az)q)(S)lﬁ,(S)dS

1 b . +a
+7———fﬁT?ﬂh@ﬁmmm%*“mmM@—wmflﬁ@mwumﬁ
P ZF(QZ) a

N |A2116] i Si+an—1 V¢ (a1+az) ) +a ’
+ ; 0t L(6; + @) J, \P¢, & B 4o, (0T T (Y (s) — (@) DY (s)ds

A
LAl
prl(an) Jo

1 b 3 a1+ay ’
ﬁr—fﬁﬂmmmmwwwwwmlmwmﬁe
P 11—‘(al) a

b
7 b B (107 (Us) - w<a>>"“”>q’<s)*”'“’ds]

Assumption (A,) implies that

1 T
I/t*(T) - Mu*,v* (T) - ’[E f Tgl_l(T’ S) Em,m (/llp_aI (lﬁ(T) - 1,//(s))m)Fu*’v*(s)l,l/'(s)ds

- n j+a;—1
N
P T(y1)1010; — A Ay = poral(oj+ 1) pI(a)

o6y (s a) 1 1

+|A2|(Z - + )] + }@Qeq)(f)
~ p rel(0; +ap)  prI(ay) o (ay)

01(02, A2)Cpe®@(7).

Applying the same process, we get the following result

1 T
Vi(T) = Ny (7) = o f Y921, 8) Bayay (p 2 (W(T) = Y(9)) )G o (I (5)ds
< 0'2(A1 , @1)@(1)6(1)(7').

The proof is done. O

Theorem 3.12. Under the assumption in Theorem 3.2, the proposed coupled system (1.2) is ML-UHR
stable and therefore generalized ML-UHR stable on .

Proof. Suppose that € > 0 and (u*, v*) € UxU is a function corresponding to (3.24) and (3.25). Assume
that (u,v) € U X U is the unique solution of the proposed coupled system (1.2). Then, by Lemma 2.18,
we obtain that

1 T

u(t) = My (7) + o f W5 (T, 8) Bay oy (A10™ (W(T) = ()" E, ()W (s)ds, (3.45)
1 ’ %) ’

V(T) = Nip(7) + o f YT, 8) By (Aop™ 2 (W(1) = ¥(5)) )G ()Y (8)ds. (3.46)

Clearly, u(a) = u*(a), u(b) = u*(b), pfifwu(nj) = pfg'fwu*(nj) v(a) = v*(a), v(b) = v*(b), and
0wE) =  I0(&), i = 1,2...,m, and j = 1,2,...,n, which yields that M,,(t) = My ,(7)

ll+
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and N, (1) = N,,+(1). We obtain that |IM, (1) — M, ,-(7)] = 0. By applying Lemma 3.11 with
|x —y| < |x| + |y, for any x, y € R, 7 € J, implies that

(1) — u(7)|
1 [ a ,
< (T = Mu(1) - o f Wy (T, 9)Bay i (1o~ ((7) = Y()) " Fun () (5)ds
1 ’ @] ’
< (@) = My (1) - o f W5 (T, $)Bay 0y (A1p™ (W) = Y(5)) " By o () (5)ds
1 T ] ’
+p01 f \{lgl—l(,[.’ )Eq ;.o (L™ (W(7) = (9))™) [Fo 1 (8) = B ()| ' (s5)d's
+|Mu,v(T) - Mu*,v* (T)|
< 12 86ed() + 2o [ B (WD) - )
X[lu*(s) = u()| + V" (s) = v (s)ds.
Then,
. P T(ay + 1) TN
Il < G T T - 2P e (01(©2, A)Eoed(r) + L, T TV = vIT). (3.47)
Using the same procedure, we have
@ 1 .
-l s ——LRED (A 0)Caed(m) + K I " —ull).  (3.48)

p2l(ay + 1) — 7(‘1’32 (b, a)
Utilizing Theorem 2.15 and Corollary 2.17 to (3.47) and (3.48), implies that

lloe™ — ull
Cped(7)
p*T(ar + 1) = LY, (b, a)

Loy(Ar, ©D)pT(az + DY (D, a))]

A)p™'T 1
(0'1 (©2, M) T(ay + 1) + 0 (s + 1) — 7(‘1’:;2([), a)

LKT (@, + Dl + 1) e
XE‘“*”( 0" T(ar + 1) — L5 (b, a)llp™T(@, + 1) - KYS (b, )] W) - y(@) )
and
v =l
Cped(7) o Ko 1(0, A)p" T(ar + DY} (, a)
P+ ) - KF (.o |2 O D D - T . )]
.[,'7(1_‘((1’1 + 1)F(a2 + 1) a1+
XE<1]+(12( [palr(al + 1) - L\Pgl (b, Cl)] [p“Zl"(afz + 1) - WTZZ(I?, a)] ('70(7-) - l//(a)) )

Then, we obtain
12, 9) = @' V] < (€, + g, )EPDEay van (K (D) = Y(@) "),

where
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€, = T lfq—) 90, a)(0'1(®2,A2)Pmr(6Yl +1)
Loy(A1, @)p®T (@2 + DY (b, a)
peT(a, + 1) — 7(‘1’;2 (b,a) )’
. ®(D
00 pel(an + 1) - Kb, a)
+7(01(®2, A)p" T(ar + DY(b, “))
p@T(ay + 1) = LY (b, a) ’
) _ LKT(a) + DI'(az + 1)

fosn = [pmT(ay + 1) — LY (b, a)l[p™T(an + 1) - K¥ (b, @)l

&
|

((fz(Al, ©)p%(as + 1)

Therefore, the proposed coupled system (1.2) is ML-UHR stable. By setting € = 1, it follows that

10, ) = (' VI < (€ gy + €)DD) Euy (K o (WD) — @) ).

Hence, the proposed coupled system (1.2) is generalized ML-UHR stable. The proof is done. O
4. An numerical example

This section shows a numerical example for the accuracy and applicability of the main results. All
computations were performed using MATLAB software.

Example 4.1. Consider the following nonlinear coupled Cauchy-type system under nonlocal integral
conditions involving the y-HPFDO of the form

x N2,
H ~27 ¥
w05 T u(r) =

_fu(T) + f(ru(t),v(r)), Te€(0,2],

%Déi?wv(ﬂ = =2°V(1) + g(1, u(7), v(1)), 7€ (0,2],

3 . . :
u@©)=0,  u®)= Z (g) ﬁféilpv(s l— i)’

i=1 2

2 i .
2 iy (2
W0)=0, w2 = Z(m)ﬁfoz d/u(%)
2

J=1

4.1)

From the proposed coupled system (4.1), we obtain the following constants a; = 7/2, a, = 7/3,
p=N7/2,8=V2/2,a=0,b=2,2 = —V3/2, 2, = =2°,6, = 4i/3.,6; = i/5,& = i/(5-i),i = 1,2,3,
wj=2//(10-2)),0; = 2+))/5.n; = 2j/3, j = 1,2, and y(r) = 4—2 exp(—1). By directly computing all
constants, we obtain A; = 0.671504, A, ~ 0.075203, ®, = 0.758008, ®, ~ 0.392766, w,; ~ 1.636261,
w1z = 1.579949, w,; = 6.097342, w,, = 5.747051, w3(0®,A) = 2.421206, w3(A,,0,) =~ 0.813771,
w4(A1,01) = 3.045738, w4(O,, Ay) = 0.817465, Q; ~ 20.512894, and Q, ~ 24.068323. We will
separate it into two cases.
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Case I. The given nonlinear functions as suitable for the proposed coupled system (4.1) are as
follows

_ 3% |ul 4sin(rt) (vl
ST, u(r),v(1)) = 3cos(2nt) + (21 9) (lul " 9) + G127 (|V| n 8) , 4.2)

log, (4t + 3) N 3-2¢ |u| N 212 vl
2t + 1) 3cos() + 24 \|ul +7) 26+ 17\ +6)

8(t, u(7), (1)) = (4.3)

By applying (4.2) and (4.3), for each u;, v; € R, (i = 1,2), and 7 € [0, 2], we have the following results:

1
|f(r,ur,vi) = f(T,up, v2)| < aﬂul — up| + |vi — val),

0,1, 1) = 8510, 1) < 75y = ] + vy = va.

From assumption (A;) in Theorem 3.2, we have £ = 1/64 and K = 1/49. Then, Q| L + LK =
0.811704 < 1, since all assumptions in Theorem 3.2 are true. Therefore, the proposed coupled
system (4.1) has a unique solution on [0,2]. Moreover, we can calculate constants A;(®;,A;) =
7.184020 > 0 and A,(A,0;) ~ 21.674867 > 0. By using all previous constants, we get €, ~
7.960149 > 0, €, ~ 22.642672 > 0, and «;, ~ 0.000464 > 0. Then, by conclusion of Theorem 3.10,
the proposed coupled system (4.1) is ML-UH stable on [0, 2]. By taking xs(€) = €€ and y,(€) = C,e
with y +(0) = x,(0) = 0, the proposed coupled system (4.1) is generalized ML-UH stable on [0, 2].
Additionally, if ®(t) = ¥}"*"!(z,) in (3.40), then

? 5 4 . m_
fo W2, B (V) (W(2) - w(s) P (5,0 (s)ds

rere)
ris+3)

This yields that €5 = ‘I’E(Z,O)Flg(%ﬁ)i(f)) ~ 4.374427. From all previous constants, we can compute
the values 01(0,, A;) = 9.219534 > 0, 02(A1,0)) = 29.663994 > 0, €, ~ 44.906414 > 0, €,, =
135.465425 > 0, and kg, 4, ~ 0.000464 > 0. Hence, by the conclusion of Theorem 3.12, the proposed
coupled system (4.1) is ML-UHR stable on [0, 2]. Finally, if € = 1, the proposed coupled system (4.1)
is generalized ML-UHR stable on [0, 2].

Case II. The given linear functions as suitable for the proposed coupled system (4.1) are as follows

ks -1
< ¥,2,0) ¥, (2,0).

Fuu(@ =¥ (ta), and G () = ¥D(r,a).

From Lemma 2.18, the implicit solution of the proposed coupled system (4.1) is given by

Eﬂ’l Y1 (/hp_al (l//(T) - lﬁ(a))w1 )

1
e%w(“)‘l‘zl (1, a)
) =

P00, — AAy)
17
Y (poa) (07
Ql__q(

8 10

) Eazﬂz+ % (/IZP_M (t//(b) - w(a))a?)

(%)
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+(Il+

T o ‘(n,a) 17 .
—Z o (5)Emg,+m+7(/11/?_m(lﬁ(m) w(@) 1))

m . +taxt g (é‘:i’ a) 27 i
_AZ( Z w p5;+a/2 r (E) E(lz,(si+(lz+% (/lzp_az (w(gl) - lp(a)) 2)
i=1

a/1+17§2
‘P¢ >(b,a)

17 .
PO () B w0 - v
p 5 5
TN (ra) (17
- pil T (g) By 2 (o™ (0(7) = pl@)™), (4.4)

epr%l‘/’(“)‘l’f_l(r, a)
P H(0,0; - AAy)

v(r) =

Eaz Y2 (/12/)_“2 (lﬁ(T) - lﬁ(a))az )]

x| A

\II(ZQ‘F% b
g ( ,a)r 27
! p* 10

) Eaz,az+ % (ﬂzp—dz (lﬁ(b) - lﬁ(a))aQ)

v ‘(n,a) 17 .
—Z ’ (5)Em@,+m+w(ﬂ1p—“1(w<n,> (@) ‘))

pQﬂ'(Yl

m . taxt g (fia a) 27 i
_G)l( Z - ,05i+012 r (E) E“2’5i+@2+%(/12p_02 (W(fz) - ‘ﬁ(a)) 2)
i=1

12
Y (ba) (17
‘”Tr (?) B0 2 (0™ (Y(b) = w(a))a‘))]
o=l @y @2t 2
en ¥ )‘P¢2+ (7, a)F(27

+ _—
i 10

) Eaz,az+%(/12p_az(w(7) - lﬁ(a))az)- (45)

Simulations of solutions (4.4) and (4.5) for the proposed coupled system (4.1) via a variety of
functions ¥(?), a1, a», and B are shown in Figures 1-4. In Figure 1, we obtain that if we set /(1) = 4% —
26_%72 and the values of a increases from 1.4 to 1.9, @, decreases from 1.6 to 1.1, and S increases from
0.40 to 0.90, the corresponding graphs of u(7) increases (Figure 1a), while v(7) oscillates and tends to
be stable over the long term (Figure 1b). In Figure 2, we obtain that if we set Y(7) = @, Vr@1+®*8 and
the values of «; increases from 1.4 to 1.9, a, decreases from 1.6 to 1.1, and g increases from 0.40 to
0.90, the corresponding graphs of u(7) increases (Figure 2a) while v(7) oscillates and tends to be stable
over the long term (Figure 2b). In Figure 3, we obtain that if we set Y(7) = log,(e7** + ) and the
values of @ increases from 1.4 to 1.9, @, decreases from 1.6 to 1.1, and 8 increases from 0.40 to 0.90,

the corresponding graphs of u(7) increases (Figure 3a), while v(7) oscillates and tends to be stable over

V(r7)
a0 +ﬁ))‘ and the values

of a; increases from 1.4 to 1.9, a, decreases from 1.6 to 1.1, and g increases from 0.40 to 0.90, the
corresponding graphs of u(t) (Figure 4a) and v(r) (Figure 4a) decrease and increase, and tend to be
stable over the long term (Figure 4b).

the long term (Figure 3b). In Figure 4, we obtain that if we set Y(7) = ’2 sin® (
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(a) (b)

Figure 1. Graphical simulations u(7) and v(t) of Example 4.1 via y/(1) = 4% — 2e_%72 when
a1, @, and B are varied.

(@ (b)

Figure 2. Graphical simulations u(7) and v(7) of Example 4.1 via ¢/(1) = a, Vr*1+®*8 when
a1, @y, and B are varied.
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Figure 3. Graphical simulations u(7) and v(r) of Example 4.1 via /(1) = log,(a 7 + )
when ay, a,, and § are varied.
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Figure 4. Graphical simulations u(7) and v(t) of Example 4.1 via (1) = |2 sin’ (%’;{rﬁ))‘
when ay, @, and § are varied.

5. Conclusions

Finding the qualitative properties of differential equations under fractional-order is one of the best
challenging tasks in the theory of these equations. Integral inequalities are the major keys that help
investigate their properties. In this paper, we developed and established a novel extended coupled
Gronwall inequality in the framework of -HPFOs. We studied the exactness and applicability of
the main results by analyzing the uniqueness of solutions to the nonlinear coupled ¥-HPF Cauchy-
type system by applying fixed point theory of Banach’s type with some properties of the ML
functions. Additionally to what has been finished in this paper, one can utilize the established extended
coupled Gronwall inequality to establish certain additional qualitative properties for these solutions,
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such as ML-UH stability, ML-UHR stability, and their generalization. Finally, a numerical example is
provided to show the effectiveness and practicability of our theoretical criteria.

Furthermore, our main results are not only innovative in the framework of the proposed coupled
system at hand, but they also provide some novel specific circumstances by modifying the factors
involved. The benefit of this work is that, with a single work, we may decide on numerous scenarios
based on the parameter values p, k, @, 8, and another function /(1) without having to resort to another
investigation. We expect that the concepts offered here will positively inspire further applications in
applied sciences and engineering in the stated direction. It is important to note that the y-HPFDO is
the most generalized form of the HPFDO [11] and the -HFDO ([8].
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