In this work, we consider a coupled nonlinear viscoelastic Kirchhoff equations with degenerate damping, dispersion and source terms. Under suitable hypothesis, we will prove that when the initial data are large enough (in the energy point of view), the energy grows exponentially and thus so the $ L^{2(p+2)} $-norm.
Citation: Abdelbaki Choucha, Muajebah Hidan, Bahri Cherif, Sahar Ahmed Idris. Growth of solutions with $ L^{2(p+2)} $-norm for a coupled nonlinear viscoelastic Kirchhoff equation with degenerate damping terms[J]. AIMS Mathematics, 2022, 7(1): 371-383. doi: 10.3934/math.2022025
In this work, we consider a coupled nonlinear viscoelastic Kirchhoff equations with degenerate damping, dispersion and source terms. Under suitable hypothesis, we will prove that when the initial data are large enough (in the energy point of view), the energy grows exponentially and thus so the $ L^{2(p+2)} $-norm.
[1] | E. Piskin, S. Boulaaras, H. Kandemir, B. B. Cherif, M. Biomy, On a couple of nonlocal singular viscoelastic equations with damping and general source terms: blow-up of solutions, J. Funct. Space., 2021 (2021), 9914386. doi: 10.1155/2021/9914386. doi: 10.1155/2021/9914386 |
[2] | D. R. Bland, The theory of linear viscoelasticity, Mineola: Courier Dover Publications, 2016. |
[3] | S. Boulaaras, A. Choucha, D. Ouchenane, B. Cherif, Blow up of solutions of two singular nonlinear viscoelastic equations with general source and localized frictional damping terms, Adv. Differ. Equ., 2020 (2020), 310. doi: 10.1186/s13662-020-02772-0. doi: 10.1186/s13662-020-02772-0 |
[4] | S. Boulaaras, A. Draifia, Kh. Zennir, General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping and logarithmic nonlinearity, Math. Method. Appl. Sci., 42 (2019), 4795–4814. doi: 10.1002/mma.5693. doi: 10.1002/mma.5693 |
[5] | M. M. Cavalcanti, D. Cavalcanti, J. Ferreira, Existence and uniform decay for nonlinear viscoelastic equation with strong damping, Math. Method. Appl. Sci., 24 (2001), 1043–1053. doi: 10.1002/mma.250. doi: 10.1002/mma.250 |
[6] | A. Choucha, D. Ouchenane, Kh. Zennir, B. Feng, Global well-posedness and exponential stability results of a class of Bresse-Timoshenko-type systems with distributed delay term, Math. Method. Appl. Sci., 2020, 1–26. doi: 10.1002/mma.6437. |
[7] | A. Choucha, D. Ouchenane, S. Boulaaras, Well posedness and stability result for a thermoelastic laminated Timoshenko beam with distributed delay term, Math. Method. Appl. Sci., 43 (2020), 9983–10004. doi: 10.1002/mma.6673. doi: 10.1002/mma.6673 |
[8] | A. Choucha, D. Ouchenane, S. Boulaaras, Blow-up of a nonlinear viscoelastic wave equation with distributed delay combined with strong damping and source terms, J. Nonlinear Funct. Anal., 2020 (2020), 31. doi: 10.23952/jnfa.2020.31. doi: 10.23952/jnfa.2020.31 |
[9] | A. Choucha, S. Boulaaras, D. Ouchenane, S. Beloul, General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, logarithmic nonlinearity and distributed delay terms, Math. Method. Appl. Sci., 44 (2021), 5436–5457. doi: 10.1002/mma.7121. doi: 10.1002/mma.7121 |
[10] | A. Choucha, S. M. Boulaaras, D. Ouchenane, B. B. Cherif, M. Abdalla, Exponential stability of swelling porous elastic with a viscoelastic damping and distributed delay term, J. Funct. Space., 2021 (2021), 5581634. doi: 10.1155/2021/5581634. doi: 10.1155/2021/5581634 |
[11] | B. D. Coleman, W. Noll, Foundations of linear viscoelasticity, Rev. Mod. Phys., 33 (1961), 239. doi: 10.1103/RevModPhys.33.239. doi: 10.1103/RevModPhys.33.239 |
[12] | V. Georgiev, G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source term, J. Differ. Equations, 109 (1994), 295–308. doi: 10.1006/jdeq.1994.1051. doi: 10.1006/jdeq.1994.1051 |
[13] | K. Agre, M. A. Rammaha, Systems of nonlinear wave equations with damping and source terms, Differ. Integral Equ., 19 (2006), 1235–1270. |
[14] | J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolutions equation, Quart. J. Math., 28 (1977), 473–486. doi: 10.1093/qmath/28.4.473. doi: 10.1093/qmath/28.4.473 |
[15] | L. He, On decay and blow-up of solutions for a system of equations, Appl. Anal., 100 (2019), 2449–2477. doi: 10.1080/00036811.2019.1689562. doi: 10.1080/00036811.2019.1689562 |
[16] | G. Kirchhoff, Vorlesungen uber Mechanik, Leipzig: Tauber, 1883. |
[17] | S. Boulaaras, A. Choucha, P. Agarwal, M. Abdalla, S. A. Idris, Blow-up of solutions for a quasilinear system with degenerate damping terms, Adv. Differ. Equ., 2021 (2021), 446. doi: 0.1186/s13662-021-03609-0. |
[18] | W. Liu, General decay and blow-up of solution for a quasilinear viscoelastic problem with nonlinear source, Nonlinear Anal. Theor., 73 (2010), 1890–1904. doi: 10.1016/j.na.2010.05.023. doi: 10.1016/j.na.2010.05.023 |
[19] | F. Mesloub, S. Boulaaras, General decay for a viscoelastic problem with not necessarily decreasing kernel, J. Appl. Math. Comput., 58 (2018), 647–665. doi: 10.1007/s12190-017-1161-9. doi: 10.1007/s12190-017-1161-9 |
[20] | N. Mezouar, S. Boulaaras, Global existence and decay of solutions for a class of viscoelastic Kirchhoff equation, Bull. Malays. Math. Sci. Soc., 43 (2020), 725–755. doi: 10.1007/s40840-018-00708-2. doi: 10.1007/s40840-018-00708-2 |
[21] | A. Choucha, S. Boulaaras, Asymptotic behavior for a viscoelastic Kirchhoff equation with distributed delay and Balakrishnan–Taylor damping, Bound. Value Probl., 2021 (2021), 77. |
[22] | D. Ouchenane, S. Boulaaras, F. Mesloub, General decay for a class of viscoelastic problem with not necessarily decreasing kernel, Appl. Anal., 98 (2019), 1677–1693. doi: 10.1080/00036811.2018.1437421. doi: 10.1080/00036811.2018.1437421 |
[23] | E. Piskin, S. Boulaaras, N. Irkil, Qualitative analysis of solutions for the p-Laplacian hyperbolic equation with logarithmic nonlinearity, Math. Method. Appl. Sci., 44 (2021), 4654–4672. doi: 10.1002/mma.7058. doi: 10.1002/mma.7058 |
[24] | H. T. Song, D. S. Xue, Blow up in a nonlinear viscoelastic wave equation with strong damping, Nonlinear Anal. Theor., 109 (2014), 245–251. doi: 10.1016/j.na.2014.06.012. doi: 10.1016/j.na.2014.06.012 |
[25] | H. T. Song, C. K. Zhong, Blow-up of solutions of a nonlinear viscoelastic wave equation, Nonlinear Anal. Real, 11 (2010), 3877–3883. doi: 10.1016/j.nonrwa.2010.02.015. doi: 10.1016/j.nonrwa.2010.02.015 |
[26] | H. Yang, S. Fang, F. Liang, M. Li, A general stability result for second order stochastic quasi-linear evolution equations with memory, Bound. Value Probl., 2020 (2020), 62. doi: 10.1186/s13661-020-01359-8. doi: 10.1186/s13661-020-01359-8 |
[27] | S. T. Wu, General decay of energy for a viscoelastic equation with damping and source terms, Taiwanese J. Math., 16 (2012), 113–128. doi: 10.11650/twjm/1500406531. doi: 10.11650/twjm/1500406531 |
[28] | K. Zennir, Exponential growth of solutions with $L_{p}$-norm of a nonlinear viscoelastic hyperbolic equation, J. Nonlinear Sci. Appl., 6 (2013), 252–262. doi: 10.22436/jnsa.006.04.03. doi: 10.22436/jnsa.006.04.03 |