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1. Introduction

In the present work, we consider the Rao-Nakra (three layer) beam system, where the top and the
bottom layers of the beam are subjected to Gurtin-Pipkin’s thermal law, namely

prhiuy, — Evhiug, — k(—u+v +aw,) + 6,60, =0, in (0, 7) X R,,
p3h3vﬂ - E3h3vxx + k(—u + v+ awx) — 010+ 6279x =0, in (0, 7T) X R+,
phwy + EIW e — ak(—u + v + aw,), + o3w, = 0, in (0,7) X R,
+00 (1.1)
046, — B f 81()x(x, 1 — s)ds + 61(uy +v,) =0,  in(0,m) X Ry,
0
—+00
s — B2 f 82() DX, 1 — $)ds + 62v, = 0, in (0,7) X R,
0
with the following boundary conditions:
u(0,7) = v (0,7) = w(0,1) = wy(0,0) = 6(0,1) = 90,0 =0, =0, (12)
u(m, 1) = v(m, 1) = w(m, 1) = we(m,1) = 0u(, 1) = 9(1,1) = 0, 120, '
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and the initial data

u(x,0) = ug(x), v(x,0) = vo(x), w(x,0) = wy(x), x € (0,m),
u,(x,0) = uy(x), vi(x,0) = vi(x), wi(x,0) = wi(x), x € (0,m), (1.3)
0(x, —t) = Oy(x, 1), Hx, —t) = Fo(x, 1), x € 0,m), t>0.

The relaxation functions g; and g, are positive non-increasing functions to be specified later. The
stabilization of Rao-Nakra beam systems has gathered much interest from researchers recently, and
a great number of results have been established. The Rao-Nakra beam model is a beam system that
takes into account the motion of two outer face plates (assumed to be relatively stiff) and a sandwiched
compliant inner core layer, see [1-5] for Rao-Nakra, Mead-Markus and multilayer plates or sandwich
models. The basic equations of motion of the Rao-Nakra model are derived thanks to the Euler-
Bernoulli beam assumptions for the outer face plate layers, the Timoshenko beam assumptions for the
sandwich layer and a “no slip” assumption for the motion along the interface. Suppose A(j), j = 1,2,3
is the thickness of each layer in the beam of length 7, see Figure 1 and & = h(1) + h(2) + h(3) the total
thickness of the beam.

Wy f

W 23:[

1Yy

Figure 1. Triple layer beam.

Assuming the Kirchhoff hypothesis is imposed on the outer layers of beam and in addition, there is
a continuous, piecewise linear displacements through the cross-sections, Liu et al. [6] gave a detailed
derivation of following laminated beam system:

pihiuy — Ehiuy —7 =0,
1 1 hl 1\ _
pihy, — Eilhy,, — 7+ Gih(w,+y) =0,

2
Phth + Elwxxxx - Glhlk(wx + yl)x - G3h3(wx + y3)x - hZTx = O’ (14)

p3h3vy — Eshzv, + 7 =0,

p3bsyy — EsLy), — %T + Gshy(wy +y°) =0,

where x € (0,7),¢ > 0, (u,y"), (v, y*) represent longitudinal displacement and shear angle of the bottom
and top layers plates. The transverse displacement of the beam is represented by w, and 7 is the
shear stress of the core layer. Also, for j = 1,2,3 (from bottom to top layer), E;,G;,1;,p; > 0
are Young’s modulus, shear modulus, moments of inertia and density respectively for each layer.
Moreover, in (1.4);, we have that ph = p\hy + pohy + pshs and EI = E I} + E;I;. By neglecting
the rotary inertia in top and bottom layers of the beam, we obtain p;l; = p3l3 = 0 in (1.4),
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and (1.4)s. Furthermore, if we neglect the transverse shear, this leads to the Euler-Bernoulli hypothesis
wy +y' = w, +y* = 0. Assuming that the core layer consists of a material that is linearly elastic with
the stress-strain relationship 7 = 2G,&, where the shear strain ¢ is defined by

1 hi+h
8:2—h2(—u+v+awx)wherea:h2+ 12 2,

Thus, we arrive at the following Rao-Nakra beam model [1], given by

prhiuy — Exhiuy, — k(-u+v+aw,) =0,
p3h3v, — Eshzvy, + k(—u +v +aw,) =0, (1.5
ohwy + EIW o — ak(—u + v + aw,), = 0,

E

—,Gy = 5—
hy 2(1 +v)

motion of the outer layers is neglected, system (1.4) takes the form of the two-layer laminated beam

system derived by Hansen and Spies [7]. Li et al. [8] showed that system (1.5) is unstable if only one
of the equations is damped. When two of the three equations in (1.5) were damped, the authors in [8]
proved a polynomial stability. For recent results in literature, Méndez et al. [9] considered (1.5) with
with Kelvin-Voigt damping and studied the well-posedness, lack of exponential decay and polynomial
decay. Feng and Ozer [10] looked at a nonlinearly damped Rao-Nakra beam system and established
the global attractor with finite fractal dimension. Feng et al. [11] studied the stability of Rao-Nakra
sandwich beam with time-varying weight and time-varying delay. Mukiawa et al. [12] considered (1.5)
with viscoelastic damping on the first equation and heat conduction govern by Fourier’s law and proved
the well-posedness and a general decay result. Also, Raposo et al. [13] coupled (1.5) with Maxwell-
Cattaneo heat conduction established the well-posedness. For more results related Rao-Nakra beam
system with frictional, delay or thermal damping, see [14-20] and the references therein.

An interesting tool used by Mathematician in stabilizing beam models such as the Laminated and
Timoshenko beam systems is the Gurtin-Pipkin’s thermal law, see [21], with constitutive equation

where k =

I. . . .
and -1 <v < 3 is the Poisson ratio. Furthermore, when the extensional

Bq(t) + f i 8(8)0x(x,1 = s)ds = 0, (1.6)
0

where 6 = 6(x,1) is the temperature difference, ¢ = g(x,1) is the heat flux, 8 is a coupling constant
coefficient and the relaxation g is a summable convex L!([0, +c0)) function with unit mass. For results
related to (1.6), Dell’Oro and Pata [22] studied

pitty — k(u, +v), =0, in (0,7) X R,

P2V — by + k(u, +v) + 66, =0, in (0,7) X R,, (1.7)

1 00
P36, — E f h(s)0,.(x,t—s)ds+6v, =0, in(0,7) xR,
0

and proved an exponential stability result if and only if y;, = 0, where

:(P_l_i)(&_&)_imz
X =\ kos  hO)\k ~ b)) 10y kbps
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For similar results with Gurtin-Pipkin’s thermal law, see [23-28] and references therein. As clearly
elaborated in [22], the Fourier’s and Cattaneo’s (second sound) thermal law can be recovered from (1.6)
by defining the memory function g in (1.6) as

g5(s) = (_ISh((:;) 550 (1.8)

and
g:(s) = ge‘sf, >0 (1.9)

respectively. A closely related thermal law to the Gurtin-Pipkin’s thermal law is the Coleman-Gurtin’s
heat conduction law, see [29], with constitutive equation given by

Bq) + (1 —n)b, + nfoo,u(s)ex(x, t—s)ds =0, ne(0,1), (1.10)
0

where = 1 and n = O correspond to the Gurtin-Pipkin’s and Fourier thermal laws, respectively. This
entails replacing (1.7); with
_d=my 1 f ) _ —0, i
P36, 0, U(S)0y(x,t — 5)ds + 6vy, =0, in (0, 71) X R,. (1.11)
B B Jo

We should note here that systems govern by Coleman-Gurtin’s thermal lawa (1.10) gain additional
dissipation from the term —%0“ and thus less difficult to handle compare to systems with Gurtin-
Pipkin’s thermal law (1.6).

Our main focus of this paper is to investigate the well-posedness and the asymptotic behavior of
solutions of system (1.1)—(1.3). We mote here that, the rotational inertia term w,,,, which should be
in (1.1); of the original models is neglected in the present model. However, the result in this paper
is not affected by the absent of this term. Also, since the thermal coupling in system (1.1)—(1.3) is
not strong enough to achieve exponential stability, a viscous damping term w; is added to (1.1);. The
rest of work is organized as follows: In Section 2, we state some assumptions and set up our problem
(1.1)—(1.3) in appropriate spaces. In Section 3, we prove the existence and uniqueness result for the
system (1.1)—(1.3). In Section 4, we study the asymptotic behavior of solution of system (1.1)—(1.3).

2. Assumptions, problem transformation and functional setting

2.1. Assumptions on the kernels

For the relaxation functions g, and g,, we assume the following:
Assumption (A4):

(ao) g1,8> : [0,+00) — (0, +o0) are non-increasing C?([0, +0)) and convex summable functions
satisfying

+00
lim g;(s) =0 and f gi(s)ds=1,i=1,2. (2.1
S§—+00 0
(byg) There exists & > 0, i = 1,2 such that

—gi'(s) <& (gi(s)), Vs 20, i=1,2. (2.2)
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By setting

pi(s) = =gy (s) and po(s) = —g5(s), (2.3)
assumption (Ag) ensues the following:
Assumption (A;):

(a1) ui,po @ [0,+00) —> (0, +00) are non-increasing C'([0, +o0)) and convex summable functions
satisfying

+00 +0oo
Hoi = f ui(s)ds = gi(0) > 0, and f sui(s)yds =1,1i=1,2. 2.4)
0 0

(by) There exists & > 0, i = 1,2 such that

() < —Eqiils), ¥s >0, i =1,2. (2.5)

2.2. Problem transformation

Due to the work of Dafermos [30], we define new functions for the relative past history of 6 and
as follows:
0,{:(0,mr) xR, xR, = Ry,

define by
! !
o=o0(x,ts):= f O(x,r)dr and { = {(x,t,s) := f IHx, rydr. (2.6)
t—s t—s
On account of the boundary conditions (1.2), we have
0(0,1,5) = ox(m, 1, 5) = {(0,1,5) = {i(m, 1, 5) =0,

and routine calculation gives

o+o,—60=0, in (0,7) X (R; X R,
LG+E—-0=0, in(0,m1) xR, XxR,,
o(x,t,0) =(x,1,0) =0, in (0,7) X R,
s (2.7)

o(x,0,5) = f Oo(x, r)dr := oo(x, 5), in (0,7) X R,,

0
{(x,0,s) = f to(x, r)dr := {o(x, s), in (0,7) X R,

0

where o and ¢, represent the history of 6 and ¥} respectively. Also, using direct computations, we have

+00
f gl(s)exx(x’ r— S)dS
0

sS=a +00 !
—f g’l(s)f 0. (x, r)drds (2.8)
0 t—s

s=0

!
= lim g(s) f Orx(x, r)dr
a—+0o s
+00 t
- f 11(8)0 (5, 1, S)ds.
0
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Similarly, we get

+00 +00
f &()0(x, 1 — s)ds = f H2(8)x(x, 1, 8)ds. (2.9)
0 0
On account of (2.6)—(2.9), system (1.1)—(1.3) takes the form
prhiuy — Evhiuy, — k(—u+v +aw,) + 6,0, =0, in (0,7) X R,,
03h3vy — Eshsve, + k(—u + v + aw,) — 610 + 6,9, = 0, in (0,7) X R,
phwy + EIW, o, — ak(—u + v + aw,), + 63w, = 0, in (0,7) X R,
+00
P46 — B1 f H1($)0 (X, 1, 8)ds + 61 (uy +v;) =0, in (0,7) X R,,
0 (2.10)
o,+o0,—60=0, in (0,7) xR, XxR,,
+00
o590 — B f Mo () ix(x, 1, 8)ds + 6pvy = 0, in (0,m) X R;,
0
G+ —09=0, in (0,7) xR, xR,
with the boundary conditions
uy (0,0 = v,(0,1) = w(0,1) = wy,(0,7) = 6(0, 1) = 90, 1), t>0,
u(m, ) = v(m, 1) = w(m, 1) = wy(mr, 1) = 0,(m, 1) = 9(m,1) = 0, t>0, @.11)
0 (0,1, 5) = o(m,1,5) = £(0,1,5) = {(m, 1,5) = 0, 5,1 €R,, '
o(x,1,0) =(x,1,0) =0, x€0,m),teR,
and the initial data
u(x, 0) = up(x), v(x,0) = vo(x), w(x,0) = wo(x), x € (0, ),
u(x,0) = u1(x), vi(x,0) = vi(x), wi(x,0) = wi(x), x € (0,n), (2.12)
O(x, —t) = bp(x, 1), ¥(x, —1) = Fo(x, 1) x€(0,m), t>0, '
o(x,0,5) = oo(x, 5), {(x,0,5) = {o(x,s), x € (0,m),s>0.

Setting ¥ = (u, ¢, v, Y, w,$,60,0,9,0)", with ¢ = u,, = v, and ¢ = w,. Then, the semi-group
formulation of system (2.10)—(2.12) is given by the Cauchy problem

(2.13)

Y, + AY =0,
(P){
F(0) = Yo,

where Wy = (ug, uy, vo, Vi, wo, Wi, 6y, 09, %o, £o)T and the linear operator (A is defined by

AIMS Mathematics Volume 8, Issue 12, 28188-28209.
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—p
E 0
— e — ——(—u+ v+ awy) + ——0,
P1 Py pih
E k v
——3vxx + —(Cu+v+aw,) — 5_;19 + 6—21%
03 p3h3 P33 P33
—¢
El ak 03
AY = —— Woyxxx — _(_u tv+ awx)x + _¢
ph ph ph

+00 5
—@j\;Mﬂ¢M%®M+—H%+w)
0 P4

P4

o,—0

Ps

—+00 6
~L f /’LZ(S){xx(x, S)dS + —Zlﬁx
0 Ps

és_ﬁ

2.3. Functional spaces

Let {, ) and ||.|| denote the inner product and the norm in L*(0, rr) respectively and we define following
Sobolev spaces:

H) :={w € H'(0,7)/@(0) = 0}, H, := {w € H'(0,n)/w(n) = 0},
H? :={w € H0,n)/w, € H!}, H; := {w € H0,n)/w, € H}},
H? :=H*(0,7) N Hy(0, x),

where H? is equip with the inner product
<TD', ﬁ>H§ = <wxx’ z%’xx>

and norm

2

2
H? = ”wxx” .

Il

It is easy to check that (H?2, ||.||12q$) is a Banach space and the norm ||.||?{3 is equivalent to the usual norm

in H*(0, 7). Next, we introduce the weighted-Hilbert space of H, i (0, m)-real valued functions on (0, +o0)
by

L} = L (R Hy(0,m),
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where
L} (Ry; H)(O,7m)) = {w : Ry — H,(0, ﬂ)/f m,u(S)llwx(S)llzds < 00},
0

and equip them with the inner product

+00
(@, @) = f p(s K@ (), W(5))ds,
0
and norm
+00
@7, = f u(liw(s)IPds.
" 0
Also, we define
(1) ={w e /o, € I} and limlor.(s) = 0}.
Now, we introduce the phase space of our problem given by
H = Hyx L’ x Hy x I’ x H; x > x > X L) x> X L},

and equipped it with the inner product

<(u7 ‘)0’ v’ w’ W, ¢, 9’ O-? 0? {)7 (I:\t’ @’ ">, lﬁ’ W’ &’ @7 6-’ 19" 2))7‘{

=Eih Uy, i) + pr]hnde, @) + k((-u + v + awy), (=it + V + awy))

+ Eshs(ve, 02) + pshs@ i) + EKWew, W) + ph(®, §) + pa(6.6)

+ B, Tz + P, D) + Ball Dz,
and norm

I, =1, @, v, 0, w, 6,6, 0,9, Ol
=Eihllusl® + piillgl + Kli(—u + v + aw)IP

+ Esh|lvill® + pshalll + Ellw.d* + phllg|”

+ pallol? +B1|IUI|§51 + pslId|? +ﬁz|l§|li52,
for any ® = (w, @, v, ¥, u, $,6,0,9,0)" € H.

The domain of the linear operator A in (2.13) is defined as follows:

u,v e Hy NH), o, € H},
we H*NH?, ¢ € H?,
ceD(L), 0€H,
(eD(L). ¥ eH,,
D(A) := {, 0, v, 0w, ,60,0,9, ) € H |(—u + v +aw,) € Hy N H,,

+00
f ui(s)o(s)ds € H*N H;,
0

f pa()(s)ds € H> N H),
0

Wwi(0) = wy(m) = 0.
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Remark 2.1. (1) Due to (2.5), we can deduce that

(~w@, @) < —%uwn2 VoeD(L)), i=1.2 (2.14)

2
Lz

(2) Using Holder’s and Young’s inequalities, we have that
—+00
f piSll@(sllds < VgO)ll@llz . i =1,2. (2.15)
0

3. Well-posedness

In this section, we establish the existence and uniqueness of global weak solution to the system
(2.10)—(2.12).

3.1. Needed lemmas for well-posedness

Lemma 3.1. The linear operator A : D(A) C H — H defined in (2.13) is monotone.

Proof. Let¥Y = (u,p,v,y,w,9,0,0,%,0) € D(A), then using integration by parts and the boundary
conditions (2.11), we have

(AY, V)u =53II¢|I2+ﬁ1£ w1 (8)0xs(8), 7:(5))ds +ﬁzj; H2(8){Lxs(5), (8))d's

+00 d —+00 d
=63||¢||2+%1 fo i) (||<rx<s>||2)ds+%2 fo 12(8)— (IS ) ds

+00 S=a
=l -2 f ki (lorsiPds + 5 Tim (sl I
0 a—+oo SZO
+00 s=a
- %f (DN (5)IPds + ﬁz—z lim () ()
O a—+oo SZO
From (2.5) and (2.6), we obtain
lim (Do (DIF| = Em mILSIF| = 0.
a—+oo s=0  a7*®™ 5=0
Therefore,
+00 +00
(AY, Wyg =0I8II> — %f H(Sllo()Ids - % f N ()IPds > 0.
0 0
Therefore, A is monotone. i

Lemma 3.2. The linear operator A : D(A) ¢ H — H defined in (2.13) maximal, that is R(/ + A) =
H.

Proof. Given F = (k', k>, I3, k*, k>, kS, k", k3, k°, k'°) € H, we look for a unique solution
Y= (u,o,v,¥,w,0,0,0,%,0) € D(A)

AIMS Mathematics Volume 8, Issue 12, 28188-28209.
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such that ¥ solves the stationary problem

¥Y+AY =F. 3.1
System (3.1) is equivalent to
u—@= k', in H;,
prthip — Eihiuy, — k(—u+v+aw,) + 6,6, = plhlkz, in 12,
Vv — ('b = k3’ in Hli’
p3h3lﬁ - E3h3vxx + k(—u + v+ CL’WX) - (519 + 620x = p3h3k4, in L2,
w — ¢ = kS, in Hf,
(0h + 63)¢ + EIW ey — @k(—u + v + aw,), = phk®, in L2, 32)
—+00
p49 _:81 f ,Ll](S)O'xx(x, S)dS + 04 (‘Px + l//) = ,04k7, in Lz,
0
oc+o,—0=k, inLZ1
—+00
pst — B2 f () ax(x, $)ds + 62t = psk’, in L%,
0
(HL -0 =K, in L2,

By multiplying (3.2)5 and (3.2),, by ¢ and integrating the results over (0, s), we arrive at

o(s)=(1-e*)0+ fs ek (r)dr,

0

s (3.3)
L) =(1-e)I+ f e k' (r)dr.
0
From (3.2),, (3.2); and (3.2)5, we get
u-k'=¢, v-k>=yand w-£k = ¢, (3.4)
respectively. Substituting (3.4) and (3.3) into (3.2),, (3.2)4, (3.2)s, (3.2); and (3.2), leads to
prhiu— Evhiitg — k(—u + v + awy) + 616, = prhi (k' + k%), in 1.2,
— e
fl
p3h3v — Eshzvy + k(—u + v + aw,) — 6,0 + 6,0, = pshs (K + k%),  in L?,
—
f2
Phw + EIW,r — k(=1 + v + awy), = 63k + ph(k® + k°), in L2,
f3
0—Cg 0, + 01 (U, +

p4 Blop1 1 (M V)+°o ) (3.5)

=06y (k} + ) + pak” + By f 111(s) ( f e’—Skﬁx(r)dr) ds, inH™',

0 0
f4
p519 — Cﬁg,yzﬁxx + 0V,
+ 00 S
=6,k + psk’ + B, f s (s) ( f e’_sk}cg(r)dr) ds, in H',
0 0
f5
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where .
Copi :ﬁif wi(s)(1—e*)ds>0,i=1,2.
0

Now, we observe that last terms in f* and f° are in H'(0, 7). Indeed, since k* € L} , we have for any

@ € H!(0,7), with ||z, < 1,

Kf Ooﬂl(s) (fs e’_skix(r)dr) ds, w>‘ =‘<f OO,UI(S) (fs er_skf(r)dr) ds, wx>
0 0 0 0
< f wi(s)e™ ( f er||k§(r)||dr)ds
0 0
:f e’llkﬁ(r)ll(f e‘sul(s)ds)dr
0 r

+00 +00
=< f INGEAING] f e Sdsdr
0 r

- fo i PIEIdr < o.

f - wa(s) ( f S e’-fk;g(r)dr) ds € H'(0, ).
0 0

Next, we consider the Banach space H := H,} X H} X H? X L* X L* and equip it with the norm

that

In the same way, we get that

G, v, w, 6, Mg =prhllull? + Evillul® + k(= + v + aw )l + pshslVIP + Eshs|lv.®
+ phlIWIP + ELw o> + pal 6l + ps|[911%.

On the account of the weak formulation of (3.5), we consider the bilinear form $ on H X H and linear
form £ on H, define as follows:

B((u,v,w,0,9), (" ,v,w",6,9%)

=p1hi{u, u”y + Evhy(uy, 1) + k{((—u + v + aw,), (—u" + V" + aw)))
+ p3h3(v, V') + Esh3(vy, Vi) + ph{w, W) + ELw.,, W)
+04(0,6°) + Cy gy 11,0, ) + ps(, 0°) + Cy g, 1, (P, 92),

and
L v w67, 9%) =1 hy (k' + k), u"y + (o3hs (k2 + k*),v*) + (836 + ph(kK> + K°), u*)

+00 S
+ (01 (k} + ) + pak”, 67) + (B f 11(s) ( f er—fki(r)dr) ds, 6°)
0 0
—+00 S
+ {02k + psk®, %) + (B, f Ua(s) ( f e’—~‘k;0(r)dr)ds, 9,
0 0
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for every (u,v,w, 0,9), (u*,v*,w*,6%,9") € H. Routine computations, using Cauchy-Schwarz, Young’s
and Poincaré’s inequalities shows that 8 is a bounded and coercive bilinear form on H x H, and Lis a
bounded linear form on H. Therefore, using Lax-Milgram theorem, there exists a unique (u, v, w, 0, ) €
H such that

B((u,v,w, 0,9, " ,v:,w",0°,9%) = LW, v,w,6,9)), V@, v,w, 0,9) e H

From (3.4), it follows that
peH, weH,iandqﬁer.

Then, using standard regularity theory, it follows from (3.5), that
wveH,NH, we HnH?, 6,9€H NnH.
Since u,v € H}, w,k® € H? and k® € L?, it easy to see from (3.5); that w satisfy
Wi(0) = wy () = 0.
Also, from (3.3), substituting 6 and ©}, we see that
ceDL), {€DL,).

Finally, from (3.2); and (3.2),, using regularity theory, we get that

f oo,ul(s)O'(s)ds,f Do,uz(s)g(s)ds e H* N H;
0 0

Thus, ¥ = (u, ¢, v, ¥, w,$,0,0,9,{) € D(A) and satisfies (3.1). That is, the operator A is maximal.
O

3.2. Well-posedness Result

Theorem 3.1. Suppose ¥y = (uy, uy, vo, vi, Wo, Wi, 0y, 00, 99, {y) € H is given and condition (A;) holds,
then the Cauchy problem (2.13) has a unique weak global solution

¥ e C([0, +00), H).
Furthermore, if Wy = (ug, uy, vo, vi, Wo, wi, 6, 0o, 99, (o) € D(A), then the solution is in the class
¥ € C([0, ), D(A)) N C' ([0, ), H).

Proof. On account of Lemmas 3.1 and 3.2 applying the Hille-Yosida theorem, we have that A is a
generator of a Cy-semigroup of contractions S(f) = ™, t > 0, on H. By the semigroup theory for
linear operators (Pazy [31]), we get that

YY) = Sy, t = 0,
on H is a unique solution satisfying problem (2.13). O
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4. Stability result

In this section, we study the stability of solution of (2.10)—(2.12). The energy functional associated
to the solution ¥ = (u, u;, v, v;,, w, w;, 0, 0,9, {) of system (2.10)—(2.12) is defined by

1
&) =3 [plh1||u1||2 + psha|vill? + phlwi + Evhllul® + Eshs|lv.ll” + EI”Wxx||2]

4.1)
1
+2 [ku(—u v aw)l + pallll + Billorl, + psliP +,6’2||§||§§2] , V0.
4.1. Needed lemmas for stability
Lemma 4.1. Under the conditions of Theorem 3.1, the energy functional (4.1) satisfies
’ _ 2 ﬁl e ’ 2 ﬁ2 e ’ 2
E(1) = =bsllwil” + > o (s)lI°ds + ) ()N ()I7ds < 0,¥r > 0. (4.2)
0 0

Proof. Multiplication in L*(0, 7r) the Eq (2.10),, (2.10),, (2.10)5, (2.10), and (2.10)¢ by u,, v;, w;, 6 and
9 respectively, follow by multiplying (2.10)s and (2.10); by o and ¢ in Lﬁl and Lﬁz respectively, then
using integration by parts and the boundary conditions (2.11), we have

1d
Sdr [plhlllut||2 + E1h1||ux||2] — k(= + v+ awy), u;) — 610, uy) = 0, (4.3)
%% [p3h3llvt||2 + E3h3||vx||2] + k(—u+ v+ aw,), v,y — 6140, v,) — 52(, vy) = 0, (4.4)
%% [Phllwtll2 + EIIIWMIIZ] + (k(—u + v + aw,), awy) + 6;llwi* = 0, 4.5)
1 d +00
34 [P4||9||2] + 61 f w1 (0 (5), Oc(0))ds + 6146, (uy +v,))y = 0, (4.6)
0
1d oo +00
2di [/31”0”21] - % fo Hi(llo(SIPds - B fo () (9), 6:(D)ds =0, (4.7)
1 d +00
S dr [P5||19||2] +,82f (S (8), F(D))ds + 62(F, vy) = 0, 4.8)
0
and
1d 00 +00
2dr [ﬁz”é“ ||i,z,2] - ﬁ2—2 fo HOI(S)IPds = By fo 12(5)L(5), 94(0))ds = 0. 4.9)

Addition of (4.3)—(4.9) leads to

E () = ~53lwill” + %j; (o (s)IPds + '% fo H(N(IPds < 0. (4.10)

Therefore, the energy & is non-increasing and bounded above by £(0). Also, the computations here are
done for regular solution. However, the result remains true for weak solution by density argument. 0O
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Lemma 4.2. Let Y = (u, u;, v,v;,,w,w;, 0,0,9,0) € H be the solution of system (2.10)—(2.12) given by
Theorem 3.1, then the functional G| defined by

5
G (t) = pihi{ug, uy + p3hs(v,, v) + ph{w,, w) + 33IIWI|2

satisfies the estimate

E\h Esh
12 Ll - 32 2|val = ENWwl? = kll(=u + v + aw,)|P? @.11)

+ pilllw]? + pshs|vill® + phliwi P + ClI6IP + CIII?, ¥ 1 > 0.

Gi(t) <—

Proof. Differentiation of G| gives

G; () =p1hi iy, u) + p3hs(ve, v) + ph{w, w) + 03{(w;, w)
+ prhulll? + pshs|lvil® + phllwil*.
Using Eq (2.10),, (2.10), and (2.10)5, then applying integration by parts over (0, ) and making use of
the boundary conditions (2.11) leads to

G1(0) = = EvhlludlP = Eshs|vill® = ELWwll* = kli(—u + v + aw)|
+ 81y, 0) + 614, 0) + 62(vy, 9) + prhulludd? + pshs|vill* + phllw.

Applying Young’s and Poincaré’s inequalities, we obtain

B g -
2 * 2
+ pulnllu? + pshslvP + phllwl + ClOIE + CIIOIP

Gi(H) < - Vall? = ELw ol = kll(—u + v + aw)|

O
Lemma 4.3. Let V¥ = (u, u,, v, v;,,w,w;, 0,0,9,0) € H be the solution of system (2.10)—(2.12) given by
Theorem 3.1, then the functional G, defined by

G(1) = —p1h1pa(6,u,(1)), where u, (1) = f u(y, N)dydx
0

satisfies, for any €, > 0 and €, > 0, the the estimate

p1h10
2

2 2 2
Gy(n) < - luel” + elludl” + ell(=u + v + aw, )|l

11
+ClvP + Cliell?, +C (1 +—+ )||9||2, Vix>0. (4.12)
M €] )

€
Proof. Differentiation of G,, using (2.10); and (2.10),, integration by parts and boundary
conditions (2.11), we arrive at

Gy(1) = — p1hi1pa(6,u (1)) — p1h1p4{0,, U, (1))
= — prhi Sl * = paE1hi6, uy) + prhy8,(v,, w(t))
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— p4k(B, (= + v + aw,)) + p36, 161

+00
+P1h1,31<uz,f H1(s)oo (., 1, s)ds).
0
Using Cauchy-Schwarz, Young’s and Poincaré’s inequalities yields

(psE ) 2, 3101h51

Gy (1 < = il + el + L g 4 PO
1
ho k)
+ PR + el v+ aw IR + (p“ C o
2
2 Pl 151 301167
 padilol? + 25+ ||a||Lﬁl.
Thus, we obtain (4.12). O

Lemma 4.4. Let VY = (u, u,, v,v;,,w,w;, 0,0,9,0) € H be the solution of system (2.10)—(2.12) given by
Theorem 3.1, then the functional G defined by

G3(t) = —p3hsps(9,7v,(1)), where (1) = f vi(y, Ddy
0
satisfies, for any €3 > 0 and €, > 0, the estimate
) h36
Gy(1) < - '%nv,n2 + &P + ll(—u+ v + awy)|?

1
+ Q)9 + C||§||22 + c(1 +— + )||ff||2 Yi>0. (4.13)

Proof. Differentiation of Gj, using (2.10), and (2.10)s, integration by parts and boundary
conditions (2.11), we arrive at

G5(1) = — p3haps(3, V(1)) — p3hsps(F;, vi(t))
= — p3hzalilI? = psEshs (9, v,) — ps61 {8, 0(0) + psk(D, (—u + v + aw,))

—+00
+ps0llOIF + pahipat, [ 1)
0
Applying Cauchy-Schwarz, Young’s and Poincaré’s inequalities, we have

(0sE3hs3)? 2, P51

G40 < = pahsdall + elivll + L= + ESE AP
+ LR + e+ v + aw? +(p5 D e
+ psallB]P + 22222 3‘52” JP + p ohof 2||4||L2.
Hence, we get (4.13). ]
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Lemma 4.5. Let Y = (u, u,, v, v;,,w,wy, 0,0,9,0) € H be the solution of system (2.10)—(2.12) given by
Theorem 3.1, then the functional G4 defined by

G4(t)=—p4<9,f () (., 1, 5)ds),
0

satisfies, for any es > 0 and € > 0, the estimate

, 0) -
mms—“ﬁ WW+@WW+%WW—CJ‘M&Wm@Ww (4.14)
0
1 1
+c(1 +—+—)||a||i2 . V1>0. (4.15)
€5 (&3 !

Proof. Differentiating G, with respect to ¢, using (2.10), and (2.10)s, integration by parts and the
boundary conditions (2.11) and recalling (2.4), we get

Gy(n) = —p4<9z,f (o (., 1, 5)ds) —p4<9,f ()., 1, s)ds)
0 0

2

=~ pag1(O)NI6IP + By

\fmmmwxm@m

0

—mmmf m@WAm@MHﬁMmf 11 ()04 1, $)ds)
0 0

+p4<9’f ,ul(S)O-S("t’ S)dS).
0

Making use of Cauchy-Schwarz and Young’s inequalities, we have

2
< Cllo|? (4.16)

2 s
LMl

Bi

f ui(s)o (., 1, s)ds
0

+00 C
‘—&(ut,f p1($)02( 1, 5)ds)| < €sllu]* + e—llfflliz , for any & > 0, (4.17)
0 5 M
+00 C
61<Vt9f ()0 (.. 1, $)ds)| < €llvill® + E—Ildlliz , for any € > 0. (4.18)
0 6 i
Also, using integration by parts with respect to s, we get
+00
4(0, f i (8)o(., 1, 5)ds)
0
—+00
= '—p4<0, f ui(8)o’ (., t, s)ds)
0 (4.19)

1
+00 b
SCIIHII(—f ,u’l(S)IIchllzdS)
0

Pag 0)

+00
> IIHIIZ—Cf (9l (s)Ids.
0
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On account of (4.16)—(4.19), we obtain

p481(0)
2

+00
Gy(1) < - 161 + esllull® + esllvill* - Cf (o ()l ds
0

1 1
+ c(1 +—+ —) llrll? -
€5 €6 H1
O

Lemma 4.6. Let Y = (u, u;, v, v;,,w,wy, 0,0,9,0) € H be the solution of system (2.10)—(2.12) given by
Theorem 3.1, then the functional G5 defined by

+00
Gstt) = =pstt. [ (o)t 1)
0
satisfies for any €; > 0, the estimate
, 0) - 1
Gs(n(@) < —'(%Ilﬂll2 + &|lvil* - Cf HOIL()IPds + C |1+ = IIKIIizz, Yi=0. (4.20)
0 7 "

Proof. Differentiation of G5 with respect to #, using (2.10)¢ and (2.10),, integration by parts and the
boundary conditions (2.11), and recalling (2.4), we get

Gg == p5<ﬁt’ L‘ /-12(5)4(-’ , S)dS> - PS(ﬁ’ L‘ /-IZ(S)(I(w z, S)dS)
2
= - psg1 O + B

‘f(; /’LZ(S)KX("L S)dS

+00 +00
— 62{vy, f Ha($)Lx(, 1, $)ds) + ps (D, f H2(8)Ls(. 1, 5)ds).
0 0
Using similar estimations as in (4.16)—(4.19) leads to (4.20). O

4.2. Main stability result

The main stability result of this work is the following:

Theorem 4.1. Let Yy = (ug, uy, vo, vi, wo, w1, 8o, 09, 9o, (o) € D(A) be given. Suppose condition (A;)
holds, then the energy functional E(t) defined in (4.1) decays exponentially. That is, there exists positive
constants M and A such that

E(t) < Me™, ¥t > 0. (4.21)

Proof. We set
L(t) := NE(t) + N1G (1) + NaGo(t) + N3G3(1) + NyGy(t) + NsGs(r), t >0, (4.22)

for some N, Ni, N>, N3, N4y, Ns > 0 to be specified later. Direct computations, applying Young’s,
Cauchy-Schwarz and Poincaré’s inequalities gives

bE() < L(t) < b,E®1), t >0, (4.23)
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for some positive constants b, and b,. Now, using Lemmas 4.1 and 4.2—-4.6, we get

, [ 01110
ro<-|2 21 1Nz—plhlzvl—eszvzt]nutnz—[531\/—phzv1]||w,||2
[ 03hs0
- |2 23 z —pshaNl—CN2—66N4—67N5}||v,||2
(Eh Esh
- ‘ZlNl—elNz]nuxnz— 323N1—eﬂvg]uvxuz—EINluwmn2
— [kN| — &Ny — N3] |[(—u + v + aw,)|?
[ 0 11 4.24
_[pasi )N4—CN1—CN2(1+— +—)—CN3]||9||2 (4.24)
€1
[ 1 1 . [B oo )
+|CNy + NG (1 + =+ = || lllZs —[ PN - CN4] (o (s)IPds
€5 €6 M 2 0
0 1 1
- sl ps820) o, - CN3(1 P ) I19]12
| 2 €3 €4
ﬁz + 00
+ CN3+CN5(1+ ) et ‘[?N CNS] f oONIEIPds.
0
From (2.5), we have that
1
ui(s) < —.J;ME(S), i=1,2.
Also, by choosing
N 1 Elhl k E3h3 k
:’e-: ’6-:_762 ’E:_’
: PTOAN, TP T AN, T 4Ny T AN,
. _ pilud . _ p3hsd, . _ p3h3d,
5 4N4 > €6 8N4 > &7 8N5 ’
then (4.24) takes the form
, h,o 36
L(t)s—[‘“ ! 1Nz—p1h1]nutn2—[p3 . 2N3—CNz—p3h3]||vt||2
Eh Esh
— [63N = ph] Wil = ==l P = =2 v, 2
4 4
k
— Ellw|* - Slu+ v+ aw,)|?
[ 0481(0) AN, 4N, 2
_ » Ni — CNZ(I + Eih + — k - CN; - C|]4| (4.25)
[ 811 4N, 8N, 5
—|—=—N —C&/ Ny —|CN, + CNy(1 + +
B &Ny 2 4 onor el ”O-”Lﬁl

[ps522(0 4Ny 4N
_ | psa )NS—CN3(1+ 3 3) C]llﬂllz

| E3h3
>,32§2 8Ns 2
- 7TN C&ENs — (CN3 + CN5s (1 + an0s ||§||L52-
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Next, we specified the rest of the parameters. First, we choose N, large such that

hé
p1 1N2—P1h1 >0
4
Second, we select N3 large enough such that
h36
p343 2N; — CN, — pshs > 0.
Thirdly, we choose N, and N5 large enough such that
0 4N. 4N.
P81y vy (14 2N 3 ey e s,
Eh k
and (0 8 4
N N
P 22( )NS—CN3(1+T3+T3)—C>0.

Finally, we choose N very large so that (4.23) remain valid and

4N, 8N.
83N — ph > 0, @N—C§1N4—(CN2+CN4(1+ SR ))>0,
2 pihi6y  p3h36,

B
2

N — C&Ns - (CN3 + CN; (1 + S )) > 0.
P3M1302
Thus, we obtain
L't <=y [Ilutll2 + VAP + will? + el + [[val? + ||Wxx||2]
= yo| I+ v+ aw P +101F + 1l + 191F + 111, |

for some y, > 0. Recalling (4.1), it follows from (4.26) that

L'(t) < —yE@1), Yi=0,
for some y; > 0. Using (4.23), we obtain

L'(t) < =y, L(t), Yt =0,
for some y, > 0. Integrating (4.28) over (0, t) yields for some y; > 0

L(t) < L(0)e™', ¥ t>0.

(4.26)

(4.27)

(4.28)

(4.29)

Hence, the exponential estimate of the energy functional &(¢) in (4.21) follows from (4.29) by

using (4.23). This completes the proof.

5. Conclusions

O

In this work, we investigated the the effect of Gurtin-Pipkin’s thermal law on the outer layers of
the Rao-Nakra beam model. Using standard semi-group theory for linear operators and the multiplier
method, the well-posedness and a stability result of solutions of the triple beam system have been

established.
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