Processing math: 100%
Research article Special Issues

Growth of solutions with L2(p+2)-norm for a coupled nonlinear viscoelastic Kirchhoff equation with degenerate damping terms

  • In this work, we consider a coupled nonlinear viscoelastic Kirchhoff equations with degenerate damping, dispersion and source terms. Under suitable hypothesis, we will prove that when the initial data are large enough (in the energy point of view), the energy grows exponentially and thus so the L2(p+2)-norm.

    Citation: Abdelbaki Choucha, Muajebah Hidan, Bahri Cherif, Sahar Ahmed Idris. Growth of solutions with L2(p+2)-norm for a coupled nonlinear viscoelastic Kirchhoff equation with degenerate damping terms[J]. AIMS Mathematics, 2022, 7(1): 371-383. doi: 10.3934/math.2022025

    Related Papers:

    [1] Abdelbaki Choucha, Salah Boulaaras, Asma Alharbi . Global existence and asymptotic behavior for a viscoelastic Kirchhoff equation with a logarithmic nonlinearity, distributed delay and Balakrishnan-Taylor damping terms. AIMS Mathematics, 2022, 7(3): 4517-4539. doi: 10.3934/math.2022252
    [2] Salah Boulaaras, Abdelbaki Choucha, Bahri Cherif, Asma Alharbi, Mohamed Abdalla . Blow up of solutions for a system of two singular nonlocal viscoelastic equations with damping, general source terms and a wide class of relaxation functions. AIMS Mathematics, 2021, 6(5): 4664-4676. doi: 10.3934/math.2021274
    [3] Keltoum Bouhali, Sulima Ahmed Zubair, Wiem Abedelmonem Salah Ben Khalifa, Najla ELzein AbuKaswi Osman, Khaled Zennir . A new strict decay rate for systems of longitudinal m-nonlinear viscoelastic wave equations. AIMS Mathematics, 2023, 8(1): 962-976. doi: 10.3934/math.2023046
    [4] Adel M. Al-Mahdi, Maher Noor, Mohammed M. Al-Gharabli, Baowei Feng, Abdelaziz Soufyane . Stability analysis for a Rao-Nakra sandwich beam equation with time-varying weights and frictional dampings. AIMS Mathematics, 2024, 9(5): 12570-12587. doi: 10.3934/math.2024615
    [5] Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Maher Nour, Mostafa Zahri . Stabilization of a viscoelastic wave equation with boundary damping and variable exponents: Theoretical and numerical study. AIMS Mathematics, 2022, 7(8): 15370-15401. doi: 10.3934/math.2022842
    [6] Zayd Hajjej, Sun-Hye Park . Asymptotic stability of a quasi-linear viscoelastic Kirchhoff plate equation with logarithmic source and time delay. AIMS Mathematics, 2023, 8(10): 24087-24115. doi: 10.3934/math.20231228
    [7] Xiaoming Peng, Yadong Shang . Attractors for a quasilinear viscoelastic equation with nonlinear damping and memory. AIMS Mathematics, 2021, 6(1): 543-563. doi: 10.3934/math.2021033
    [8] Qian Li, Yanyuan Xing . General and optimal decay rates for a system of wave equations with damping and a coupled source term. AIMS Mathematics, 2024, 9(10): 29404-29424. doi: 10.3934/math.20241425
    [9] Xiaoming Peng, Xiaoxiao Zheng, Yadong Shang . Lower bounds for the blow-up time to a nonlinear viscoelastic wave equation with strong damping. AIMS Mathematics, 2018, 3(4): 514-523. doi: 10.3934/Math.2018.4.514
    [10] Qian Li . General and optimal decay rates for a viscoelastic wave equation with strong damping. AIMS Mathematics, 2022, 7(10): 18282-18296. doi: 10.3934/math.20221006
  • In this work, we consider a coupled nonlinear viscoelastic Kirchhoff equations with degenerate damping, dispersion and source terms. Under suitable hypothesis, we will prove that when the initial data are large enough (in the energy point of view), the energy grows exponentially and thus so the L2(p+2)-norm.



    In this paper, we consider the following problem

    {|ut|ηuttΔu+t0h1(ts)Δu(s)dsΔutt+(|u|k+|v|l)|ut|j1ut=f1(u,v),(x,t)Ω×(0,T),|vt|ηvttΔv+t0h2(ts)Δv(s)dsΔvtt+(|v|θ+|u|ϱ)|vt|s1vt=f2(u,v), (x,t)Ω×(0,T),u(x,t)=v(x,t)=0,                                  (x,t)Ω×(0,T),u(x,0)=u0(x),ut(x,0)=u1(x),                 xΩ,               v(x,0)=v0(x),vt(x,0)=v1(x),                   xΩ,                (1.1)

    where k,l,θ,ϱ0;j,s1 for N=1,2, and 0j,sN+2N2 for N3; and η0 for N=1,2 and 0<η2N2 for N3, hi(.):R+R+(i=1,2) are positive relaxation functions which will be specified later. (|(.)|a+|(.)|b)|(.)t|τ1(.)t and Δ(.)tt are the degenerate damping term and the dispersion term, respectively.

    And

    {f1(u,v)=a1|u+v|2(p+1)(u+v)+b1|u|p.u.|v|p+2,f2(u,v)=a1|u+v|2(p+1)(u+v)+b1|v|p.v.|u|p+2. (1.2)

    It is well known that viscous materials are the opposite of elastic materials which have the capacity to store and dissipate mechanical energy. As the mechanical properties of these viscous substances are of great importance when they appear in many applications of other applied sciences.

    Physically, the relationship between the stress and strain history in the beam inspired by Boltzmann theory called viscoelastic damping term, where the kernel of the term of memory is the function h (see [1,2,3,4,5,6,7,8,9]). If η0, this type of problem has been studied by many authors. For more depth, here are some papers that focused on the study of this damping. See for example [10,11,12,13,14,15]. The effect of the degenerate damping terms often appear in many applications and piratical problems and turns a lot of systems into different problems worth studying.

    The well known "Growth" phenomenon is one of the most important phenomena of asymptotic behavior, where many researches omit from its study especially when it comes from the evolution problems. It gives us very important information to know the behavior of equation when time arrives at infinity, it differs from global existence and blow up in both mathematically and in applications point of view.

    Recently, the stability, the asymptotic behavior, blowing up and exponential growth of solutions for evolution systems with time degenerate damping has been studied by many authors. See [16,17,18,19,20].

    The great importance of the source term with nonlinear functions f1 and f2 satisfying appropriate conditions. In physics is that they appear in several issues and theories. Many researchers also touched on this type of problem in several different issues, where the global existence of solutions, stability, blow up and growth of solutions were studied. For more information, the reader is referred to ([21,22,23,24,25,26,27,28]). Recently, If γ=0,α1=1 our problem (1.1) has been studied in [27], under some restrictions on the initial datum, standard conditions on relaxation functions, the authors are established the global existence and proved the general decay of solutions.

    Based on all of the above, the combination of these terms of damping (Memory term, degenerate damping, dispersion and the source terms) we believe that it constitutes a new problem worthy of study and research, different from the above that we will try to shed light on.

    In fact it will be proved that the L2(p+2) norm of the solution grows as an exponential function. An essential tool of the proof is an idea used in the literature, which based on an auxiliary function (which is a small perturbation of the total energy), in order to obtain a differential inequality leads to the exponential growth result provided that under suitable hypothesis.

    Our paper is divided into several sections: in the next section we lay down the hypotheses, concepts and lemmas we need. In the third section we prove our main result. Finally, a general conclusion has been drawn up.

    We prove the exponential growth of solutions under the following suitable assumptions.

    (A1) hi:R+R+ are a differentiable and decreasing functions such that

    hi(t)0,10hi(s)ds=li>0,i=1,2. (2.1)

    (A2) There exists a constants ξ1,ξ2>0 such that

    hi(t)ξihi(t),t0,i=1,2. (2.2)

    Theorem 2.1. Assume (2.1) and (2.2) holds. Let

    {1<p<4nn2,n3;p1,n=1,2 (2.3)

    Then for any initial data

    (u0,u1,v0,v1)H,

    the problem (1.1) has a unique solution, for some T>0

    uC([0,T];H2(Ω)H10(Ω)),

    where

    H=H10(Ω)×L2(Ω)×H10(Ω)×L2(Ω).

    In the next theorem we give the global existence result, its proof based on the potential well depth method in which the concept of so-called stable set appears, where we show that if we restrict our initial data in the stable set, then our local solution obtained is global in time, We will make use of arguments in [15].

    Theorem 2.2. Suppose that (2.1), (2.2) and (2.3) holds. If u0,v0H10(Ω), u1,v1L2(Ω)

    ρ(2(p+2)(p+1)lE(0))p+1<1, (2.4)

    where ρ>0 is a constant. Then the local solution (u,v) is global in time.

    To achieve our goal, we need the following lemmas.

    Lemma 2.1. There exists a function F(u,v) such that

    F(u,v)=12(ρ+2)[uf1(u,v)+vf2(u,v)]=12(ρ+2)[a1|u+v|2(p+2)+2b1|uv|p+2]0,

    where

    Fu=f1(u,v),Fv=f2(u,v),

    we take a1=b1=1 for convenience.

    Lemma 2.2. [2] There exist two positive constants c0 and c1 such that

    c02(ρ+2)(|u|2(p+2)+|v|2(p+2))F(u,v)c12(ρ+2)(|u|2(ρ+2)+|v|2(p+2)). (2.5)

    Now, we define the energy functional

    Lemma 2.3. Assume (2.1), (2.2) and (2.3) hold, let (u,v) be a solution of (1.1), then E(t) is non-increasing, that is

    E(t)=1η+2[utη+2η+2+vtη+2η+2]+12[ut22+vt22]+12[(1t0h1(s)ds)u22+(1t0h2(s)ds)v22]+12[(h1ou)(t)+(h2ov)(t)]ΩF(u,v)dx, (2.6)

    satisfies

    E(t)12[(h1ou)(t)+(h2ov)(t)]12[h1(t)u22+h2(t)v22]Ω(|u|k+|v|l)|ut|j+1dxΩ(|v|θ+|u|ϱ)|vt|s+1dx0. (2.7)

    Proof. By multiplying (1.1)1,(1.1)2 by ut,vt and integrating over Ω, we get

    ddt{1η+2utη+2η+2+1η+2vtη+2η+2+12ut22+12vt22+12(1t0h1(s)ds)u22+12(1t0h2(s)ds)v22+12(h1ou)(t)+12(h2ov)(t)ΩF(u,v)dx}=Ω(|u|k+|v|l)|ut|j+1dxΩ(|v|θ+|u|ϱ)|vt|s+1dx+12(h1ou)12h1(t)u22+12(h2ov)12h2(t)v22, (2.8)

    we obtain (2.6) and (2.7).

    In this section, we prove the exponential growth of solution with L2(p+2)-norm of problem (1.1). First, we define the functional

    H(t)=E(t)=1η+2[utη+2η+2+vtη+2η+2]12[ut22+vt22]12[(1t0h1(s)ds)u22+(1t0h2(s)ds)v22]12[(h1ou)(t)+(h2ov)(t)]+12(p+2)[u+v2(p+2)2(p+2)+2uvp+2p+2]. (3.1)

    Theorem 3.1. Assume (2.1), (2.2), and (2.3) hold, and suppose that E(0)<0, and

    2(p+2)>max{k+j+1;l+j+1;θ+s+1;ϱ+s+1;η+2η+1}. (3.2)

    Then the solution of problem (1.1) growth exponentially.

    Proof. From (2.6), we have

    E(t)E(0)0. (3.3)

    Therefore

    H(t)=E(t)Ω(|u|k+|v|l)|ut|j+1dx+Ω(|v|θ+|u|ϱ)|vt|s+1dx, (3.4)

    hence

    H(t)Ω(|u|k+|v|l)|ut|j+1dx0H(t)Ω(|v|θ+|u|ϱ)|vt|s+1dx0. (3.5)

    By (3.1) and (2.5), we have

    0H(0)H(t)12(p+2)(u+v2(p+2)2(p+2)+2uvp+2p+2)c12(p+2)(u2(p+2)2(p+2)+v2(p+2)2(p+2)). (3.6)

    We set

    K(t)=H(t)+εη+1Ω[u|ut|ηut+v|vt|ηvt]dx+εΩ[utu+vtv]dx, (3.7)

    where ε>0 to be assigned later.

    By multiplying (1.1)1,(1.1)2 by u,v and with a derivative of (3.7), we get

    K(t)=H(t)+εη+1(utη+2η+2+vtη+2η+2)+ε(ut22+vt22)+εΩut0g(ts)u(s)dsdxJ1+εΩvt0h(ts)v(s)dsdxJ2εΩ(|u|k+|v|l)|ut|j1ut.udxJ3εΩ(|v|θ+|u|ϱ)|vt|s1vt.vdxJ4ε(u22+v22)+ε[u+v2(p+2)2(p+2)+2uvp+2p+2]J5. (3.8)

    We have

    J1=εt0h1(ts)dsΩu.(u(s)u(t))dxds+εt0h1(s)dsu22ε2t0h1(s)dsu22ε2(h1ou). (3.9)
    J2=εt0h2(ts)dsΩv.(v(s)v(t))dxds+εt0h2(s)dsv22ε2t0h2(s)dsv22ε2(h2ov). (3.10)

    From (3.8), we find

    K(t)H(t)+εη+1(utη+2η+2+vtη+2η+2)+ε(ut22+vt22)ε[(112t0h1(s)ds)u22+(112t0h2(s)ds)v22]ε2(h1ou)ε2(h2ov)J3J4+J5. (3.11)

    At this point, we use Young's inequality, for δ>0

    XYδαXαα+δβXββ,α,β>0,1α+1β=1, (3.12)

    we get, for δ1,δ2>0

    |u|ut|j1ut|δj+11j+1|u|j+1+jj+1δ(j+1j)1|ut|j+1,|v|vt|s1vt|δs+12s+1|v|s+1+ss+1δ(s+1s)2|vt|s+1. (3.13)

    Hence, we have

    J3εδj+11j+1Ω(|u|k+|v|l)|u|j+1dx+εjδ(j+1j)1j+1Ω(|u|k+|v|l)|ut|j+1dx,J4εδs+12s+1Ω(|v|θ+|u|ϱ)|v|s+1dx+εsδ(s+1s)2s+1Ω(|v|θ+|u|ϱ)|vt|s+1dx. (3.14)

    Therefore, using (3.5) and by setting δ1,δ1 so that,

    jδ(j+1j)1j+1=κ2,sδ(s+1s)2s+1=κ2,

    substituting in (3.11), we get

    K(t)[1εκ]H(t)+εη+1(utη+2η+2+vtη+2η+2)ε[(112t0h1(s)ds)u22+(112t0h2(s)ds)v22]+ε(ut22+vt22)ε2(h1ou)ε2(h2ov)εC1(κ)Ω(|u|k+|v|l)|u|j+1dxεC2(κ)Ω(|v|θ+|u|ϱ)|v|s+1dx+J5, (3.15)

    where

    C1(κ):=(2jκ(j+1))j+11j+1,C2(κ):=(2sκ(s+1))s+11s+1, (3.16)

    we have

    Ω(|u|k+|v|l)|u|j+1dx=uk+j+1k+j+1+Ω|v|l|u|j+1dx,Ω(|v|θ+|u|ϱ)|v|s+1dx=vθ+s+1θ+s+1+Ω|u|ϱ|v|s+1dx. (3.17)

    By Young's inequality, we find for δ3,δ4>0

    Ω|v|l|u|j+1dxll+j+1δ(l+j+1l)3vl+j+1l+j+1+j+1l+j+1δ(l+j+1l)3ul+j+1l+j+1,Ω|u|ϱ|v|s+1dxϱϱ+s+1δ(ϱ+s+1ϱ)4uϱ+s+1ϱ+s+1+s+1ϱ+s+1δ(ϱ+s+1ϱ)4vϱ+s+1ϱ+s+1. (3.18)

    Hence

    Ω(|u|k+|v|l)|u|j+1dxuk+j+1k+j+1+ll+j+1δ(l+j+1l)3vl+j+1l+j+1+(j+1)l+j+1δ(l+j+1l)3ul+j+1l+j+1,Ω(|v|θ+|u|ϱ)|v|s+1dxvθ+s+1θ+s+1+ϱϱ+s+1δ(ϱ+s+1ϱ)4uϱ+s+1ϱ+s+1+(s+1)ϱ+s+1δ(ϱ+s+1ϱ)4vϱ+s+1ϱ+s+1. (3.19)

    By using (3.6) and (3.2), since 2(p+2)>k+j+1, we have from the embedding L2(p+2)(Ω)Lk+j+1(Ω),

    uk+j+1k+j+1Cuk+j+12(p+2)(u2(p+2)2(p+2))k+j+12(p+2), (3.20)

    since 0<k+j+12(p+2)<1, to find by using the algebraic inequality

    Bς(B+1)(1+1b)(B+b),B>0,0<ς<1,b>0, (3.21)
    (u2(p+2)2(p+2))k+j+12(p+2)K(u2(p+2)2(p+2)+H(0)), (3.22)

    where K=1+1H(0).

    Similarly, by (3.2) we get

    vk+j+1k+j+1(v2(p+2)2(p+2))k+j+12(p+2)K(u2(p+2)2(p+2)+H(0)),vθ+s+1θ+s+1(v2(p+2)2(p+2))k+j+12(p+2)K(u2(p+2)2(p+2)+H(0)),uθ+s+1θ+s+1(u2(p+2)2(p+2))k+j+12(p+2)K(u2(p+2)2(p+2)+H(0)). (3.23)

    Hence, by fixed δ3,δ4>0, and (3.19), gives

    Ω(|u|k+|v|l)|u|j+1dxM1(1+lδ(l+j+1l)3l+j+1+(j+1)δ(l+j+1l)3l+j+1)(v2(p+2)2(p+2)+u2(p+2)2(p+2)+H(t)),Ω(|v|θ+|u|ϱ)|v|s+1dxM2(1+ϱδ(ϱ+s+1ϱ)4ϱ+s+1+(s+1)δ(ϱ+s+1ϱ)4ϱ+s+1)(v2(p+2)2(p+2)+u2(p+2)2(p+2)+H(t)), (3.24)

    for some constants M1,M2>0.

    Now, for 0<a<1, from (3.1)

    J5=ε[u+v2(p+2)2(p+2)+2uvp+2p+2]=εa[u+v2(p+2)2(p+2)+2uvp+2p+2]+2ε(p+2)(1a)η+2(utη+2η+2+vtη+2η+2)+ε(p+2)(1a)(ut22+vt22)+ε(p+2)(1a)(1t0g(s)ds)u22+ε(p+2)(1a)(1t0h(s)ds)v22ε(p+2)(1a)((h1ou)+(h2ov))+ε2(p+2)(1a)H(t). (3.25)

    Substituting in (3.15), and by using (2.5), we get

    K(t){1εκ}H(t)+ε{(p+2)(1a)+1}(ut22+vt22)+ε{2ε(p+2)(1a)η+2+1η+1}(utη+2η+2+vtη+2η+2)+ε{(p+2)(1a)(1t0h1(s)ds)(112t0h1(s)ds)}u22+ε{(p+2)(1a)(1t0h2(s)ds)(112t0h2(s)ds)}v22+ε{(p+2)(1a)12}(h1ou+h2ov)+ε{c0a(M3C1(κ)+M4C2(κ))}(u2(p+2)2(p+2)+v2(p+2)2(p+2))+ε{(2(p+2)(1a)(M3C1(κ)+M4C2(κ))}H(t), (3.26)

    where

    M3:=M1(1+lδ(l+j+1l)3l+j+1+(j+1)δ(l+j+1l)3l+j+1)>0M4:=M2(1+ϱδ(ϱ+s+1ϱ)4ϱ+s+1+(s+1)δ(ϱ+s+1ϱ)4ϱ+s+1)>0.

    In this stage, we take a>0 small enough so that

    λ1=(p+2)(1a)1>0,

    and we assume

    max{0h1(s)ds,0h2(s)ds}<(p+2)(1a)1((p+2)(1a)12)=2λ12λ1+1, (3.27)

    gives

    λ2={((p+2)(1a)1)t0h1(s)ds((p+2)(1a)12)}>0,λ3={((p+2)(1a)1)t0h2(s)ds((p+2)(1a)12)}>0,

    then we choose κ so large that

    λ4=ac0(M3C1(κ)+M4C2(κ))>0,λ5=2(p+2)(1a)(M3C1(κ)+M4C2(κ))>0.

    Finally, we fixed κ,a, and we appoint ε small enough so that

    λ6=1εκ>0,

    and, from (3.7)

    K(t)12(p+2)[u+v2(p+2)2(p+2)+2uvp+2p+2]c12(p+2)[u2(p+2)2(p+2)+v2(p+2)2(p+2)]. (3.28)

    Thus, for some β>0, estimate (3.26) becomes

    K(t)β{H(t)+utη+2η+2+vtη+2η+2+ut22+vt22+u22+v22+(h1ou)+(h2ov)+u2(p+2)2(p+2)+u2(p+2)2(p+2)}. (3.29)

    By (2.5), for some β1>0, we obtain

    K(t)β1{H(t)+utη+2η+2+vtη+2η+2+ut22+vt22+u22+v22+(h2ou)+(h2ov)+u+v2(p+2)2(p+2)+2uvp+2p+2}. (3.30)

    and

    K(t)K(0)>0,t>0. (3.31)

    Next, using Holder's and Young's inequalities, we have

    |Ω(u|ut|ηut+v|vt|ηvt)dx|C[uθ2(p+2)+utμη+2+vθ2(p+2)+vtμη+2], (3.32)

    where 1μ+1θ=1.

    We take μ=(η+2), to get

    θ=(η+2)(η+1)2(p+2).

    Subsequently, by using (3.2) and (3.21), we obtain

    uη+2(η+1)2(p+2)K(u2(p+2)2(p+2)+H(t))vη+2(η+1)2(p+2)K(v2(p+2)2(p+2)+H(t)),t0.

    Therefore,

    |Ω(u|ut|ηut+v|vt|ηvt)dx|c13{u2(p+2)2(p+2)+v2(p+2)2(p+2)+utη+2η+2+vtη+2η+2+H(t)}. (3.33)

    Hence,

    K(t)=(H(t)+εη+1Ω(u|ut|ηut+v|vt|ηvt)dx+εΩ(utu+vtv)dx)c(H(t)+utη+2η+2+vtη+2η+2+u22+v22+ut22+vt22+(h1ou)+(h2ov)+u2(p+2)2(p+2)+v2(p+2)2(p+2)). (3.34)

    From (3.29) and (3.34), gives

    K(t)λK(t), (3.35)

    where λ>0, this depends only on β and c.

    by integration of (3.35), we obtain

    K(t)K(0)e(λt),t>0. (3.36)

    From (3.7) and (2.4), we have

    K(t)c12(p+2)[u2(p+2)2(p+2)+v2(p+2)2(p+2)]. (3.37)

    By (3.36) and (3.37), we have

    u2(p+2)2(p+2)+v2(p+2)2(p+2)Ce(λt),t>0.

    Hence, we conclude that the solution in the L2(p+2)– norm is growths exponentially. This completes the proof.

    The purpose of this work was to study when the initial data are large enough, the energy grows exponentially with L2(p+2)-norm of solutions for a coupled nonlinear viscoelastic Kirchhoff equations with degenerate damping, dispersion and source terms. This type of problem is frequently found in some mathematical models in applied sciences. Especially in the theory of viscoelasticity. What interests us in this current work is the combination of these terms of damping (degenerate damping, dispersion and source terms), which dictates the emergence of these terms in the problem. In the next work, we will try to using the same method with same problem. But in added of other damping (Balakrishnan-Taylor damping and Logarithmic terms).

    The fourth-named author extends their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant (RGP.1/95/42).

    This work does not have any conflicts of interest.



    [1] E. Piskin, S. Boulaaras, H. Kandemir, B. B. Cherif, M. Biomy, On a couple of nonlocal singular viscoelastic equations with damping and general source terms: blow-up of solutions, J. Funct. Space., 2021 (2021), 9914386. doi: 10.1155/2021/9914386. doi: 10.1155/2021/9914386
    [2] D. R. Bland, The theory of linear viscoelasticity, Mineola: Courier Dover Publications, 2016.
    [3] S. Boulaaras, A. Choucha, D. Ouchenane, B. Cherif, Blow up of solutions of two singular nonlinear viscoelastic equations with general source and localized frictional damping terms, Adv. Differ. Equ., 2020 (2020), 310. doi: 10.1186/s13662-020-02772-0. doi: 10.1186/s13662-020-02772-0
    [4] S. Boulaaras, A. Draifia, Kh. Zennir, General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping and logarithmic nonlinearity, Math. Method. Appl. Sci., 42 (2019), 4795–4814. doi: 10.1002/mma.5693. doi: 10.1002/mma.5693
    [5] M. M. Cavalcanti, D. Cavalcanti, J. Ferreira, Existence and uniform decay for nonlinear viscoelastic equation with strong damping, Math. Method. Appl. Sci., 24 (2001), 1043–1053. doi: 10.1002/mma.250. doi: 10.1002/mma.250
    [6] A. Choucha, D. Ouchenane, Kh. Zennir, B. Feng, Global well-posedness and exponential stability results of a class of Bresse-Timoshenko-type systems with distributed delay term, Math. Method. Appl. Sci., 2020, 1–26. doi: 10.1002/mma.6437.
    [7] A. Choucha, D. Ouchenane, S. Boulaaras, Well posedness and stability result for a thermoelastic laminated Timoshenko beam with distributed delay term, Math. Method. Appl. Sci., 43 (2020), 9983–10004. doi: 10.1002/mma.6673. doi: 10.1002/mma.6673
    [8] A. Choucha, D. Ouchenane, S. Boulaaras, Blow-up of a nonlinear viscoelastic wave equation with distributed delay combined with strong damping and source terms, J. Nonlinear Funct. Anal., 2020 (2020), 31. doi: 10.23952/jnfa.2020.31. doi: 10.23952/jnfa.2020.31
    [9] A. Choucha, S. Boulaaras, D. Ouchenane, S. Beloul, General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, logarithmic nonlinearity and distributed delay terms, Math. Method. Appl. Sci., 44 (2021), 5436–5457. doi: 10.1002/mma.7121. doi: 10.1002/mma.7121
    [10] A. Choucha, S. M. Boulaaras, D. Ouchenane, B. B. Cherif, M. Abdalla, Exponential stability of swelling porous elastic with a viscoelastic damping and distributed delay term, J. Funct. Space., 2021 (2021), 5581634. doi: 10.1155/2021/5581634. doi: 10.1155/2021/5581634
    [11] B. D. Coleman, W. Noll, Foundations of linear viscoelasticity, Rev. Mod. Phys., 33 (1961), 239. doi: 10.1103/RevModPhys.33.239. doi: 10.1103/RevModPhys.33.239
    [12] V. Georgiev, G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source term, J. Differ. Equations, 109 (1994), 295–308. doi: 10.1006/jdeq.1994.1051. doi: 10.1006/jdeq.1994.1051
    [13] K. Agre, M. A. Rammaha, Systems of nonlinear wave equations with damping and source terms, Differ. Integral Equ., 19 (2006), 1235–1270.
    [14] J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolutions equation, Quart. J. Math., 28 (1977), 473–486. doi: 10.1093/qmath/28.4.473. doi: 10.1093/qmath/28.4.473
    [15] L. He, On decay and blow-up of solutions for a system of equations, Appl. Anal., 100 (2019), 2449–2477. doi: 10.1080/00036811.2019.1689562. doi: 10.1080/00036811.2019.1689562
    [16] G. Kirchhoff, Vorlesungen uber Mechanik, Leipzig: Tauber, 1883.
    [17] S. Boulaaras, A. Choucha, P. Agarwal, M. Abdalla, S. A. Idris, Blow-up of solutions for a quasilinear system with degenerate damping terms, Adv. Differ. Equ., 2021 (2021), 446. doi: 0.1186/s13662-021-03609-0.
    [18] W. Liu, General decay and blow-up of solution for a quasilinear viscoelastic problem with nonlinear source, Nonlinear Anal. Theor., 73 (2010), 1890–1904. doi: 10.1016/j.na.2010.05.023. doi: 10.1016/j.na.2010.05.023
    [19] F. Mesloub, S. Boulaaras, General decay for a viscoelastic problem with not necessarily decreasing kernel, J. Appl. Math. Comput., 58 (2018), 647–665. doi: 10.1007/s12190-017-1161-9. doi: 10.1007/s12190-017-1161-9
    [20] N. Mezouar, S. Boulaaras, Global existence and decay of solutions for a class of viscoelastic Kirchhoff equation, Bull. Malays. Math. Sci. Soc., 43 (2020), 725–755. doi: 10.1007/s40840-018-00708-2. doi: 10.1007/s40840-018-00708-2
    [21] A. Choucha, S. Boulaaras, Asymptotic behavior for a viscoelastic Kirchhoff equation with distributed delay and Balakrishnan–Taylor damping, Bound. Value Probl., 2021 (2021), 77.
    [22] D. Ouchenane, S. Boulaaras, F. Mesloub, General decay for a class of viscoelastic problem with not necessarily decreasing kernel, Appl. Anal., 98 (2019), 1677–1693. doi: 10.1080/00036811.2018.1437421. doi: 10.1080/00036811.2018.1437421
    [23] E. Piskin, S. Boulaaras, N. Irkil, Qualitative analysis of solutions for the p-Laplacian hyperbolic equation with logarithmic nonlinearity, Math. Method. Appl. Sci., 44 (2021), 4654–4672. doi: 10.1002/mma.7058. doi: 10.1002/mma.7058
    [24] H. T. Song, D. S. Xue, Blow up in a nonlinear viscoelastic wave equation with strong damping, Nonlinear Anal. Theor., 109 (2014), 245–251. doi: 10.1016/j.na.2014.06.012. doi: 10.1016/j.na.2014.06.012
    [25] H. T. Song, C. K. Zhong, Blow-up of solutions of a nonlinear viscoelastic wave equation, Nonlinear Anal. Real, 11 (2010), 3877–3883. doi: 10.1016/j.nonrwa.2010.02.015. doi: 10.1016/j.nonrwa.2010.02.015
    [26] H. Yang, S. Fang, F. Liang, M. Li, A general stability result for second order stochastic quasi-linear evolution equations with memory, Bound. Value Probl., 2020 (2020), 62. doi: 10.1186/s13661-020-01359-8. doi: 10.1186/s13661-020-01359-8
    [27] S. T. Wu, General decay of energy for a viscoelastic equation with damping and source terms, Taiwanese J. Math., 16 (2012), 113–128. doi: 10.11650/twjm/1500406531. doi: 10.11650/twjm/1500406531
    [28] K. Zennir, Exponential growth of solutions with Lp-norm of a nonlinear viscoelastic hyperbolic equation, J. Nonlinear Sci. Appl., 6 (2013), 252–262. doi: 10.22436/jnsa.006.04.03. doi: 10.22436/jnsa.006.04.03
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2553) PDF downloads(96) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog