
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(12): 29577–29603.
DOI: 10.3934/math.20231515
Received: 13 September 2023
Revised: 26 October 2023
Accepted: 26 October 2023
Published: 01 November 2023

Research article

Long-time behavior for a nonlinear Timoshenko system: Thermal damping
versus weak damping of variable-exponents type

Adel M. Al-Mahdi1,2,*

1 The Preparatory Year Program, King Fahd University of Petroleum & Minerals, Dhahran 31261,
Saudi Arabia

2 The Interdisciplinary Research Center in Construction and Building Materials, King Fahd
University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

* Correspondence: Email: almahdi@kfupm.edu.sa.

Abstract: In this work, we consider a nonlinear thermoelastic Timoshenko system with a time-
dependent coefficient where the heat conduction is given by Coleman-Gurtin [1]. Consequently, the
Fourier and Gurtin-Pipkin laws are special cases. We prove that the system is exponentially and
polynomially stable. The equality of the wave speeds is not imposed unless the system is not fully
damped by the thermoelasticity effect. In other words, the thermoelasticity is only coupled to the first
equation in the system. By constructing a suitable Lyapunov functional, we establish exponential and
polynomial decay rates for the system. We noticed that the decay sometimes depends on the behavior
of the thermal kernel, the variable exponent, and the time-dependent coefficient. Our results extend
and improve some earlier results in the literature especially the recent results by Fareh [2], Mustafa [3]
and Al-Mahdi and Al-Gharabli [4].
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1. Introduction

In this work, we investigate the asymptotic behavior of solutions of the following one-dimensional
thermoelastic Timoshenko system:

ρ1ϕtt − κ(ϕx + ψ)x + γθx = 0,
ρ2ψtt − bψxx + κ(ϕx + ψ) + β(t)|ψt|

v(x)−2ψt = 0,
ρ3θt + τqx + γϕxt = 0,

(1.1)
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with the following Dirichlet boundary conditions:
ϕ(0, t) = ϕ(L, t) = 0, t ≥ 0,
ψ(0, t) = ψ(L, t) = 0, t ≥ 0,
θ(0, t) = θ(L, t) = 0, t ≥ 0,

(1.2)

and initial data {
ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x), θ(x, 0) = θ0(x), x ∈ [0, L],
ϕt(x, 0) = ϕ1(x), ψt(x, 0) = ψ1(x), x ∈ [0, L],

(1.3)

where ρ1, ρ2, ρ3, κ, b, γ > 0 are positive physical parameters from thermoelasticity theory and β(t) is
the time-dependent coefficient of the damping term. The unknown variables (ϕ, ψ, θ) : [0, L] × R+
are functions of (x, t) and represent the transverse displacement, rotational angle of the filament of the
beam and the temperature, respectively. The initial conditions ϕ0, ϕ1, ψ0, ψ1, and the history function θ0

are fixed data.
The heat flux q in (1.1) is given by the Coleman-Gurtin’s law [1]:

τq(t) + (1 − α)θx + α

∫ ∞

0
µ(s)θx(x, t − s)ds = 0, α ∈ (0, 1), (1.4)

where the Fourier (1.8) law and the Gurtin-Pipkin (1.11) law are special cases. In (1.4), the function µ
is the heat conductivity relaxation kernel given by µ : R+ → R+ which satisfies some conditions that
will be mentioned later.

Substituting Eq (1.4) into (1.1), we get

ρ1ϕtt − κ(ϕx + ψ)x + γθx = 0,
ρ2ψtt − bψxx + κ(ϕx + ψ) + β(t)|ψt|

v(x)−2ψt = 0,
ρ3θt − α̂θxx − α

∫ ∞
0
µ(s)θxx(x, t − s)ds + γϕxt = 0,

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), ψ(x, 0) = ψ0(x),
ψt(x, 0) = ψ1(x), θ(x,−t) = θ0(x, t),
ϕ(0, t) = ϕ(L, t) = ψ(0, t) = ψ(L, t) = θ(0, t) = θ(1, t) = 0.

(1.5)

where α̂ = (1 − α) with α ∈ (0, 1).
This work aims to address the stability problem of the system (1.5) with a focus on the interaction

between the thermoelastic dissipation and another weak damping with variable exponent nonlinearity.
Unlike the previous stability results in the literature, we prove the exponential and polynomial stability
of the solutions without imposing the equality of the wave speeds. This is important because the case
of equal speeds is purely mathematical and physically never satisfied [5]. Therefore, the stability result
obtained without any restriction on the coefficients is more realistic than that obtained with a stability
condition.

The system (1.5) was originally introduced by Timoshenko [6] as follows:ρ1ϕtt − κ(ϕx + ψ)x = 0,
ρ2ψtt − bψxx + κ(ϕx + ψ) = 0,

(1.6)
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as a model of the motion of a thick beam where ϕ is the transverse displacement of the beam, and −ψ
is the rotational angle of the filament of the beam. ρ1, ρ2, b and κ are fixed positive physical constants.

The issue of stability of Timoshenko systems (1.6) has attracted a great deal of attention in the last
decades. Various types of damping mechanisms have been used to stabilize these systems such as
boundary and/or internal feedback, heat or thermoelasticity, memory, and Kelvin-Voigt damping, have
been used. See, for example, [7–20].

The above studies have shown that the exponential stability of system (1.6) is achieved in the
presence of linear dampings in both equations of (1.6) without imposing any condition on the speeds
of wave propagation. However, if the damping effect is acting on only one equation, the system is
exponentially stable if and only if it has equal speeds of wave propagation; that is

κ

ρ1
=

b
ρ2
. (1.7)

In this paper, we focus on the thermoelastic dissipations which refer to the mechanisms by which the
energy is dissipated in thermoelastic materials. Thermoelastic damping is a source of intrinsic material
damping that occurs due to the coupling between the elastic field in a structure caused by deformation
and the temperature field. When a vibrating structure undergoes strain, it causes a change in internal
energy, resulting in regions becoming hotter or cooler. Thermoelastic damping occurs when there is
a lack of thermal equilibrium between different parts of the vibrating structure, leading to irreversible
heat flow driven by temperature gradients and energy dissipation. For more information on the heat
conduction equations, we refer to [21]. One of the thermoelastic dissipations is the heat conduction via
a heat flux. The heat flux comes in different types. One of these types is the one defined by Fourier’s
law, which is

τq = −θx, (1.8)

where q is the heat flux and the coefficient τ is a positive constant called the coefficient of thermal
conductivity of the material. However, if the model is subjected to the Fourier’s law (1.8), this leads
to a parabolic equation. Consequently, the heat propagates at an infinite speed, that is, any thermal
disturbance produced at some point in the body has an instantaneous effect elsewhere in the body.
To overcome this physical paradox, many theories were developed. The first theory was proposed by
Green and Naghdi [22–24] who expanded three new theories based on entropy equality rather than
the entropy inequality. They called them thermoelasticity of type I, type II and type III, respectively.
Lord and Shulman [25] proposed the second theory and suggested replacing Fourier’s law (1.8) by the
following Cattaneo’s law:

τ0qt + q + τθx = 0, (1.9)

where the positive constant τ0, also known as the thermal relaxation time, stands for the delay in the
heat flux reaction to the temperature gradient. According to this theory, the system becomes fully
hyperbolic. This means the heat propagates with a finite speed and is viewed as a wave-like
propagation rather than a diffusion phenomenon. A wave-like thermal disturbance is referred to as a
second sound (where the first sound is the usual sound). A nonclassical theory predicting the
occurrence of such disturbances is known as thermoelasticity with finite wave speeds or second sound
thermoelasticity. It is worth to mention that the constitutive equation for the heat flux in the type III
theory is given by

q = −c1αx − c2θx, (1.10)
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where

α = α0(x) +
∫ t

0
θ(x, s)ds.

It is also worth mentioning that the type III thermoelasticity and the second sound thermoelasticity
cannot describe the memory effect that reigns in some materials, particularly at a low temperature.
This fact leads to the search for a more general constitutive assumption relating the heat flux to the
thermal memory. Due to this feature, a more general constitutive assumption connecting the heat flux
to the thermal memory must be sought. Gurtin and Pipkin [26] assumed that the heat flux depends on
the integrated history of the temperature gradient and established a general nonlinear theory for which
thermal disturbances propagate with a finite speed. According to this theory, Gurtin and Pipkin [26]
proposed the following linearized constitutive equation for q; that is

τq = −
∫ ∞

0
µ (s) θx (t − s) ds, (1.11)

where q represents the heat flux depending on the history of the temperature gradient due to the
kernel µ. The function µ = µ(s) is the relaxation kernel of the thermal conductivity, which is a
bounded convex function on R+ with total mass of 1; that is∫ ∞

0
µ(s)ds = 1,

and satisfies some other conditions mentioned in the Assumption (A1) (below). The presence of the
convolution term (1.11) renders the Timoshenko system coupled with the heat equation into a fully
hyperbolic system, which allows the heat to propagate with a finite speed and describes the memory
effect of heat conduction.

It is observed that various selections of µ(s) lead to different distinct constitutive models. In
particular, if we choose µ(s) = κδ(s) and µ(s) = κ

τ0
e−

s
τ0 , τ0 > 0, we get Fourier’s law (1.8) and

Cattaneo’s law, respectively, where δ(s) is the Dirac mass weighted at 0. In other words, (1.11) is a
generalized form of Fourier’s and Cattaneo’s laws. For more information on this topic, we direct the
reader to [27–32].

As a summary, condition (1.7) is never physically satisfied, due to the physical meaning of the
constants appearing in the Timoshenko systems (see [33] for more details). Therefore, results that are
obtained with this condition compulsorily holding are definitely not in tandem with physical reality.
Thus, any result concerning Timoshenko systems that is obtained without condition (1.7) is of great
interest, and much desired. In this paper, we aim to stabilize the Timoshenko systems (1.1)–(1.3)
without imposing the equal speed of wave propagation (1.7).

Before starting the analysis and proof of our results, we compare our model with others that have
been investigated in the literature.

• In the case of β = 0, α = 0, with the heat flux defined by Fourier’s law (1.8), this model was
investigated by Munõz Rivera and Racke [34], Almeida Júnior et al. [10], Alves et al. [35] and
Alves et al. [36] who proved that the solution of the system is exponentially stable if and only if

the wave speeds are equal
(

k
ρ1
=

b
ρ2

)
.
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• In the case of β = 0, α = 0, with the heat flux q defined by the Cattaneo’s law (1.9), Fernandez
Sare and Racke [37] showed that the solution of the Timoshenko system coupled with the heat
equation described by the Cattaneo law loses the exponential stability even if the wave speeds
are equal. Santos et al. [30] then produced a stability number and proved that the solution of the
system is exponentially stable if and only if that stability number is zero.
• In the case of β = 0, α = 1, with the heat flux q defined by the Gurtin-Pipkin law,

τq = −
∫ t

−∞

µ (t − s) θx (x, s) ds. (1.12)

This model was investigated by Dell’Oro and Pata [38] and Hanni et al. [39], who proved that
the solution of the system is exponentially stable under some conditions with stability numbers.
However, Fareh [2] demonstrated that the stability number has no effect on the exponential
stability of system when it is fully damped, meaning when all equations are damped by the heat
conduction.
• In the case of β , 0 and without the thermoelasticity dissipation (the third equation in the

system (1.5)), Mustafa [3] proved that the system is exponentially and polynomially stable when

the wave speeds are equal
(

k
ρ1
=

b
ρ2

)
and the variable exponents under some conditions.

Al-Mahdi and Al-Gharabli [4] obtained similar results, but with the addition of another damping
of variable exponent type in the first equation of the system.
• In the case of β , 0, α , 0 and α , 1 such as in the system (1.5), the problem had not been

investigated. This is the first study to investigate the interaction between the thermoelasticity
dissipation and weak damping with variable exponent. We prove that the system is exponentially
and polynomially stable without imposing the equality of the wave speeds, where the system is
not full damped by the heat conduction, unlike the one in Fareh [2].

For the existence, uniqueness and stability analysis of some other classes of differential equations,
we refer to [40–42].

2. Assumptions and transformations

This section is devoted to the hypotheses and certain transformations that our problem requires.
Initially, we consider the convolution kernel µ : R+ → R+, which is a C2 (R+) convex non-increasing
function satisfying:

(A1) µ(0) > 0, lim
s→∞

µ(s) = 0, and
∫ ∞

0
µ(s)ds = 1. Furthermore, there exists a positive nonincreasing

differentiable function ξ such that

−µ′′(s) ≤ ξ(s)µ′(s), for almost every s > 0, (2.1)

and
+∞∫
0
ξ(s)ds = +∞.

We introduce the memory kernel g = −µ′; that is µ(s) =
∫ +∞

s
g(r)dr, and it satisfies the following

conditions:
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(A2) g : R+ → R+, g ∈ C1 (R+) , g(0) > 0, g0 =

∫ ∞

0
g(s)ds = µ(0) > 0, and

∫ ∞

0
sg(s)ds = 1.

Condition (2.1) implies that

g′(s) ≤ −ξ(s)g(s), for almost every s > 0. (2.2)

(A3) We assume that there exists a positive constant ∆ such that

||Ψ0x(s)||2 ≤ ∆, ∀s > 0, (2.3)

where Ψ(x) and Ψ0(x) are defined (below) in (2.5) and (2.6), respectively.

We define Lg =

{
Ψ : R+ → H1

0(0, L) : ∥Ψ∥2Lg
:=

∫ ∞

0
g(s)∥Ψx(s)∥2ds < ∞

}
, which is a Hilbert

space.
(A4) The time-dependent coefficient β : [0,∞) → (0,∞) is a nonincreasing C1 function satisfying∫ ∞

0
β(s)ds = ∞.

(A5) The variable exponent v(x):
v : [0, L]→ [1,∞) is a continuous function such that

v1 := essinfx∈[0,L]v(x), v2 := esssupx∈[0,L]v(x),

and 1 < v1 ≤ v(x) ≤ v2 < ∞. Moreover, the variable function v satisfies the log-Hölder continuity
condition; that is, for any δ with 0 < δ < 1, there exists a constant A > 0 such that,

|v(x) − v(y)| ≤ −
A

log |x − y|
, for all x, y ∈ Ω, with |x − y| < δ. (2.4)

Remark 2.1. (1) Condition (2.2) was introduced for the first time in (2008) by Messaoudi [43].
For more results for the history of the relaxation functions, we refer to [44–52].
(2) The class of the function µ that satisfies the condition (A1) is not empty. For example, the
following functions satisfies the condition (A1):

µ(s) =
1

(1 + s)2 , µ(s) = e−s, µ(s) = 2a
(√

s + 1
)

e−
√

s,

where a is a positive real number chosen so that the condition (A1) holds.

Using the Dafermos method [44], we introduce the following variable Ψ : (0, 1) ×R+ ×R+ → R by

Ψ(x, t, s) =
∫ t

t−s
θ(x, r)dr, (2.5)

with Ψ(x, 0, s) =
∫ s

0
θ0(x, r)dr. Simple calculations yield the following

Ψt(x, t, s) + Ψs(x, t, s) = θ(x, t), (0, L) × R+ × R+,
Ψ(0, t, s) = Ψ(L, t, s) = Ψ(x, t, 0) = 0, (0, L) × R+ × R+,

where the subscripts t and s means the partial derivatives with respect to t and s, respectively. Direct
integrations, using the properties of Ψ, show that
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∫ ∞

0
µ(s)θxx(x, t − s)ds =

��������������:0

lim
y→∞

µ(y)
∫ t

t−y
θxx(x, r)dr

∣∣∣∣∣y=s

y=0
−

∫ ∞

0
µ′(s)

∫ t

t−s
θxx(x, r)drds

=

∫ ∞

0
g(s)Ψxx(x, t, s)ds.

Gathering all the transformations, system (1.5) becomes

ρ1ϕtt − κ(ϕx + ψ)x + γθx = 0,
ρ2ψtt − bψxx + κ(ϕx + ψ) + β(t)|ψt|

v(x)−2ψt = 0,

ρ3θt − α̂θxx − α

∫ ∞

0
g(s)Ψxx(t − s)ds + γϕxt = 0,

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x),
Ψt(x, t, s) + Ψs(x, t, s) = θ(x, t),

θ(x,−t) = θ0(x, t), Ψ0(x, s) =
∫ s

0
θ0(x, r)dr,

ϕ(0, t) = ϕ(L, t) = ψ(0, t) = ψ(L, t) = θ(0, t) = θ(L, t) = 0,
Ψ(0, t, s) = Ψ(L, t, s) = Ψ(x, t, 0) = 0.

(2.6)

where α̂ = 1 − α and α ∈ (0, 1).
The utility of the presence of nonstandard damping with variable exponent can be seen in

modeling physical phenomena such as flows of electro-rheological fluids or fluids with
temperature-dependent viscosity, nonlinear viscoelasticity, filtering processes through a porous media,
and image processing. These models comprise hyperbolic, parabolic or elliptic equations with
varying exponents of nonlinearity and nonlinear gradients of the unknown solution. Further
information on these issues can be found in [53–55].

Now, we state without proof, the following existence result:

Proposition 2.1. For any (ϕ0, ϕ1, ψ0, ψ1, θ0) ∈ H , and assuming that the hypotheses (A1 − A5) holds,
then, the system (2.6) has a unique global (weak) solution

ϕ, ϕt, ψ, ψt, θ ∈ C (R+;H) . (2.7)

Moreover, if (ϕ0, ψ0, θ0) ∈ V, then the system (2.6) has a strong solution

ϕ, ψ, θ ∈ C1 (R+;H) ∩C (R+;V) , (2.8)

where
H := H1

0(0, L) × L2(0, L) × H1
0(0, L) × L2(0, L) × Lg, (2.9)

and
V :=

(
H2(0, L) ∩ H1

0(0, L)
)
×

(
H2(0, L) ∩ H1

0(0, L)
)
× H1

0(0, L). (2.10)

The above existence result can be proved by using the Faedo-Galerkin method and repeating the steps
in [56–60].
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3. The stability results

In this section, we state the outcomes of our study. We present three different theorems based on
the varying range of the variable exponents. In addition, we provide some examples and remarks.

Theorem 3.1. Assume that the hypotheses (A1 − A5) hold and v1 = v2 = 2. Then, there exist
constants γ0 ∈ (0, 1) and δ1 > 0 such that, for all t ∈ R+ and for all δ0 ∈ (0, γ0], the energy
functional (4.1) satisfies

E(t) ≤ δ1

(
1 +

∫ t

0
(g(s))1−δ0ds

)
e−δ0

∫ t
0 (βξ)(s)ds +

α∆̂c
δ0

∫ +∞

t
g(s)ds, (3.1)

where δ1 = max{E(0), α∆̂c
δ0

(g(0))δ0}, the constant ∆ is introduced in (A3), and ĉ is a positive constant
depends on the coefficients of the system and the Poincaré’s constant.

Examples 3.1. This example illustrates the result in Theorem (3.1). Let µ(s) = e−s and β ≡ 1, then it is
easy to check that µ(s) satisfies condition (A1). Therefore, the energy decay (3.1) becomes for δ0 =

1
2 ,

E(t) ≤ ce−t. (3.2)

This is an exponential decay.
Let µ(s) = 1

(1+s)2 and β ≡ 1, then it is easy to check that µ(s) satisfies condition (A1). Therefore, the
energy decay (3.1) becomes for δ0 =

1
2 , and a positive constant C,

E(t) ≤
C

(1 + t)2 . (3.3)

This is a polynomial decay. Then, we note that lim
t→∞

E(t) = 0.

Theorem 3.2. Assume that (A1 − A5) hold, 1 < v1 < 2 and v2 , 2. Then, the energy functional (4.1)
satisfies for a positive constants C,

E(t) ≤ C(1 + t)
−1
κ (ξβ)−

κ+1
κ

[
1 +

∫ t

0
(ξβ)

κ+1
κ (s)hκ+1(s)(1 + s)

1
κ ds

]
, (3.4)

where κ = max
{

2−v1
2v1−2 ,

v2
2 − 1

}
.

Examples 3.2. This example illustrates the result in Theorem (3.2). Let µ(s) = 2a
(√

s + 1
)

e−
√

s, then,

ξ(s) = 1
2
√

s and g(s) = ae−
√

s. Therefore,
∫ ∞

t
g(s) = 2a

(√
s + 1

)
e−
√

s. Then, h(t) = ξ(t)
∫ ∞

t
g(s) =

a
( √

t+1
√

t
e−
√

t
)
. Then in case if κ = 2−v1

2v1−2 > 0, the energy decay (3.4) becomes for β(t) = (1+ t)−λ, and 0 ≤
λ ≤ 1,

E(t) ≤ C(1 + t)−
2v1−2
2−v1 (1 + t)

v1
4−2v1

−λ

(
1 +

∫ t

0
(1 + s)

5v1−4
2(2−v1)−λ(ξβ)

v1
2−v1 (s)h

v1
2−v1 ds

)
. (3.5)

Then, we obtain polynomial stability of the form

E(t) ≤ C(1 + t)
4−3v1

2(2−v1)−λ. (3.6)
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It is clear that for λ = 0 and v1 > 4
3 , lim

t→∞
E(t) = 0. If λ = 1, then we have for any 1 < v1 < 2,

lim
t→∞

E(t) = 0.

In the second case, if κ = v2
2 − 1 > 0, then we obtain for the same function polynomial stability of

the form
E(t) ≤ C(1 + t)

v2−4
2(v2−2)−λ. (3.7)

Then, we note that for λ = 0 and v1 < v2 < 4, we have lim
t→∞

E(t) = 0. Also, if λ = 1, then we have for
any 1 < v1 ≤ v2, lim

t→∞
E(t) = 0.

Theorem 3.3. Assume that (A1−A5) hold, v1 ≥ 2 and v2 > 2. Then, the energy functional (4.1) satisfies
for a positive constants C,

E(t) ≤ C(1 + t)−
2

v2−2 (ξβ)−
v2

v2−2

(
1 +

∫ t

0
(1 + s)

2
v2−2 (ξβ)

v2
v2−2 (s)h

v2
2 ds

)
. (3.8)

4. Technical lemmas

In this section, we state and establish several lemmas needed for the proofs of our main results
in Section 3. Through this paper, the constant c denotes to the generic positive constant and ĉ is a
positive constant depends on the coefficients of the system and the Poincaré’s constant.

Lemma 4.1. The energy of system (2.6) is defined by

E(t) =
1
2

[
ρ1∥ϕt∥

2 + ρ2∥ψt∥
2 + b∥ψx∥

2 + ρ3∥θ∥
2 + κ∥(ϕx + ψ)∥2 + α

∫ ∞

0
g(s)|Ψx|

2ds
]
dx, (4.1)

and satisfies

E′(t) = −α̂
∫ L

0
θ2

xdx +
α

2

∫ L

0

∫ ∞

0
g′(s)|Ψx|

2dsdx − β(t)
∫ L

0
|ψt|

v(x)dx ≤ 0, ∀ t ≥ 0. (4.2)

Proof. By multiplying (2.6)1 by ϕt, (2.6)2 by ψt and (2.6)3 by θ, using integration by parts and adding
the results, it is easy to arrive at the proof of (4.2).

Lemma 4.2. The second-order energy of the system (2.6) is defined by

E1(t) =
1
2

[
ρ1∥ϕtt∥

2 + ρ2∥ψtt∥
2 + b∥ψxt∥

2 + ρ3∥θt∥
2 + κ∥(ϕx + ψ)t∥

2

+ α

∫ ∞

0
g(s)|Ψxt|

2ds
]
dx,

(4.3)

and satisfies the following uniform bound

E1(t) ≤ C, ∀ t ≥ 0. (4.4)

Proof. By taking the derivative of all the equations of the system (2.6) with respect to t, then
multiplying (2.6)1 by ϕtt, (2.6)2 by ψtt and (2.6)3 by θt, and integrating over (0, L), we get

E′1(t) = −α̂
∫ L

0
θ2

txdx +
α

2

∫ L

0

∫ ∞

0
g′(s)|Ψxt|

2dsdx

− β(t)
∫ L

0
(v(x) − 1) |ψt|

v(x)−2ψ2
ttdx − β′(t)

∫ L

0
|ψt|

v(x)−2ψtψttdx.
(4.5)

AIMS Mathematics Volume 8, Issue 12, 29577–29603.



29586

Using the fact g′ ≤ 0, and applying Young’s inequality, we have

E′1(t) ≤ −β′(t)
∫ L

0

 |ψt|
v(x)−2ψt√

β(t) (v(x) − 1) |ψt|
v(x)−2

 [ψtt

√
β(t) (v(x) − 1) |ψt|

v(x)−2
]

dx

− β(t)
∫ L

0
(v(x) − 1) |ψt|

v(x)−2ψ2
ttdx

≤

∫ L

0

 −β′(t)|ψt|
v(x)−2ψt

2
√
β(t) (v(x) − 1) |ψt|

v(x)−2

2

+
[
ψtt

√
β(t) (v(x) − 1) |ψt|

v(x)−2
]2

dx

− β(t)
∫ L

0
(v(x) − 1) |ψt|

v(x)−2ψ2
ttdx

≤
1
4

∫ L

0

(
−β′(t)
β(t)

)2
β(t)|ψt|

v(x)

(v(x) − 1)
dx.

(4.6)

As in the argument in [3], since
∫ ∞

0
β(t)dt = ∞, one can show that lim

t→∞

−β′(t)
β(t) , ∞. In fact, if lim

t→∞

−β′(t)
β(t) =

∞, then for a given M > 0, there exists ε > 0 such that −β
′(t)

β(t) ≥ M for any t > 0. Integrating this

inequality, we find M
∫ t

ε
β(s)ds ≤ −

∫ t

ε
β′(s)ds ≤ β(ε). This is a contradiction with

∫ ∞
M
β(t)dt = ∞.

Hence, we conclude that −β
′(t)

β(t) is bounded; that is, for some positive constant m0, we have −β
′(t)

β(t) ≤ m0.
Thus,

E′1(t) ≤
m2

0

4(v1 − 1)
β(t)

∫ L

0
|ψt|

v(xdx =
m2

0

4(v1 − 1)
(
−E′(t)

)
. (4.7)

Integrating this inequality over (0, t), we get

[E1(t) − E1(0)] ≤
(

m2
0β

4(v1 − 1)

)
[E(0) − E(t)] . (4.8)

Since −E(t) ≤ 0, we get

E1(t) ≤
(

m2
0β

4(v1 − 1)

)
E(0) + E1(0) = C, (4.9)

where C is a positive constant independent of t. This is the desired result.

Lemma 4.3. (Gagliardo-Nirenberg interpolation inequality). For some c > 0 and any v > 2, we have

∥ψ∥v ≤ ∥ψx∥
1
2−

1
v

2 ∥ψ∥
1
2+

1
v

2 , ∀ ψ ∈ W1,2(0, L). (4.10)

As a consequence of the above interpolation inequality (4.10), we have for 1 < v1 < 2,
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∥ψt∥ v1
v1−1
≤ ∥ψxt∥

2−v1
2v1

2 ∥ψt∥

3v1−2
2v1

2 ≤
(
E′1(t)

) 2−v1
2v1 ∥ψt∥

3v1−2
2v1

2

≤
(
E′1(t)

) 2−v1
2v1 ∥ψt∥

3v1−2
2v1

2 ≤ (C)
2−v1
4v1 ∥ψt∥

2
2

3v1−2
4v1

≤ c (E(t))
3v1−2

4v1 .

(4.11)

Lemma 4.4. Under the assumptions (A4) and (A5), we have the following estimates:

cβ(t)
∫ L

0
ψ2

t dx ≤ −cE′(t), if v1 = v2 = 2,

cβ(t)
∫ L

0
ψ2

t dx ≤ cεβE(t) −CεE−̂κ
(
E′(t)

)
, if v1 ≥ 2, v2 > 2,

cβ(t)
∫ L

0
ψ2

t dx ≤ cε1βE + cε2βE −Cε1

(
E′(t)

)
E−̂κ −Cε2

(
E′(t)

)
E−̂κ, if 1 < v1 < 2, v2 , 2,

(4.12)

where κ̂ = v2
2 − 1 > 0.

Proof. The proof of (4.12)1 can be achieved directly by imposing v(x) = 2 and combining with (4.2).
To prove (4.12)2, we set the following partitions:

Ω1 = {x ∈ [0, L] : |ψt| ≥ 1} and Ω2 = {x ∈ [0, L] : |ψt| < 1}. (4.13)

Using of Hölder and Young inequalities and (4.1), we obtain for Ω1,

cβ(t)
∫
Ω1
ψ2

t dx ≤ cβ(t)
∫ L

0
|ψt|

v(x) dx ≤ −cE′(t), (4.14)

and for Ω2, we get

cβ(t)
∫
Ω2

ψ2
t dx ≤ cβ(t)

(∫
Ω2

|ψt|
v2 dx

) 2
v2

≤ cβ(t)
(∫
Ω2

|ψt|
v(x) dx

) 2
v2

≤ β
1− 2

v2

(
β

∫ L

0
|ψt|

v(x) dx
) 2

v2

≤ cβ1− 2
v2

(
−E′(t)

) 2
v2 . (4.15)

Note that

β
1− 2

v2
(
−E′(t)

) 2
v2 =

β
1− 2

v2 E κ̂ (−E′(t))
2

v2

E κ̂
,

where κ̂ = v2
2 −1 > 0.Using Young’s inequality for ζ = v2

2 and ζ∗ = v2
v2−2 gives for a positive constant ε,

β
1− 2

v2 E κ̂ (−E′(t))
2

v2

E κ̂
≤
εβE κ̂+1 +Cε (−E′(t))

E κ̂
. (4.16)
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Combining (4.15) and (4.16), we get

cβ(t)
∫
Ω2

ψ2
t dx ≤

εβE κ̂+1 +Cε (−E′(t))
E κ̂

≤ cεβE κ̂ +CεE−̂κ
(
−E′(t)

)
. (4.17)

Combining (4.14) and (4.17), the proof of (4.12)2 is completed. To prove (4.12)3, we consider two
cases:
Case 1. If v2 ≤ 2, then on Ω2, we have

cβ(t)
∫
Ω2

ψ2
t dx ≤ cβ(t)

∫ L

0
|ψt|

v(x) dx ≤ −cE′(t). (4.18)

However, on Ω1, using the estimate in (4.11), we have

cβ(t)
∫
Ω1

ψ2
t dx = cβ(t)

∫
Ω1

ψtψtdx ≤ cβ
(∫
Ω1

|ψt|
v1 dx

) 1
v1

(∫
Ω1

|ψt|
v1

v1−1 dx
) v1−1

v1

≤ cβ1− 1
v1

(
β

∫ L

0
|ψt|

v(x) dx
) 1

v1

∥ψt∥ v1
v1−1

≤ cβ
(
−E′(t)

) 1
v1 (E(t))

3v1−2
4v1 .

(4.19)

Using Young’s inequality for γ = v1 and γ∗ = v1
v1−1 , we have for a positive constant ε,

cβ(t)
∫
Ω1
ψ2

t dx ≤ εβ [E(t)]
3v1−2

4(v1−1) +Cε (−E′(t)) . (4.20)

Combining (4.18) and (4.18), we obtain

cβ(t)
∫ L

0
ψ2

t dx ≤ −cE′(t) + cεβ [E(t)]
3v1−2

4(v1−1) +Cε (−E′(t)) . (4.21)

Since 3v1−2
4(v1−1) > 1, we have ∫ L

0
ψ2

t dx ≤ −E′(t) + cεβE(t) +Cε (−E′(t)) . (4.22)

Case 2. If v2 > 2, on Ω2, we have

cβ(t)
∫
Ω2

ψ2
t dx ≤ cβ(t)

(∫
Ω2

|ψt|
v2 dx

) 2
v2

≤ cβ
(∫
Ω2

|ψt|
v(x) dx

) 2
v2

≤ cβ1− 2
v1

(
β

∫ L

0
|ψt|

v(x) dx
) 2

v2

≤ cβ
(
−E′(t)

) 2
v2 , (4.23)

and on Ω1, we have

cβ(t)
∫
Ω1
ψ2

t dx ≤ cβ (−E′(t))
1

v1 (E(t))
3v1−2

4v1 . (4.24)
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Now, a combination of (4.23) and (4.24), we find

cβ(t)
∫ L

0
ψ2

t dx ≤ cβ
(
−E′(t)

) 2
v2 + cβ

(
−E′(t)

) 1
v1 (E(t))

3v1−2
4v1 . (4.25)

Multiply the last inequality by E κ̂ where κ̂ = v2
2 − 1 > 0, we get

cE κ̂β(t)
∫ L

0
ψ2

t dx ≤ cβE κ̂ (−E′(t)
) 2

v2 + cβE κ̂ (−E′(t)
) 1

v1 (E(t))
3v1−2

4v1 . (4.26)

Using Young’s inequality two times, to get for a positive constant ε1, ε2 > 0,

cE κ̂β(t)
∫ L

0
ψ2

t dx ≤ cε1βE κ̂+1 +Cε1

(
−E′(t)

)
+ cCε2

(
−E′(t)

)
+ cβε2E

v1
v1−1

(
3v1−2

4v1
+̂κ

)

≤ cβε1E κ̂+1 +Cε1

(
−E′(t)

)
+ cCε2

(
−E′(t)

)
+ cβε2E

v2
2 . (4.27)

The above estimate is obtained by using the facts that v1
v1−1

(
3v1−2

4v1
+ κ̂

)
≥

v2
2 and E(t) is a nonincreasing

function. Therefore, we have

cβ(t)
∫ L

0
ψ2

t dx ≤ cε1βE + cε2βE −Cε1

(
E′(t)

)
E−̂κ −Cε2

(
E′(t)

)
E−̂κ. (4.28)

where κ̂ = v2
2 − 1 > 0. This is the end of the proof.

Lemma 4.5. Assuming that (A4) and (A5) hold, then for any λ > 0, we have

−β(t)
∫ L

0
ψ|ψt|

v(x)−2ψtdx ≤ (c1 + ce) λ
∫ L

0
|ψx|

2dx + β(t)
∫
Ω∗

Cλ(x)|ψt|
2v(x)−2dx

+ β(t)
∫
Ω∗∗

Cλ(x)|ψt|
v(x)dx. (4.29)

Proof. We consider the following partition:

Ω∗ = {x ∈ [0, L] : v(v) < 2}, Ω∗∗ = {x ∈ [0, L] : v(x) ≥ 2}.

Therefore,

−β(t)
∫ L

0
ψ|ψt|

v(x)−2ψtdx = −β(t)
∫
Ω∗

ψ|ψt|
v(x)−2ψtdx − β(t)

∫
Ω∗∗

ψ|ψt|
v(x)−2ψtdx. (4.30)

Since β is a nonincreasing function, we find

−β(t)
∫
Ω∗

ψ|ψt|
v(x)−2ψtdx ≤ λce

∫
Ω∗

ψ2
xdx + β(t)

∫
Ω∗

Cλ(x)|ψt|
2v(x)−2dx, (4.31)

where ce is the embedding constant. On the other hand,
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−β(t)
∫
Ω∗∗

ψ|ψt|
v(x)−2ψtdx ≤ λβ(t)

∫
Ω∗∗

|ψt|
v(x)dx + β(t)

∫
Ω∗∗

Cλ(x)|ψt|
v(x)dx. (4.32)

We estimate the first integral in (4.32) as follows:

λβ(t)
∫
Ω∗∗

|ψ|v(x)dx ≤ λβ(t)
∫ L

0
|ψ|v(x)dx = λβ(t)

∫
Ω+

|ψ|v(x)dx + λβ(t)
∫
Ω−

|ψ|v(x)dx

≤ λβ(t)
∫
Ω+

|ψ|v2dx + λβ(t)
∫
Ω−

|ψ|v1dx ≤ λβ(t)
∫ L

0
|ψ|v2dx + λβ(t)

∫ L

0
|ψ|v1dx

≤ λcv1
e ||ψx||

v1
2 + λcv2

e ||ψx||
v2
2 ≤ λ

(
cv1

e ||ψx||
v1−2
2 + cv2

e ||ψx||
v2−2
2

)
||ψx||

2
2

≤ λ
(
cv1

e

(2
b

E(0)
)v1−2

+ cv2
e

(2
b

E(0)
)v2−2)

||ψx||
2
2 ≤ c1λ||ψx||

2
2,

(4.33)

where
Ω+ = {x ∈ [0, L] : |ψ(x, t)| ≥ 1}, Ω− = {x ∈ [0, L] : |ψ(x, t)| < 1, }

and

c1 =

(
cv1

e

(2
b

E(0)
)v1−2

+ cm2
e

(2
b

E(0)
)v2−2)

. (4.34)

Therefore, (4.32) becomes

−β(t)
∫
Ω∗∗

ψ|ψt|
v(x)−2ψtdx ≤ c1λ

∫ L

0
|ψx|

2dx + β(t)
∫
Ω∗∗

Cλ(x)|ψt|
v(x)dx. (4.35)

Combining (4.31) and (4.35), the proof is finished.

Lemma 4.6. The functional

F1(t) := ρ1ρ3

∫ L

0
ϕt

∫ x

0
θ(y)dydx,

satisfies

F′1(t) ≤ −
ρ1γ1

2

∫ L

0
ϕ2

t dx + ε1

∫ L

0
(ϕx + ψ)2 dx + ĉ

∫ L

0
θ2

xdx + α̂c
∫ L

0

∫ ∞

0
g(s)|Ψx|

2dsdx. (4.36)

Proof. The derivative of F1(t) with imposing (2.6)3, is given by

F′1(t) = ρ3

∫ L

0
ρ1ϕtt

∫ x

0
θ(y)dydx + ρ1

∫ L

0
ϕt

[
α̂θx + α

∫ ∞

0
g(s)Ψx(x, t, s)ds − γϕt

]
dx.

Using (2.6)1 and integrating by parts, we arrive at

F′1(t) = −ρ3κ

∫ L

0
θ (ϕx + ψ) dx + ρ3γ

∫ L

0
θ2dx + ρ1α̂

∫ L

0
ϕtθxdx

− ρ1γ

∫ L

0
ϕ2

t dx + ρ1α

∫ L

0
ϕt

∫ ∞

0
g(s)Ψx(x, t, s)dsdx. (4.37)
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Apply Young’s and Cauchy-Schwarz inequalities, we get for positive constant ε, ε1, ε2

ρ1α

∫ L

0
ϕt

∫ ∞

0
g(s)ηx(x, t, s)dsdx

≤ ε2

∫ L

0
ϕ2

t dx +
α2ρ2

1

4ε2

∫ 1

0

(∫ ∞

0

√
g(s)

√
g(s) Ψxds

)2

dx

≤ ε2

∫ L

0
ϕ2

t dx +
α2ρ2

1

4ε

(∫ ∞

0
g(s)ds

) ∫ L

0

∫ ∞

0
g(s)|Ψx|

2dsdx

≤ ε2

∫ L

0
ϕ2

t dx +
g0α

2ρ2
1

4ε

∫ L

0

∫ ∞

0
g(s)|Ψx|

2dsdx,

(4.38)

and

−ρ3κ

∫ L

0
θ (ϕx + ψ) dx ≤ ε1

∫ L

0
(ϕx + ψ)2 dx +

ρ2
3κ

2

4ε1

∫ L

0
θ2dx,

ρ1α̂

∫ L

0
ϕtθxdx ≤ ε2

∫ L

0
ϕ2

t dx +
α̂2ρ2

1

4ε2

∫ L

0
θ2

xdx.
(4.39)

Choosing ε2 =
ρ1γ

4 and using Poincaré’s inequality, the estimate (4.36) is established.

Lemma 4.7. The functional

F2(t) := ρ2

∫ L

0
ψtψdx,

satisfies the estimate

F′2(t) ≤ −
b
4

∫ L

0
ψ2

xdx + ρ2

∫ L

0
ψ2

t + ĉ
∫ L

0
(ϕx + ψ)2dx

+ cβ(t)
∫
Ω∗

|ψt|
2v(x)−2dx + cβ(t)

∫
Ω∗∗

|ψt|
v(x)dx. (4.40)

Proof. We have

F′2(t) = ρ2

∫ L

0
ψ2

t dx + ρ2

∫ L

0
ψψttdx. (4.41)

From Eq (2.6)2, we find

ρ2

∫ L

0
ψψttdx =

∫ L

0
ψ

[
bψxx − κ(ϕx + ψ) − β(t)|ψt|

v(x)−2ψt

]
dx

= −b
∫ L

0
ψ2

xdx − κ
∫ L

0
ψ(ϕx + ψ)dx − β(t)

∫ L

0
ψ|ψt|

v(x)−2ψtdx. (4.42)

Imposing this in (4.41), we get

F′2(t) = ρ2

∫ L

0
ψ2

t dx − b
∫ L

0
ψ2

xdx − κ
∫ L

0
ψ(ϕx + ψ)dx − β(t)

∫ L

0
ψ|ψt|

v(x)−2ψtdx. (4.43)

Young’s inequality, we get for ε
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−κ

∫ L

0
ψ(ϕx + ψ)dx ≤ ε

∫ L

0
ψ2dx +

κ2

4ε

∫ L

0
(ϕx + ψ)2dx. (4.44)

Now, using the estimate in (4.29), taking λ = b
2(ce+c1) and choosing ε = b

4ce
, the proof is completed.

Lemma 4.8. The functional

F3(t) := −ρ1

∫ L

0
(ϕx + ψ)

∫ x

0
ϕt(y)dydx,

satisfies

F′1(t) ≤ −
κ

2

∫ L

0
(ϕx + ψ)2 dx + ρ1(1 + ε3)

∫ L

0
ϕ2

t dx +
c
ε3

∫ L

0
ψ2

t dx + ĉ
∫ L

0
θ2

xdx. (4.45)

Proof. Differentiating F3(t), and imposing (2.6)1 gives

F′3(t) = −ρ1

∫ L

0
(ϕx + ψ)t

∫ x

0
ϕt(y)dydx −

∫ L

0
(ϕx + ψ)

[
κ (ϕx + ψ) − γθ

]
dx.

Simplifying, this equation becomes

F′3(t) = −ρ1

∫ L

0
ϕxt

∫ x

0
ϕt(y)dydx − ρ1

∫ L

0
ψt

∫ x

0
ϕt(y)dydx − κ

∫ L

0
(ϕx + ψ)2 dx

+ γ

∫ L

0
(ϕx + ψ) θdx. (4.46)

Integration by parts leads to

F′3(t) = ρ1

∫ L

0
ϕ2

t dx − ρ1

∫ L

0
ψt

∫ x

0
ϕt(y)dydx − κ

∫ L

0
(ϕx + ψ)2 dx + γ

∫ L

0
(ϕx + ψ) θdx. (4.47)

Using Young’s and Cauchy-Schwarz inequalities, we get for positive constant ε2, ε3

−ρ1

∫ L

0
ψt

∫ x

0
ϕt(y)dydx ≤ ε3

∫ L

0
ϕ2

t dx +
c
ε3

∫ L

0
ψ2

t dx,

γ

∫ L

0
(ϕx + ψ) θdx ≤ ε2

∫ L

0
(ϕx + ψ)2 dx +

c
ε2

∫ L

0
θ2dx.

(4.48)

Combining (4.47) and (4.48), choosing ε2 =
κ
2 , and using Poincaré’s inequality, we get the

estimate (4.45).

Lemma 4.9. Assume that (A1 − A5) hold. Then there exist strictly positive constants µ, µ1 such that the
functional

H(t) = µE(t) + µ1F1(t) + F2(t) + µ3F3(t), (4.49)

satisfies, for all t ∈ R+,
H(t) ∼ E(t), (4.50)
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and

H ′(t) ≤ −cE(t) + c
∫ L

0
ψ2

t dx + α̂c
∫ L

0

∫ ∞

0
g(s)|Ψx|

2dsdx

+ cβ(t)
∫
Ω∗

|ψt|
2v(x)−2dx.

(4.51)

Proof. Using the previous functionals and setting ε1µ1 = 1 and ε3µ3 = 1, we end up with

H ′(t) ≤ −(µ − ĉµ1 − ĉµ3)α̂
∫ L

0
θ2

xdx −
b
4

∫ L

0
ψ2

xdx

−

[
γ

2
µ1 − ĉ

]
ρ1

∫ L

0
ϕ2

t dx −
[
κ

2
µ3 − ĉ − 1

] ∫ L

0
(ϕx + ψ)2dx

+ ρ2̂cµ2
3

∫ L

0
ψ2

t dx + αµ1̂c
∫ L

0

∫ ∞

0
g(s)|Ψx|

2dsdx

−
[
µ − cµ1

]
β(t)

∫ L

0
Cλ(x)|ψt|

v(x)dx + cµ1β(t)
∫
Ω∗

|ψt|
2v(x)−2dx.

(4.52)

Choosing µ1 so that
γ

2
µ1 − ĉ > 0, and µ3 so that

κ

2
µ3 − ĉ > 1 then we find that for some positive

constant m,

H ′(t) ≤ −(µ − ĉµ1 − ĉ)α̂
∫ L

0
θ2

xdx − m
∫ L

0

(
ϕ2

t + ψ
2
x + (ϕx + ψ)2

)
dx

+ c
∫ L

0
ψ2

t dx + cβ(t)
∫
Ω∗

|ψt|
2v(x)−2dx + α̂c

∫ L

0

∫ ∞

0
g(s)|Ψx|

2dsdx.
(4.53)

On the other hand, exploiting Young’s and Poincaré inequalities, keeping in mind the energy
functional (4.1) and the fact that ϕ2

x ≤ 2(ϕx + ψ)2 + 2ψ2, we obtain

|H(t) − µE(t)| ≤ cE(t). (4.54)

Taking µ sufficiently large so that µ − ĉµ1 − ĉ > 0 and µ − c > 0 yields the equivalence (4.50) and the
estimate (4.51).

Lemma 4.10. If the assumptions (A1 − A5) hold, then we have the following estimates:

cβ(t)
∫
Ω∗

|ψt|
2v(x)−2dx =

 0, v1 ≥ 2;

cεE(t) + cβ(t)E
2v1−2
2−v1

∫
Ω∗

Cε|ψt|
v(x), 1 < v1 < 2.

(4.55)

Proof. The first estimate is clear because if v1 ≥ 2, then meas(Ω∗) = 0. However, if 1 < v1 < 2, then
by using Young’s inequality, we have

E
2−v1

2v1−2 |ψt|
2v(x)−2 ≤ εE

v(x)
2−v(x)

2−v1
2v1−2 +Cε|ψt|

v(x). (4.56)

Since v(x)
2−v(x)

2−v1
2v1−2 ≥

2−v1
2v1−2 + 1, and E is nonincreasing, we obtain

E
2−v1

2v1−2 |ψt|
2v(x)−2 ≤ cεE

2−v1
2v1−2+1

+Cε|ψt|
v(x). (4.57)
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Multiplying by β(t)

E
2−v1

2v1−2
and integrating with respect to x,

cβ(t)
∫
Ω∗

|ψt|
2v(x)−2dx ≤ cεE(t) + cβ(t)E

2v1−2
2−v1

∫
Ω∗

Cε|ψt|
v(x). (4.58)

This finishes the proof.

5. The proofs of the stability theorems

In this section, we prove our main decay theorems stated in Section 3.

5.1. The proof of Theorem 3.1

Proof. To prove the energy decay in (3.1), we multiply (4.51) by β(t) to get

βH ′(t) ≤ −cβE(t) + cβ
∫ L

0
ψ2

t dx + αβ̂c
∫ L

0

∫ ∞

0
g(s)|Ψx|

2dsdx

+ cβ(t)
∫
Ω∗

|ψt|
2v(x)−2dx.

(5.1)

Combining (4.2) with (5.1), and using the estimate of cβ(t)
∫ L

0
ψ2

t dx in (4.12)1, then (5.1) becomes

L′ (t) ≤ −cβE (t) + ĉαβ
∫ t

0
g(s)|Ψx|

2ds + ĉαβ
∫ ∞

t
g(s)|Ψx|

2ds, (5.2)

where L = βH + cβE ∼ E. Using (4.1) and (4.2) and the fact that ξ and g are nonincreasing, we find
that

ĉαβξ(t)
∫ t

0
g(s)|Ψx|

2ds ≤ −̂cαβ
∫ t

0
g′(s)|Ψx|

2ds

≤ −cαβE′(t), ∀t ∈ R+.
(5.3)

Multiplying (5.2) by ξ(t) and combining with (5.3) and the bound in the hypothesis (A3), we get

F ′ (t) ≤ −cξ(t)βE (t) + ĉ∆αξ(t)
∫ ∞

t
g(s)ds. (5.4)

where F = ξL + cαβξ ∼ E. Let h(t) = ĉ(ξβ)(t)∆
∫ +∞

t
g(s)ds. Then, (5.4) becomes

F ′(t) ≤ −γ0 (βξ)F (t) + αh(t), (5.5)

for some γ0 > 0. This last inequality remains true for any δ0 ∈ (0, γ0]; that is

F ′(t) ≤ −δ0 (βξ) (t)F (t) + αh(t), ∀t ∈ R+.

Therefore, direct integration leads to

F (T ) ≤ e−δ0
∫ T

0 (βξ)(s)ds

(
F (0) + α

∫ T

0
eδ0

∫ t
0 (βξ)(s)dsh(t)dt

)
,
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and the fact that F ∼ E gives

E(T ) ≤ γ1e−δ0
∫ T

0 (βξ)(s)ds

(
F (0) + α

∫ T

0
eδ0

∫ t
0 (βξ)(s)dsh(t)dt

)
. (5.6)

We note that

eδ0
∫ t

0 (βξ)(s)dsh(t) =
∆̂c
δ0

(
eδ0

∫ t
0 (βξ)(s)ds

)′ ∫ +∞

t
g(s)ds, ∀t ∈ R+.

Then, integration by parts gives∫ T

0
eδ0

∫ t
0 (βξ)(s)dsh(t)dt

=
∆̂c
δ0

(
eδ0

∫ T
0 (βξ)(s)ds

∫ +∞

T
g(s)ds −

∫ +∞

0
g(s)ds +

∫ T

0
eδ0

∫ t
0 (βξ)(s)dsg(t)dt

)
.

Combining with (5.6), we have

E(T ) ≤ γ1

(
F (0) +

α∆̂c
δ0

∫ T

0
eδ0

∫ t
0 (βξ)(s)dsg(t)dt

)
e−δ0

∫ T
0 ξ(s)ds +

α∆̂c
δ0

∫ +∞

T
g(s)ds. (5.7)

We note that (
e
∫ t

0 ξ(s)dsg(t)
)′
≤ 0, ∀t ∈ R+.

We have e
∫ t

0 (βξ)(s)dsg(t) ≤ g(0) and∫ T

0
eδ0

∫ t
0 (βξ)(s)dsg(t)dt ≤ (g(0))δ0

∫ T

0
(g(t))1−δ0 dt. (5.8)

Finally, combining (5.7) and (5.8), we obtain

E(t) ≤ δ1

(
1 +

∫ t

0
(g(s))1−δ0ds

)
e−δ0

∫ t
0 (βξ)(s)ds +

α∆̂c
δ0

∫ +∞

t
g(s)ds, (5.9)

where δ1 = max{γ1F (0), α∆̂c
δ0

(g(0))δ0}. Thus, the proof of (3.1) is completed.

5.2. The proof of Theorem 3.2

Proof. To prove (3.4), we first multiply (4.51) by β(t), to get

βH ′(t) ≤ −cβE(t) + cβ
∫ L

0
ψ2

t dx + αβ̂c
∫ L

0

∫ ∞

0
g(s)|Ψx|

2dsdx

+ cβ(t)
∫
Ω∗

|ψt|
2v(x)−2dx.

(5.10)

Combining (5.10) and (4.55), and choosing ε small enough, we arrive at

βH ′(t) ≤ −cβE(t) + cβ
∫ L

0
ψ2

t dx + αβ̂c
∫ L

0

∫ ∞

0
g(s)|Ψx|

2dsdx − cβE′(t)E
2v1−2
2−v1 . (5.11)
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Using the estimate of cβ
∫ L

0
ψ2

t dx in (4.12)3, we have

βH ′(t) ≤ −cβE(t)) + cε1βE + cε2βE −Cε1 E′(t)E−κ −Cε2 E′(t)E−κ − cβE′(t)E
2v1−2
2−v1

+ ĉαβ
∫ t

0
g(s)ds + ∆αβ̂c

∫ ∞

t
g(s)ds.

(5.12)

Multiplying (5.12) by E κ̃(t), where κ̃ = max
{

2−v1
2v1−2 ,

v2
2 − 1

}
, we get

E κ̃(t)βH ′(t) ≤ −cβE κ̃+1(t) + cε1E κ̃+1(t) + ε2βE κ̃+1(t) −Cε1 E′(t) −Cε2 E′(t)

+ ĉαβE κ̃(t)
∫ t

0
g(s)ds + ∆αβ̂cE κ̃(t)

∫ ∞

t
g(s)ds,

and choosing ε1, ε2 small enough, then we get

Y′(t) ≤ −cβE κ̃+1(t) + cβE κ̃(t)
∫ t

0
g(s)ds + cβE κ̃(t)

∫ ∞

t
g(s)ds, (5.13)

where Y = E κ̃βH + cβE ∼ E. Multiplying (5.35) by βκ̃ξκ̃+1(t), using (4.2), and using that ξE is
nonincreasing, we get

F ′(t) ≤ −c(ξβ)̃κ+1(t)F κ̃+1(t) + (ξβE)̃κ (t)h(t), (5.14)

where h(t) = ∆α̂c(ξβ)(t)
∫ ∞

t
g(s)ds and F = ξY + cβE ∼ E. Use of Young’s inequality, with q = κ̃ + 1

and q∗ = κ̃+1
κ̃

, gives for some positive constant c1 and c2,

F ′(t) ≤ −c1(ξβ)̃κ+1(t)F κ̃+1(t) + c2hκ̃+1(t). (5.15)

Multiply both sides of (5.35) by (ξβ)η, η > 1, thus, we get

ξηF ′(t) ≤ −c1(ξβ)̃κ+1+η(t)F κ̃+1(t) + c2(ξβ)ηhκ̃+1(t). (5.16)

Let χ := ξβ > 0, which is nonincreasing, we find that

(χηF (t))′ ≤ −c1χ
κ̃+1+η(t)F κ̃+1(t) + c2χ

ηhκ̃+1(t). (5.17)

Setting φ = χηF and noting η = κ̃+1
κ̃

, one finds that

φ′(t) ≤ −c1φ
κ̃+1(t) + c2χ

η(t)hκ̃+1(t). (5.18)

Let

H(t) := φ(t) − Λ(t); where Λ(t) = c2(1 + t)
−1
κ̃

∫ t

0
χη(s)hκ̃+1(s)(1 + s)

1
κ̃ ds. (5.19)

From the definition of Λ, we have

c2χ
η(t)hκ̃+1(t) = Λ′(t) +

c2

κ̃
(1 + t)

−1
κ̃
−1

∫ t

0
χη(s)hκ̃+1(s)(1 + s)

1
κ̃ ds, (5.20)

since χη(s)hκ̃+1(1 + s)
1
κ̃ > 0, then we have for all t ≥ t0 > 0

ν :=
∫ t0

0
χη(s)hκ̃+1(s)(1 + s)

1
κ̃ ds ≤

∫ t

0
χη(s)hκ̃+1(s)(1 + s)

1
κ̃ ds,
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and then ∫ t

0
χη(s)hκ̃+1(s)(1 + s)

1
κ̃ ds

ν
≥ 1, ∀t ≥ t0.

Thus, (5.20) yields, ∀t ≥ t0,

c2χ
η(t)hκ̃+1(t) ≤ Λ′(t) +

1
κ̃

c̃κ2ν̃
κc̃κ+1

2

[
(1 + t)

−1
κ̃

]̃κ+1
[∫ t

0
χη(s)hκ̃+1(s)(1 + s)

1
κ̃ ds

]̃κ+1

, (5.21)

we can choose c2 large enough so that 1
κ̃
c̃κ2ν̃

κ ≤ c1, and then we get

c2χ
η(t)hκ̃+1(t) ≤ Λ′(t) + c1Λ

κ̃+1, ∀t ≥ t0. (5.22)

Now using (5.22) and the definition of H, we get, ∀t ≥ t0,

H′(t) = φ′(t) − Λ′(t) ≤ −c1φ
κ̃+1(t) + c2χ

η(t)hκ̃+1(t) − Λ′(t)

≤ −c1

[
(H + Λ)̃κ+1(t)

]
+ c2χ

η(t)hκ̃+1(t) − Λ′(t).
(5.23)

Since H(0) > 0. Then there exists t1 > 0 such that H(t) > 0,∀t ∈ [0, t1). Hence,

H′(t) ≤ −c1

[
H κ̃+1(t) + Λκ̃+1(t)

]
+ c2χ

η(t)hκ̃+1(t) − Λ′(t), ∀ t ∈ [t0, t1).

≤ −c1

[
H κ̃+1(t) + Λκ̃+1(t) −

c2

c1
χη(t)hκ̃+1(t) +

1
c1
Λ′(t)

]
.

(5.24)

Thus,
H′(t) ≤ −c1H κ̃+1(t), ∀ t ∈ [t0, t1). (5.25)

Integrate over (t0, t), we have
H(t) ≤

c

(t − t0)
1
κ̃

, ∀ t ∈ [t0, t1). (5.26)

If t1 = +∞, then using the definitions of H and Λ, we have, for t large enough,

φ(t) ≤ C(1 + t)
−1
κ̃

[
1 +

∫ t

0
χη(s)hκ̃+1(s)(1 + s)

1
κ̃ ds

]
. (5.27)

If t1 < +∞, then there exists t2 > t1 such that H(t) ≤ 0,∀ t1 ≤ t < t2. Hence, (5.19) yields φ(t) ≤
Λ(t),∀ t1 ≤ t < t2. Therefore, we get (5.27). If t2 = +∞, we are done. Otherwise, there exists t3 > t2

such that H(t2) = 0 and H(t) > 0,∀ t2 < t < t3. Consequently, we obtain (5.27) by repeating the
steps (5.24)–(5.26) on [t2, t3). Therefore, (5.27) remains valid for all t ≥ t0. Multiplying (5.27) by χ−η

and recalling the definition of φ then we have, for η = κ̃+1
κ̃

, the following

F (t) ≤ C(1 + t)
−1
κ̃ χ−

κ̃+1
κ̃

[
1 +

∫ t

0
χ

κ̃+1
κ̃ (s)hκ̃+1(s)(1 + s)

1
κ̃ ds

]
. (5.28)

Using the fact F ∼ E, we have two cases:

If κ̃ = 2−v1
2v1−2 > 0, then κ̃ + 1 = v1

2v1−2 and κ̃+1
κ̃
= v1

2−v1
, we get

E(t) ≤ C(1 + t)−
2v1−2
2−v1 χ

−
v1

2−v1

(
1 +

∫ t

0
(1 + s)

2v1−2
2−v1 χ

v1
2−v1 (s)h

1
v1−1 ds

)
. (5.29)
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If κ̃ = v2
2 − 1 > 0, we have

E(t) ≤ C(1 + t)−
2

v2−2χ
−

v2
v2−2

(
1 +

∫ t

0
(1 + s)

2
v2−2χ

v2
v2−2 (s)h

v2
2 ds

)
. (5.30)

This establishes (3.4).

5.3. The proof of Theorem (3.3)

Proof. Multiplying (4.51) by β, recalling the estimate of cβ
∫ L

0
ψ2

t dx in (4.12)2, we get

βH ′(t) ≤ −cβE(t) + cεβE(t) −Cε (E′(t)) E−̂κ + ĉαβ
∫ t

0
g(s)|Ψx|

2
2ds + ĉαβ

∫ ∞
t

g(s)|Ψx|
2dx. (5.31)

Multiplying (5.31) by E κ̂ where κ̂ = v2
2 − 1 > 0, we get

βE κ̂H ′ (t) ≤ −cβE κ̂+1 (t) + cεE κ̂+1 −Cε (−E′(t)) + ĉβαE κ̂
∫ t

0
g(s)|Ψx|

2
2ds + ĉβαE κ̂

∫ ∞
t

g(s)|Ψx|
2dx.

Choosing ε sufficiently small, we get

L(t) ≤ −cβE κ̂+1(t) + ĉαβE κ̂

∫ t

0
g(s)|Ψx|

2
2ds + ĉαβE κ̂

∫ ∞

t
g(s)|Ψx|

2dx., ∀t ≥ 0, (5.32)

where L = βE κ̂H + cβE ∼ E. Multiplying (5.32) by (ξβ)̂κξ, combining with (4.2) and (5.3), and
imposing Assumption (A3), we get

Z′ (t) ≤ −c(ξβ)̂κ+1E κ̂+1 (t) + ∆̂cαβ(ξβE)̂κξ
∫ ∞

t
g(s)ds. (5.33)

whereZ = ξβL + 2αβ̂cE ∼ E. Setting h(t) = ∆α̂c(ξβ)(t)
∫ +∞

t
g(s)ds.

Then, (5.33) becomes

Z′(t) ≤ −c(ξβ)̂κ+1(t)E κ̂+1 (t) + c(ξβE)̂κ(t)h(t). (5.34)

Put χ := ξβ, which is a positive nonincreasing, then we get

Z′(t) ≤ −cχ̂κ+1(t)Zκ̂+1(t) + c (χE)̂κ h(t). (5.35)

Using Young’s inequality, with q = κ̂ + 1 and q∗ = κ̂+1
κ̂

, we get for some positive constant c1 and c2,

Z′(t) ≤ −c1χ̂
κ+1(t)Zκ̂+1(t) + c2ĥκ+1(t). (5.36)

Repeating the same steps in the last part of the proof of Theorem (3.2), replacing κ̃ by κ̂ = v2−2
2 , we

complete the proof of the decay (3.8).

6. Conclusions

In this work, we considered a nonlinear Timoshenko system with Coleman-Gurtin’s heat flux. We
proved that the system is exponentially and polynomially stable even without imposing the equality of
the wave speeds unless, the system is not fully damped by the thermoelasticity effect as in [2]. By
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constructing a suitable Lyapunov functional, we studied the interaction between the effective of the
nonlinear feedback with variable exponent and the thermal heat. We noticed that the decay depends
on the behavior of the thermal kernel, the range of the variable exponent, and the time-dependent
coefficient. Our results extend and improve many earlier results. To our knowledge, this is the first
study of thermoelastic systems where the thermal kernel satisfies (A1) in the current form (ξ is a
function not a constant). Moreover, this is the first study of the competition between variable
exponents and infinite memory.
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