Citation: Arivazhagan Anbu, Sakthivel Kumarasamy, Barani Balan Natesan. Lipschitz stability of an inverse problem for the Kawahara equation with damping[J]. AIMS Mathematics, 2020, 5(5): 4529-4545. doi: 10.3934/math.2020291
[1] | Varadharaj Dinakar, Natesan Barani Balan, Krishnan Balachandran . Identification of Source Terms in a Coupled Age-structured Population Model with Discontinuous Diffusion Coefficients. AIMS Mathematics, 2017, 2(1): 81-95. doi: 10.3934/Math.2017.1.81 |
[2] | Özlem Kaytmaz . The problem of determining source term in a kinetic equation in an unbounded domain. AIMS Mathematics, 2024, 9(4): 9184-9194. doi: 10.3934/math.2024447 |
[3] | Musawa Yahya Almusawa, Hassan Almusawa . Numerical analysis of the fractional nonlinear waves of fifth-order KdV and Kawahara equations under Caputo operator. AIMS Mathematics, 2024, 9(11): 31898-31925. doi: 10.3934/math.20241533 |
[4] | Zui-Cha Deng, Fan-Li Liu, Liu Yang . Numerical simulations for initial value inversion problem in a two-dimensional degenerate parabolic equation. AIMS Mathematics, 2021, 6(4): 3080-3104. doi: 10.3934/math.2021187 |
[5] | Yilihamujiang Yimamu, Zui-Cha Deng, Liu Yang . An inverse volatility problem in a degenerate parabolic equation in a bounded domain. AIMS Mathematics, 2022, 7(10): 19237-19266. doi: 10.3934/math.20221056 |
[6] | Jittiporn Tangkhawiwetkul . A neural network for solving the generalized inverse mixed variational inequality problem in Hilbert Spaces. AIMS Mathematics, 2023, 8(3): 7258-7276. doi: 10.3934/math.2023365 |
[7] | M. J. Huntul, Kh. Khompysh, M. K. Shazyndayeva, M. K. Iqbal . An inverse source problem for a pseudoparabolic equation with memory. AIMS Mathematics, 2024, 9(6): 14186-14212. doi: 10.3934/math.2024689 |
[8] | Shuang-Shuang Zhou, Saima Rashid, Asia Rauf, Khadija Tul Kubra, Abdullah M. Alsharif . Initial boundary value problems for a multi-term time fractional diffusion equation with generalized fractional derivatives in time. AIMS Mathematics, 2021, 6(11): 12114-12132. doi: 10.3934/math.2021703 |
[9] | Aissa Boukarou, Khaled Zennir, Mohamed Bouye, Abdelkader Moumen . Nondecreasing analytic radius for the a Kawahara-Korteweg-de-Vries equation. AIMS Mathematics, 2024, 9(8): 22414-22434. doi: 10.3934/math.20241090 |
[10] | S. S. Chang, Salahuddin, M. Liu, X. R. Wang, J. F. Tang . Error bounds for generalized vector inverse quasi-variational inequality Problems with point to set mappings. AIMS Mathematics, 2021, 6(2): 1800-1815. doi: 10.3934/math.2021108 |
Let Ω:=(0,1),T>0 be a fixed final time and Q:=Ω×(0,T). In this paper, we consider the following Kawahara equation [12,15]
{yt+yxxx+γyxxxxx+yyx+a(x)y=0, (x,t)∈Q,y(x,0)=y0(x), x∈Ω,y(0,t)=y(1,t)=yx(0,t)=yx(1,t)=0, t∈(0,T),yxx(1,t)=0 t∈(0,T), | (1.1) |
where γ<0, y0 is the initial data and a(x) is the damping coefficient. For simplicity we assume γ=−1. The Kawahara equation was first introduced by Kawahara [12] in 1972 to study the propagation of small-amplitude long waves that occur in various applications like, fluid dynamics, plasma physics, biology, and sociology. Further note that it is necessary to introduce the higher order effect of dispersion in order to balance the nonlinear effect when the coefficient of the third-order derivative in the KdV equation becomes zero or very small. The term yxxx+γyxxxxx is denoted as the conservative dispersive effect. The term a(x)y plays a significant role in the designing of feedback damping mechanism and proving the exponential energy decay of solutions. Further, when the damping is localized, that is, it is effective only on a bounded subset of the given domain, the stabilization of the problem is more interesting (see, [15]). Note that we have also omitted the drift term ux in the model (1.1) since it doesn't play any essential role in the study of Carleman estimate and inverse problems of the given system. For more detailed applications of this model, one may refer to [1,7,15].
In this paper, we focus on the reconstruction of a space-dependent damping coefficient of a zeroth order term based on Carleman estimate for fifth-order PDEs. This estimate was introduced by Carleman in 1939 for proofs of uniqueness results for ill-posed Cauchy problems. Carleman estimate and its theory were first proposed in the study of inverse problems, by Bukhgeim and Klibanov [4,5]. In recent years, due to applications, inverse problems for higher-order partial differential equations have attained much more attention. In the literature, we could find numerous articles that deal with the inverse problems/controllability results for higher-order PDEs. For example, Glass et al. [8] established the local controllability to the trajectories of fifth-order Korteweg-de Vries equation (KdV) using the boundary controls. Gao [10] established a global Carleman estimate for the Kawahara equation by internal measurements and applied it to prove the unique continuation property and exponential decay of solutions. Recently, Mo Chen [7] studied the controllability to the trajectories for the Kawahara equation via Carleman estimate. Baudoin et al. [3] investigated the nonlinear inverse problem of retrieving the anti-diffusion coefficient from Kuramoto-Sivashinsky (K-S) equation. The same authors [2] established the inverse problem of reconstructing the principal coefficient of generalized Korteweg de Vries (KdV) equation. One may also look at [6] for the Carleman inequality of the classical KdV equation which is applied to study the null controllability problem. Gao [9] studied the inverse problem and the controllability to the trajectories for the K-S equation using internal measurement. A recent paper by Meléndez [13] discussed the inverse problem of retrieving the main coefficient in the K-S equation using the boundary measurement. For some of the other related results and applications of Carleman estimate, one can also refer to [16].
Apart from some of the literature mentioned above for inverse problems and controllability of higher-order systems, to the best of our knowledge, in the direction of inverse problems, there is no article available in the literature for recovering the unknown coefficient or source in the Kawahara equation. Thus we made an attempt to establish such a result in this paper.
Notations and Assumptions:
The following notations, function spaces and assumptions are often used throughout this article:
W5,∞(Ω):={y∈L∞(Ω);yx,yxx,yxxx,yxxxx,yxxxxx∈L∞(Ω)}, |
W1,∞(0,T;W1,∞(Ω))={y,yt,yx,yxt∈L∞(0,T;L∞(Ω))} |
and
RkT:=C([0,T];Hk(Ω)) for k≥0 |
P0,T:=R0T∩L2(0,T;H2(Ω)), |
with norm
‖y‖P0,T:=‖y‖R0T+‖y‖L2(0,T;H2(Ω)). |
We also use function space H1(0,T;L2(Ω)):={y,yt∈L2(0,T;L2(Ω))}.
Assumption: 1.1.
(i) Let KM be an M-bounded set in W5,∞(Ω), which is defined by
KM={a(x)∈W5,∞(Ω):‖a(x)‖W5,∞(Ω)≤M}, | (1.2) |
where M is any positive constant.
(ii) The initial data y0 satisfies the compatibility conditions y(i)0(x)=0 on ∂Ω for all i=0,1,⋯,12, where y(i)0=diy0dxi.
The condition y(i)0(x)=0 on ∂Ω for i=0,1,2 is sufficient for the compatibility of the boundary conditions in (1.1) and the rest of the cases are needed only to prove the regularity of solutions given by Theorem 3.2.
The main part of our paper deals with the stability result for an inverse problem of the Kawahara equation which is explained in the following manner. Let y(x,t) and ˜y(x,t) be the solutions to Kawahara equation (1.1) corresponding to the unknown coefficients a(x) and ˜a(x) respectively. Define u(x,t):=y(x,t)−˜y(x,t) and f(x):=a(x)−˜a(x) so that u solves the equation
{ut+uxxx−uxxxxx+p(x,t)ux+q(x,t)u=g(x,t), (x,t)∈Q,u(x,0)=0, x∈(0,1),u(0,t)=u(1,t)=ux(0,t)=ux(1,t)=uxx(1,t)=0, t∈(0,T), | (2.1) |
where p(x,t):=y(x,t), q(x,t)=(a(x)+˜yx(x,t)), r(x,t):=−˜y(x,t) and g(x,t)=f(x)r(x,t).
The inverse problem can be stated as follows: Is it possible to retrieve the damping coefficient a=a(x) from the measurement of the solution u of Kawahara equation, namely certain spatial derivatives of u at time θ=T/2 and the solution u on the subdomain ω⊂Ω?
The answer is the following main result concerning the stability estimate of the Kawahara equation (1.1) in terms of internal measurements:
Theorem: 2.1. Let a∈KM, y0∈H10(Ω) and ω⊂Ω. Assume that infx∈Ω|˜y(x,θ)|≥b>0, for some fixed θ∈(0,T). Then there exists a constant C>0 depending on Ω,ω,T,M,b and y0 such that
‖a−˜a‖2L2(Ω)≤C(‖y−˜y‖2H1(0,T;L2(ω))+‖yxxxx−˜yxxxx‖2H1(0,T;L2(ω))+‖y(⋅,θ)−˜y(⋅,θ)‖2H5(0,1)). | (2.2) |
Remark: 2.1. If we assume that y(x,θ)=˜y(x,θ), for a.e. x∈Ω, the internal stability estimate becomes
‖a−˜a‖2L2(Ω)≤C(‖y−˜y‖2H1(0,T;L2(ω))+‖yxxxx−˜yxxxx‖2H1(0,T;L2(ω))). |
The regularity of solutions for the direct problem (1.1) which is proved in Section 5 and a Carleman estimate stated in [10] (see, Theorem 1.1) play a vital role to prove Theorem 2.1. We will prove in Section 3 that if the initial condition y0∈H10(Ω), then the solution of the main equation (1.1), namely y∈C([0,T];H5(Ω)) and yt∈C([0,T];H2(Ω))∩L2(0,T;H5(Ω)). This is mainly attained from the appropriate regularity of solution for the Kawahara equation. Since the right-hand side of (2.2) can be estimated as y∈H1(0,T;H5(Ω)), we observe that the trajectories of solutions satisfying Theorem 2.1 is not an empty set.
The outline of the article is as follows: In Section 3, we establish the existence, uniqueness, and regularity of solutions of the Kawahara equation. In Section 4, we state a global Carleman estimate with internal observations for the fifth-order operator with Dirichlet-Neumann type boundary conditions. In Section 5, we establish a stability result for the Kawahara equation.
In this section, we establish the existence and uniqueness of solution of the Kawahara equation. Let F∈L1(0,T;H10(Ω)). Consider the auxiliary problem
{yt+yxxx−yxxxxx=F(x,t), (x,t)∈Q,y(x,0)=y0(x), x∈(0,1),y(0,t)=y(1,t)=yx(0,t)=0, t∈(0,T),yx(1,t)=yxx(1,t)=0, t∈(0,T). | (3.1) |
The existence and uniqueness of solution for the linear problem (3.1) can be obtained by using semigroup theory (see, [10,15]).
Proposition: 3.1. ([15],Lemma 2.1) Let y0∈L2(Ω) and F∈L1(0,T;H10(Ω)). Then,the linearized equation (3.1) has a unique generalized solution y∈C([0,T];L2(Ω))∩L2(0,T;H2(Ω)). Moreover, the solution satisfies
maxt∈[0,T]‖y(t)‖L2(Ω)+‖y‖L2(0,T;H2(Ω))≤C(‖F‖L1(0,T;H10(Ω))+‖y0‖L2(Ω)). | (3.2) |
The well-posedness of Eq (1.1) is obtained by using Proposition 3.1 and fixed point argument. The energy estimate (3.2) related to upper bound of y, which is obtained in terms of F∈L1(0,T;H10(Ω)) plays a major role.
Theorem: 3.1. Assume that a(x)∈L∞(Ω) and let T>0 be given. Then for any y0∈L2(Ω), there exists a unique solution y∈C([0,T];L2(Ω))∩L2(0,T;H2(Ω)) of (1.1) satisfying
‖y‖C([0,T];L2(Ω))∩L2(0,T;H2(Ω))≤C(M,T)(1+‖y0‖2L2(Ω)). | (3.3) |
Proof. The existence and uniqueness is proved in Theorem 2.1, [15] (see also [10]). Now, we only prove the global estimate (3.3).
Multiplying (1.1) by y, integrating over Ω and using Grönwall's inequality, we obtain
max0≤t≤T‖y(t)‖2L2(Ω)≤eCMT‖y0‖2L2(Ω). | (3.4) |
Similarly, multiplying (1.1) by xy, integrating over Ω, we get
ddt‖x1/2y(t)‖2L2(Ω)+3‖yx(t)‖2L2(Ω)+5‖yxx(t)‖2L2(Ω)≤23‖y(t)‖3L3(Ω)+2M‖y(t)‖2L2(Ω). | (3.5) |
Using Agmon's inequality and Poincaré's inequality, we obtain
‖y(t)‖3L3(Ω)≤‖y(t)‖L∞(Ω)‖y(t)‖2L2(Ω)≤‖yx(t)‖1/2L2(Ω)‖y(t)‖1/2L2(Ω)‖y(t)‖2L2(Ω)≤C‖yx(t)‖L2(Ω)‖y(t)‖2L2(Ω)≤3‖yx(t)‖2L2(Ω)+C‖y(t)‖4L2(Ω). | (3.6) |
Replacing (3.6) in (3.5) and using (3.4), we have
ddt‖x1/2y(t)‖2L2(Ω)+‖yx(t)‖2L2(Ω)+5‖yxx(t)‖2L2(Ω)≤C(M,T)(‖y0‖2L2(Ω)+‖y0‖4L2(Ω)). |
Integrating over (0,t) to obtain
‖x1/2y(t)‖2L2(Ω)+‖yx‖2L2(0,T;L2(Ω))+5‖yxx‖2L2(0,T;L2(Ω))≤C(M,T)(‖y0‖2L2(Ω)+‖y0‖4L2(Ω)). | (3.7) |
Note that from (3.7) and Poincaré's inequality, we also have
‖y‖2L2(0,T;L2(Ω))≤C(M,T)(1+‖y0‖4L2(Ω)). | (3.8) |
Adding (3.4), (3.7) and (3.8), one can complete the proof.
To complete the main result of this paper, we prove the following regularity result.
Theorem: 3.2. Assume that a(x)∈L∞(Ω) and let T>0 be given. Further assume that Assumption 1-(ii) holds true. If y0∈H10(Ω), then the solution y∈C([0,T];H5(Ω)), yt∈C([0,T];H2(Ω))∩L2(0,T;H5(Ω)) and satisfies the following:
‖y‖C([0,T];H5(Ω))≤exp{exp{C(M,T)(1+‖y0‖2H10(Ω))}}, | (3.9) |
and
‖yt‖C([0,T];H2(Ω))∩L2(0,T;H5(Ω))≤exp{exp{C(M,T)(1+‖y0‖2H10(Ω))}}. | (3.10) |
Proof. From (1.1), we have
‖yxxxxx‖2L2(0,T;L2(Ω))≤4(‖yt‖2L2(0,T;L2(Ω))+‖yyx‖2L2(0,T;L2(Ω))+‖yxxx‖2L2(0,T;L2(Ω))+M2‖y‖2L2(0,T;L2(Ω))). | (3.11) |
Observe that by (3.11), we have
‖y‖2L2(0,T;H5(Ω))≤C(M)(‖yt‖2L2(0,T;L2(Ω))+‖yyx‖2L2(0,T;L2(Ω))+‖y‖2L2(0,T;H4(Ω))). | (3.12) |
Using the continuous injection H1(Ω)↪L∞(Ω), we get
‖yyx‖2L2(0,T;L2(Ω))≤C‖y‖2C([0,T];L2(Ω))‖y‖2L2(0,T;H2(Ω)). | (3.13) |
By Ehrling's lemma (see Theorem 7.30, [14]) for any ϵ>0 and y∈L2(0,T;H5(Ω)), we obtain
‖y‖2L2(0,T;H4(Ω))≤ϵ‖y‖2L2(0,T;H5(Ω))+C(ϵ)‖y‖2L2(0,T;L2(Ω)). | (3.14) |
Substituting (3.13) and (3.14) in (3.12) and choosing ϵ=1/2C, we get
‖y‖2L2(0,T;H5(Ω))≤C(‖yt‖2L2(0,T;L2(Ω))+‖y‖2C([0,T];L2(Ω))‖y‖2L2(0,T;H2(Ω))+‖y‖2L2(0,T;L2(Ω))). | (3.15) |
Taking derivative of (1.1) with respect to time, we also have
‖yxxxxxt‖2L2(0,T;L2(Ω))≤5(‖ytt‖2L2(0,T;L2(Ω))+‖yyxt‖2L2(0,T;L2(Ω))+‖ytyx‖2L2(0,T;L2(Ω))+‖yxxxt‖2L2(0,T;L2(Ω))+M2‖yt‖2L2(0,T;L2(Ω))). | (3.16) |
Applying the continuous injection H1(Ω)↪L∞(Ω), we obtain
‖ytyx‖2L2(0,T;L2(Ω))≤C‖yt‖2C([0,T];L2(Ω))‖y‖2L2(0,T;H2(Ω)), | (3.17) |
and
‖yyxt‖2L2(0,T;L2(Ω))≤C‖y‖2C([0,T];L2(Ω))‖yt‖2L2(0,T;H2(Ω)). | (3.18) |
By Ehrling's lemma, we get
‖yt‖2L2(0,T;H4(Ω))≤ϵ‖yt‖2L2(0,T;H5(Ω))+C(ϵ)‖yt‖2L2(0,T;L2(Ω)), | (3.19) |
for any ϵ>0. Once again follow the same process as we did above and using (3.17), (3.18) and (3.19), we obtain
‖yt‖2L2(0,T;H5(Ω))≤C(M)(‖ytt‖2L2(0,T;L2(Ω))+‖yt‖2C([0,T];L2(Ω))‖y‖2L2(0,T;H2(Ω))+‖y‖2C([0,T];L2(Ω))‖yt‖2L2(0,T;H2(Ω))+‖yt‖2L2(0,T;L2(Ω))). | (3.20) |
To estimate the right side of the above two inequalites (3.15) and (3.20), we need to establish the following auxiliary lemmas.
Lemma: 3.1. Assume that a(x)∈L∞(Ω) and let T>0 be given. If y0∈H5(Ω), then the solution y∈P0,T of (1.1) has time regularity such that yt∈P0,T and satisfies the following:
‖yt‖P0,T≤exp{C(M,T)(1+‖y0‖2H5(Ω))}. | (3.21) |
Proof. Let us take a derivative of (1.1) with respect to time and set η:=yt. Then η satisfies the equation
{ηt+ηxxx−ηxxxxx+ηyx+yηx+a(x)η=0, (x,t)∈ Q,η(x,0)=η0(x), x ∈ Ω,η(0,t)=η(1,t)=ηx(0,t)=ηx(1,t)=ηxx(1,t)=0, t∈(0,T), | (3.22) |
where η0(x):=yt(x,0). Notice that from (1.1), we have yt(x,0)=−y(3)0(x)+y(5)0(x)−y0(x)y′0(x)−a(x)y0(x).
Multiplying (3.22) by η, integrating over Ω and apply Cauchy's inequality to obtain
ddt‖η(t)‖2L2(Ω)+η2xx(0,t)≤C(M)(‖yx‖L∞(Ω)+1)‖η(t)‖2L2(Ω). | (3.23) |
Using Grönwall's inequality, the continuous injection H1(Ω)↪L∞(Ω) and by Theorem 3.1, we attain
max0≤t≤T‖η(t)‖2L2(Ω)≤exp{C(M,T)(‖y0‖2L2(Ω)+1)}‖η0‖2L2(Ω). | (3.24) |
From the initial condition and the continuous injection H2(Ω)↪L∞(Ω), we get
‖η0‖L2(Ω)≤C(M)(‖y0‖H3(Ω)+‖y0‖H5(Ω)+‖y0‖H2(Ω)‖y0‖H1(Ω)+‖y0‖L2(Ω))≤C(M)(‖y0‖H5(Ω)+‖y0‖2H5(Ω))≤C(M)exp{‖y0‖H5(Ω)}. | (3.25) |
Replacing (3.25) in (3.24), we obtain
‖η‖2C([0,T];L2(Ω))≤exp{C(M,T)(1+‖y0‖2H5(Ω))}. | (3.26) |
Once again multiplying (3.22) by xη and integrating over Ω, we obtain
ddt‖x1/2η(t)‖2L2(Ω)+3‖ηx(t)‖2L2(Ω)+5‖ηxx(t)‖2L2(Ω)≤C(M)(‖yx‖L∞(Ω)+‖y‖L∞(Ω)+1)‖η(t)‖2L2(Ω). | (3.27) |
Integrating (3.27) over (0,t) and applying Theorem 3.1, (3.25) and (3.26), we get
‖x1/2η(t)‖2L2(Ω)+‖ηx‖2L2(0,T;L2(Ω))+‖ηxx‖2L2(0,T;L2(Ω))≤exp{C(M,T)(1+‖y0‖2H5(Ω))}. | (3.28) |
Therefore, putting together (3.26) and (3.28), one can get (3.21).
Finally, we show that the solution η of (3.22) is equal to yt, where y is the solution of (1.1).
Let us define
y(x,t)=∫t0η(x,τ)dτ+y0(x). | (3.29) |
It leads to the following:
yt(x,t)+yxxx(x,t)−yxxxxx(x,t)+y(x,t)yx(x,t)+a(x)y(x,t)=η(x,t)+∫t0(ηxxx(x,τ)−ηxxxxx(x,τ)+η(x,τ)yx(x,τ)+y(x,τ)ηx(x,τ)+a(x)η(x,τ))dτ+y(3)0(x)−y(5)0(x)+y0(x)y(1)0(x)+a(x)y0(x)=η(x,t)−∫t0ητ(x,τ)dτ+y(3)0(x)−y(5)0(x)+y0(x)y(1)0(x)+a(x)y0(x)=η(x,0)+y(3)0(x)−y(5)0(x)+y0(x)y(1)0(x)+a(x)y0(x)=0. |
Notice that when η solves the system (3.22), y solves (1.1). Moreover from (3.29), we get the initial condition y(x,0)=y0(x) and using the compatibility condition, we obtain
y(0,t)=∫t0η(0,τ)dτ+y0(0)=0. |
Similarly, one can get the remaining boundary conditions y(1,t)=0, yx(0,t)=0, yx(1,t)=0 and yxx(1,t)=0. This completes the proof.
Lemma: 3.2. Assume that a(x)∈L∞(Ω) and let T>0 be given. If y0∈H10(Ω), then the solution y∈P0,T of (1.1) has time regularity such that ytt∈P0,T and satisfies the following:
‖ytt‖P0,T≤exp{exp{C(M,T)(1+‖y0‖2H10(Ω))}}. | (3.30) |
Proof. Take a derivative of (3.22) with respect to time and let us set z:=ηt. Then, we have
{zt+zxxx−zxxxxx+yzx+yxz+a(x)z=−2ηηx, (x,t)∈ Q,z(x,0)=z0(x), x ∈ Ω,z(0,t)=z(1,t)=zx(0,t)=zx(1,t)=zxx(1,t)=0, t∈(0,T), | (3.31) |
where z0(x):=ηt(x,0). Observe that from (3.22), we have ηt(x,0)=−η(3)0(x)+η(5)0(x)−η0(x)y′0(x)−y0(x)η′0(x)−a(x)η0(x).
Multiplying (3.31) by z, integrating over Ω and applying Cauchy's inequality, we obtain
ddt‖z(t)‖2L2(Ω)+z2xx(0,t)≤C(M)(‖yx‖L∞(Ω)+‖ηx‖2L∞(Ω)+1)‖z(t)‖2L2(Ω)+‖η(t)‖2L2(Ω). | (3.32) |
Using Grönwall's inequality, the continuous injection H1(Ω)↪L∞(Ω), by Theorem 3.1 and Lemma 3.1, we attain
max0≤t≤T‖z(t)‖2L2(Ω)≤exp{exp{C(M,T)(1+‖y0‖2H10(Ω))}}, | (3.33) |
where we have used
‖z0‖L2(Ω)≤C(M)(‖η0‖H5(Ω)+‖η0‖L2(Ω)‖y0‖H2(Ω)+‖η0‖H1(Ω)‖y0‖H1(Ω))≤C(M)(‖η0‖H5(Ω)+‖η0‖2H5(Ω)+‖y0‖2H2(Ω)) | (3.34) |
and
‖η0‖H5(Ω)≤C(M)(‖y0‖H10(Ω)+‖y0‖2H10(Ω))≤C(M)exp{‖y0‖H10(Ω)}. | (3.35) |
Multiplying (3.31) by xz, integrating over Ω and using Cauchy's inequality to get
ddt‖x1/2z(t)‖2L2(Ω)+3‖zx(t)‖2L2(Ω)+5‖zxx(t)‖2L2(Ω)≤C(M)(‖ηx‖2L∞(Ω)+‖yx‖L∞(Ω)+‖y‖L∞(Ω)+1)‖z(t)‖2L2(Ω)+‖η(t)‖2L2(Ω). |
Integrating over (0,t) to obtain
‖x1/2z(t)‖2L2(Ω)+‖zx‖2L2(0,T;L2(Ω))+‖zxx‖2L2(0,T;L2(Ω))≤C(M)(‖η‖2L2(0,T;H2(Ω))+√T‖y‖L2(0,T;H2(Ω))+T)‖z‖2C([0,T];L2(Ω))+‖η‖2L2(0,T;L2(Ω))+‖z0‖2L2(Ω). |
Using Theorem 3.1, Lemma 3.1, (3.33), (3.34) and x≤ex for all x∈R, we get
‖x1/2z(t)‖2L2(Ω)+‖zx‖2L2(0,T;L2(Ω))+‖zxx‖2L2(0,T;L2(Ω))≤exp{exp{C(M,T)(1+‖y0‖2H10(Ω))}}. | (3.36) |
Similar to Lemma 3.1, we can show the equality of solutions z and ytt. The proof is thus completed.
Use Theorem 3.1 and Lemma 3.1 in (3.15) to obtain
‖y‖2L2(0,T;H5(Ω))≤exp{C(M,T)(1+‖y0‖2H5(Ω))}. | (3.37) |
Similarly, applying Theorem 3.1, Lemma 3.1 and Lemma 3.2 in (3.20), we get
‖yt‖2L2(0,T;H5(Ω))≤exp{exp{C(M,T)(1+‖y0‖2H10(Ω))}}. | (3.38) |
Now, adding (3.37) and (3.38) to get
‖y‖2H1(0,T;H5(Ω))≤exp{exp{C(M,T)(1+‖y0‖2H10(Ω))}}. | (3.39) |
Using (3.39) and the continuous injection H1(0,T;H5(Ω))↪C([0,T];H5(Ω)), one can obtain (3.9).
Multiplying (3.22) by −ηxt and integrating over Ω, we get
ddt‖ηxx(t)‖2L2(Ω)≤C(M)((‖yx(t)‖2L∞(Ω)+1)‖η(t)‖2L2(Ω)+‖y(t)‖2L2(Ω)‖ηx(t)‖2L∞(Ω)+‖ηxt(t)‖2L2(Ω)+‖ηxxxxx(t)‖2L2(Ω)). |
Using the continuous embedding H1(Ω)↪L∞(Ω), integrating over (0,t), applying Theorem 3.1, Lemma 3.1, Lemma 3.2 and (3.38), we obtain
‖ηxx(t)‖2L2(Ω)≤exp{exp{C(M,T)(1+‖y0‖2H10(Ω))}}. |
By the help of Poincaré's inequality, we also estimate ‖ηx(t)‖2L2(Ω) and again by Lemma 3.1 together with (3.38), we get (3.10). This completes the proof of Theorem 3.2.
In this section, we state an internal type Carleman estimate for the linearized Kawahara equation. We need to introduce suitable weight functions which will be useful for obtaining the Carleman estimates.
Let ω⊂Ω be an arbitrary open subset. Let us assume ψ=ψ(x)∈C∞(ˉΩ) be the function that satisfies
{ψ(x)>0 ∀x∈Ω, ψ(x)=0 ∀x∈∂Ω, ‖ψ‖C(ˉΩ)=1 [2mm]|ψx(x)|>0 ∀x∈ˉΩ∖ω and ψx(0)>0,ψx(1)<0. | (4.1) |
For the existence of such a function ψ one can refer to [10]. Let λ be a sufficiently large positive constant. We define ϕ and α for any λ>1 and t∈(0,T):
ϕ(x,t)=eλ(ψ(x)+3)/β(t),α(x,t)=(eλ(ψ(x)+3)−e5λ)/β(t), | (4.2) |
where β(t)=t(T−t). Furthermore, in order to prove the main results, we may need the following estimates for the functions ϕ and α :
|ϕt|≤CTϕ2, |αt|≤CTϕ2 and |αtt|≤CT2ϕ3. | (4.3) |
Further note that
ϕx=λϕψx, αx=λϕψx and ϕ−1≤(T/2)2. | (4.4) |
Now let us state an interior Carleman estimate for the linear operator Ly:=yt−yxxxxx. Here, we set
J:={y∈L2(0,T;H5(Ω)) | y(0,t)=y(1,t)=yx(0,t)=yx(1,t)=yxx(1,t)=0,Ly∈L2(0,T;L2(Ω))}. |
Proposition: 4.1. ([10], Theorem 1.1) Let ψ, ϕ and α be defined as in (4.1)-(4.2). Then there exist four constants s0>0, λ0>1, C0>0 and C1>0, such that for λ=λ0 and for all s≥s0:=C0(T+T2), the following inequality holds for all y∈J:
s9∬ | (4.5) |
where {Q_\omega}: = \omega \times (0, T) .
Now we apply the above Carleman estimate to get the similar estimate for the linearized equation (2.1) by using same weight functions as defined in (4.1)-(4.2).
Theorem: 4.1. Let \psi , \phi and \alpha be defined as in (4.1)-(4.2). Then there exist constants s_0^\ast > 0 , \lambda_0 > 1 , and C > 0 , such that for \lambda\geq\lambda_{0} and for all s\geq s_0^\ast, the following inequality holds for all u \in J :
\begin{eqnarray} \mathcal{M}(u)\leq C \left( \iint_{Q} e^{2s\alpha} |g|^2dxdt+ s^9 \iint_{Q_\omega} \phi^{9}e^{2s\alpha}|u|^2 dxdt +s \iint_{Q_\omega} \phi e^{2s\alpha} | u_{xxxx}|^2 dxdt \right), \end{eqnarray} | (4.6) |
where u is the solution of the system (2.1) and
\begin{eqnarray*} \mathcal{M}(u)&: = & s^{-1}\iint_Q \phi^{-1} e^{2s\alpha}{|\mathcal{L}_1u|^{2} } dxdt + s^9 \iint_Q \phi^{9}e^{2s\alpha}|u|^2 dxdt +s^7\iint_Q \phi^{7} e^{2s\alpha} |u_x|^2 dxdt \\ && +s^5 \iint_Q \phi^{5}e^{2s\alpha}| u_{xx}|^2 dxdt +s^3 \iint_Q \phi^3 e^{2s\alpha} | u_{xxx}|^2 dxdt+s \iint_Q \phi e^{2s\alpha} | u_{xxxx}|^2 dxdt.\nonumber \end{eqnarray*} |
Proof. Let us define the unknown function u(x, t) = e^{-s\alpha} w(x, t) for the operator \mathcal{L}u = u_{t}-u_{xxxxx} to write the following resulting equation
\begin{eqnarray} \mathcal{L}_{1}w+\mathcal{L}_{2}w+\mathcal{L}_{3}w = e^{s\alpha}\mathcal{L}(e^{-s\alpha} w) \end{eqnarray} | (4.7) |
where
\begin{eqnarray*} \mathcal{L}_{1}w & = & w_{t}-w_{xxxxx}-10s^2\alpha_{x}^2w_{xxx}-30s^2\alpha_{x}\alpha_{xx}w_{xx}- 5s^4\alpha_{x}^4w_{x}-6s^4\alpha_{x}^3\alpha_{xx}w\\ \mathcal{L}_{2}w & = & s^5 \alpha_{x}^5 w+10 s^3 \alpha_{x}^3w_{xx}+5s\alpha_{x}w_{xxxx}\\ \mathcal{L}_{3}w & = & s \alpha_{t} w-10 s^3 \alpha_{x}^2 \alpha_{xxx}w-15 s^3 \alpha_{x}\alpha_{xx}^2 w-10s^2 \alpha_{xx}\alpha_{xxx}w-5s^2 \alpha_{x}\alpha_{xxxx}w\\ &&-s\alpha_{xxxxx}w -4 s^4 \alpha_{x}^3 \alpha_{xx} w -30 s^3 \alpha_{x}^2 \alpha_{xx} w_{x}-20 s^2 \alpha_{x} \alpha_{xxx} w_{x}-15 s^2 \alpha_{xx}^2 w_{x}\\ &&-5 s \alpha_{xxxx} w_{x}-10 s \alpha_{xxx} w_{xx}-10s\alpha_{xx}w_{xxx}. \end{eqnarray*} |
The relation (4.7) will play a major role to get the following Carleman estimate for the operator \mathcal{L} defined above. By Proposition 4.1 and the operator \mathcal{L}u = u_{t}-u_{xxxxx} = g-u_{xxx}-pu_x-qu from (2.1), we get
\begin{array}{l} {s^9 \iint_Q \phi^{9}e^{2s\alpha}|u|^2 dxdt +s^7\iint_Q \phi^{7} e^{2s\alpha} |u_x|^2 dxdt +s^5 \iint_Q \phi^{5}e^{2s\alpha}| u_{xx}|^2 dxdt} \\ +s^3 \iint_Q \phi^3 e^{2s\alpha} | u_{xxx}|^2 dxdt+s \iint_Q \phi e^{2s\alpha} | u_{xxxx}|^2 dxdt \\ \leq C_1 \left( \iint_{Q} e^{2s\alpha} |g-u_{xxx}-pu_x-qu|^2dxdt+ s^9 \iint_{Q_\omega} \phi^{9}e^{2s\alpha}|u|^2 dxdt +s \iint_{Q_\omega} \phi e^{2s\alpha} | u_{xxxx}|^2 dxdt\right). \end{array} | (4.8) |
Now, we find the bound for the first term of the right side of (4.8): Use Theorem 3.2 and the Sobolev embedding L^\infty(0, T; H^2(\Omega))\hookrightarrow L^{\infty}(0, T; W^{1, \infty}(\Omega)) to get the regularity results that {y}\in L^{\infty}(0, T; W^{1, \infty}(\Omega)) and \tilde{y}\in L^{\infty}(0, T; W^{1, \infty}(\Omega)) . It shows that \|p\|_{L^{\infty}(0, T; L^{\infty}(\Omega))} and \|q\|_{L^{\infty}(0, T; L^{\infty}(\Omega))} are bounded by constants depending on \Omega , T , M and y_0 . It leads to the estimate
\begin{array}{l} {\iint_{Q} e^{2s\alpha} |g-u_{xxx}-pu_x-qu|^2dxdt}\\ \leq C \left( \iint_{Q} e^{2s\alpha} |g|^2dxdt+\iint_{Q} e^{2s\alpha} \Big(|u|^2+|u_{x}|^2+|u_{xxx}|^2 \Big) dxdt \right). \end{array} | (4.9) |
Substitute (4.9) in (4.8), we have
\begin{array}{l} {s^9 \iint_Q \phi^{9}e^{2s\alpha}|u|^2 dxdt +s^7\iint_Q \phi^{7} e^{2s\alpha} |u_x|^2 dxdt +s^5 \iint_Q \phi^{5}e^{2s\alpha}| u_{xx}|^2 dxdt} \\ +s^3 \iint_Q \phi^3 e^{2s\alpha} | u_{xxx}|^2 dxdt+s \iint_Q \phi e^{2s\alpha} | u_{xxxx}|^2 dxdt \\ \leq C \left( \iint_{Q} e^{2s\alpha} |g|^2dxdt+ s^9 \iint_{Q_\omega} \phi^{9}e^{2s\alpha}|u|^2 dxdt +s \iint_{Q_\omega} \phi e^{2s\alpha} | u_{xxxx}|^2 dxdt \right), \end{array} | (4.10) |
for any s\geq s_{1}: = \max \{{s}_{0}, CT^{2}\} .
Using (4.7) along with the estimates on weight functions (4.3) and (4.4), we have
\begin{eqnarray} s^{-1}\iint_{Q} \phi^{-1}|\mathcal{L}_{1}w|^2dxdt \leq Cs^{-1}\iint_{Q} \phi^{-1} \left(| e^{s\alpha}\mathcal{L}u|^2+|\mathcal{L}_{2}w|^2+|\mathcal{L}_{3}w|^2 \right)dxdt, \end{eqnarray} | (4.11) |
where
\begin{eqnarray*} s^{-1} \iint_{Q} \phi^{-1} |\mathcal{L}_{2}w|^2 dxdt &\leq& C\left( s^{9}\iint_{Q} \phi^{9}|w|^2 dxdt+s^{5}\iint_{Q} \phi^{5}|w_{xx}|^2 dxdt \right. \nonumber\\ && \left. +s\iint_{Q} \phi |w_{xxxx}|^2 dxdt\right), \end{eqnarray*} |
and
\begin{eqnarray*} s^{-1} \iint_{Q} \phi^{-1} |\mathcal{L}_{3}w|^2 dxdt &\leq& s^{9}\iint_{Q} \phi^{9}|w|^2 dxdt+s^{7}\iint_{Q} \phi^{7}|w_{x}|^2 dxdt \nonumber\\ && +s^{5}\iint_{Q} \phi^{5}|w_{xx}|^2 dxdt +s^{3}\iint_{Q} \phi^{3}|w_{xxx}|^2 dxdt, \end{eqnarray*} |
for any s \geq s_{2} = CT(T+T^{3/4}). Now, we go back to the original variable using the transformation w(x, t) = e^{s\alpha}u(x, t) as follows:
\begin{array}{l} {s^{-1}\iint_{Q} \phi^{-1} e^{2s\alpha} |\mathcal{L}_{1}u|^2 dxdt}\\ \leq C\left( s^{-1}\iint_{Q} \phi^{-1} e^{2s\alpha}|\mathcal{L}u|^2 dxdt +s^{9}\iint_{Q} \phi^{9} e^{2s\alpha}|u|^2 dxdt +s^{7}\iint_{Q} \phi^{7}e^{2s\alpha} |u_{x}|^2 dxdt \right. \\ \left. +s^{5}\iint_{Q} \phi^{5} e^{2s\alpha}|u_{xx}|^2 dxdt +s^{3}\iint_{Q} \phi^{3}e^{2s\alpha}|u_{xxx}|^2 dxdt+s\iint_{Q} \phi e^{2s\alpha}|u_{xxxx}|^2 dxdt \right), \end{array} | (4.12) |
for any s\geq s_2 . Using (4.9) and putting together (4.10) and (4.12), we obtain
\begin{eqnarray} \mathcal{M}(u) \leq C \left( \iint_{Q} e^{2s\alpha} |g|^2dxdt+ s^9 \iint_{Q_\omega} \phi^{9}e^{2s\alpha}|u|^2 dxdt +s \iint_{Q_\omega} \phi e^{2s\alpha} | u_{xxxx}|^2 dxdt \right), \end{eqnarray} | (4.13) |
for any s\geq s_{0}^{*}: = \max \{{s}_{1}, {s}_{2}, CT^{2}\} . This concludes the proof.
In this section, we establish a stability result for the Kawahara equation (1.1) which will be proved using the ideas of [4,11]. To prove the stability result of this paper, we need to deduce a Carleman estimate for the variant of the operator \mathcal{L} in Proposition 3.1. Here we use the data at some time \theta = T/2 . Moreover, we write for simplicity, p(x, \theta): = p(\theta) , q(x, \theta): = {q}({\theta}) , r(x, \theta): = {r}({\theta}) and u(x, \theta): = u(\theta) .
Proof of Theorem 2.1: First we take a differentiation of the Eq (2.1) with respect to time. The function, v(x, t): = u_t(x, t) satisfies the following equation
\begin{eqnarray} \left\{ \begin{array}{ll} v_{t}+v_{xxx}- v_{xxxxx}+pv_{x}+qv = G(x,t), \ & (x,t) \in Q,\\ v(x,0) = f(x)r(x,0),\ & x \in \Omega,\\ v(0,t) = v(1,t) = v_{x}(0,t) = v_{x}(1,t) = v_{xx}(1,t) = 0,\ & t \in (0,T), \end{array} \right. \end{eqnarray} | (5.1) |
where G(x, t) = fr_t-p_{t}u_{x}-q_{t}u. Then we apply the Carleman estimate derived in Theorem 4.1 for (5.1) to obtain
\begin{eqnarray} {\mathcal{M}(v)}\\ &\leq& C \left( \iint_{Q} e^{2s\alpha} |G(x,t)|^2dxdt+ s^9 \iint_{Q_\omega} \phi^{9}e^{2s\alpha}|v|^2 dxdt+s \iint_{Q_\omega} \phi e^{2s\alpha} | v_{xxxx}|^2 dxdt\right), \end{eqnarray} | (5.2) |
for all v\in J and for any s\geq s_0^\ast , where \mathcal{M}(\cdot) is defined in (4.6).
To estimate the first term on the right side of (5.2), note that by Theorem 3.2, y, \tilde{y}, \ y_{t}, \tilde{y}_{t}\in L^\infty(0, T; H^2(\Omega)) and the Sobolev embedding L^\infty(0, T; H^2(\Omega))\hookrightarrow L^{\infty}(0, T; W^{1, \infty}(\Omega)) we obtain the regularity results that {y}\in W^{1, \infty}(0, T; W^{1, \infty}(\Omega)) and \tilde{y}\in W^{1, \infty}(0, T; W^{1, \infty}(\Omega)) . It shows that \|r_t\|_{L^{\infty}(0, T;L^{\infty}(\Omega))} , \|p_t\|_{L^\infty(0, T; L^{\infty}(\Omega))} and \|q_t\|_{L^\infty(0, T; L^{\infty}(\Omega))} are bounded by constants depending on \Omega , T , M and y_0 , which lead to G \in L^2(0, T, L^2(\Omega)). Thus we have
\begin{array}{l} {\iint_Q e^{2s\alpha} |G(x,t)|^2 dxdt} \\ \leq 3 \left(\|r_t\|_{L^{\infty}(Q)}^2 \iint_Q e^{2s\alpha} |f|^2dxdt+\| q_{t} \|_{L^{\infty}(Q)}^2 \iint_Q e^{2s\alpha}|u|^2dxdt +\| p_{t} \|_{L^{\infty}(Q)}^2 \iint_Q e^{2s\alpha}|u_x|^2dxdt \right). \end{array} | (5.3) |
We substitute (5.3) in (5.2) to obtain
\begin{eqnarray} {\mathcal{M}(v)} &\leq& C \left( \iint_{Q} e^{2s\alpha} |f|^2dxdt+s^9 \iint_Q \phi^9 e^{2s\alpha} |u|^2dxdt + s^7 \iint_Q \phi^7 e^{2s\alpha} |u_x|^2dxdt\right. \\ &&\left.+ s^9 \iint_{Q_\omega} \phi^{9}e^{2s\alpha}|v|^2 dxdt+s \iint_{Q_\omega} \phi e^{2s\alpha} | v_{xxxx}|^2 dxdt\right), \end{eqnarray} | (5.4) |
for any sufficiently large s\geq \tilde{s}_0 = \max \{CT^{2}, s_0^\ast\} .
Here, we use Theorem 4.1 for the terms s^9 \iint_Q \phi^9 e^{-2s\alpha} |u|^2dxdt and s^7 \iint_Q \phi^7 e^{-2s\alpha} |u_x|^2dxdt which occur on the right side of (5.4) to get
\begin{eqnarray} {\mathcal{M}(v)} &\leq& C \left( \iint_{Q} e^{2s\alpha} |f|^2dxdt+ s^9 \iint_{Q_\omega} \phi^{9}e^{2s\alpha}|u|^2 dxdt+s \iint_{Q_\omega} \phi e^{2s\alpha} | u_{xxxx}|^2 dxdt\right. \\ &&\left.+ s^9 \iint_{Q_\omega} \phi^{9}e^{2s\alpha}|v|^2 dxdt+s \iint_{Q_\omega} \phi e^{2s\alpha} | v_{xxxx}|^2 dxdt\right), \end{eqnarray} | (5.5) |
where we have used \|r\|_{L^{\infty}(0, T;L^{\infty}(\Omega))}\leq C and for any s\geq \tilde{s}_{0} .
Next we acquire an estimate for the solution v of the transformed equation (5.1) at t = \theta by introducing an integral with \theta and the operator \mathcal{L}_{1}w as follows:
\begin{eqnarray} I& = &\int_{0}^{\theta} \int_{\Omega} (\mathcal{L}_{1}w)w dxdt \\ & = & \iint_{Q_{\theta}} (w_{t}-w_{xxxxx}-10s^2\alpha_{x}^2w_{xxx}-30s^2\alpha_{x}\alpha_{xx}w_{xx}- 5s^4\alpha_{x}^4w_{x}-6s^4\alpha_{x}^3\alpha_{xx}w)w dxdt\\ & = & \frac{1}{2} \int_{\Omega} |w(x,\theta)|^2 dx +\mathcal{N}, \end{eqnarray} | (5.6) |
where Q_{\theta}: = \Omega \times (0, \theta) . Here \mathcal{L}_{1}w is the operator that would arise if we derive Carleman estimate for \mathcal{L}v = v_{t}-v_{xxxxx} as we have computed in (4.7) and
\begin{eqnarray} \mathcal{N}&: = & \iint_{Q_{\theta}} \left(-ww_{xxxxx}-10s^2\alpha_{x}^2ww_{xxx}-30s^2\alpha_{x}\alpha_{xx}ww_{xx}- 5s^4\alpha_{x}^4ww_{x}-6s^4\alpha_{x}^3\alpha_{xx}w^2\right) dxdt\\ & = & -\iint_{Q_{\theta}}w_{xx}w_{xxx}dxdt- 10 s^2 \iint_{Q_{\theta}} \alpha_{x}\alpha_{xx}ww_{xx} dxdt-10 s^2 \iint_{Q_{\theta}} \alpha_{x}\alpha_{xx}|w_{x}|^2 dxdt \\ &&+4 s^4 \iint_{Q_{\theta}} \alpha_{x}^3\alpha_{xx}|w|^2 dxdt. \end{eqnarray} | (5.7) |
Using (4.3) and (4.4), we obtain
\begin{eqnarray} \mathcal{N}&\leq& C \left( s^4\iint_{Q_{\theta}} \phi^4 |w|^2 dxdt+ s^2 \iint_{Q_{\theta}} \phi^2 |w_{x}|^2 dxdt+s^2\iint_{Q_{\theta}} \phi^2 |w_{xx}|^2dxdt \right. \\ &&\left. +\iint_{Q_{\theta}}|w_{xxx}|^2dxdt\right), \end{eqnarray} | (5.8) |
for any s\geq CT^2 .
Next, taking \mathcal{L}_{1}w = \mathcal{L}_{1}(e^{s\alpha}v) = e^{s\alpha}\widehat{\mathcal{L}}_{1} v into account, we apply Hölder's inequality followed by Cauchy-Schwarz inequality to yield the following
\begin{eqnarray} |I|& = &\Big|\iint_{Q_{\theta}} e^{2s\alpha}(\widehat{\mathcal{L}}_{1}v)v dxdt \Big|\\ &\leq & C(\Omega) T^{6} s^{-3}\left[ s^{-3} \iint_{Q} \phi^{-3}e^{2s\alpha} |\widehat{\mathcal{L}}_{1}v|^2 dxdt + s^9 \iint_{Q} \phi^{9} e^{2s\alpha} |v|^2 dxdt \right], \end{eqnarray} | (5.9) |
where a simple computation yields
\begin{eqnarray*} \widehat{\mathcal{L}}_{1}v& = & {\mathcal{L}}_{1}v+\left(s\alpha_{t}-16s^5\alpha_{x}^5-70 s^4\alpha_{x}^3\alpha_{xx} -20 s^3\alpha_{x}^2\alpha_{xxx} -45 s^3\alpha_{x}\alpha_{xx}^2 \nonumber\right.\\ &&\left.-10 s^2\alpha_{xx}\alpha_{xxx} -5 s^2\alpha_{x}\alpha_{xxxx} - s\alpha_{xxxxx}\right)v - \left(35 s^4\alpha_{x}^4 +120 s^3\alpha_{x}^2\alpha_{xx} \nonumber\right.\\ &&\left.+20 s^2\alpha_{x}\alpha_{xxx} +15 s^2 \alpha_{xx}^2 +5 s\alpha_{xxxx} \right)v_{x}-\left(20 s^3\alpha_{x}^3 +30 s^2\alpha_{x}\alpha_{xxx} \nonumber\right.\\ &&\left.+10 s\alpha_{xxx} \right)v_{xx}-10\left( s^2\alpha_{x}^2 + s\alpha_{xx} \right)v_{xxx}-5 s\alpha_{x} v_{xxxx}. \end{eqnarray*} |
We also have
\begin{array}{l} {s^{-3}\iint_{Q}\phi^{-3} e^{2s\alpha} |\widehat{\mathcal{L}}_{1}v|^2 dxdt}\nonumber\\ \leq C\left(s^{-3} T^{4} \iint_{Q} \phi^{-1} e^{2s\alpha} |{\mathcal{L}}_{1}v|^2 dxdt+ s^{9} \iint_{Q} \phi^{9} e^{2s\alpha}|v|^2 dxdt+ s^{7} \iint_{Q} \phi^{7} e^{2s\alpha} |v_{x}|^2 dxdt \nonumber\right. \\ \left.+ s^{5} \iint_{Q} \phi^{5} e^{2s\alpha} |v_{xx}|^2 dxdt + s^{3} \iint_{Q} \phi^{3} e^{2s\alpha} |v_{xxx}|^2+ s \iint_{Q} \phi e^{2s\alpha} |v_{xxxx}|^2 dxdt \right), \end{array} |
for any s\geq \tilde{s}_1 = CT(T+T^{3/4}) .
Now we are ready to obtain the stability estimate for the unknown coefficient a(x) using the relation w(x, t) = e^{s\alpha}v(x, t) , (5.6), (5.8) and (5.9) as follows
\begin{array}{l} { \int_{\Omega} |v(x,{\theta})|^2 e^{2s\alpha(x,\theta)} dx = 2I-2\mathcal{N}\nonumber}\\ \leq C(\Omega) T^{6} s^{-3}\left[s^{-3} T^{4} \iint_{Q} \phi^{-1} e^{2s\alpha} |{\mathcal{L}}_{1}v|^2 dxdt + s^9 \iint_{Q} \phi^{9} e^{2s\alpha}|v|^2 dxdt + s^7 \iint_{Q} \phi^7 e^{2s\alpha} |v_{x}|^2 dxdt \right.\\ \left.+s^5\iint_{Q} \phi^5 e^{2s\alpha} |v_{xx}|^2dxdt+s^3\iint_{Q} \phi^3 e^{2s\alpha} |v_{xxx}|^2dxdt+s\iint_{Q} \phi e^{2s\alpha} |v_{xxxx}|^2dxdt\right]\nonumber, \end{array} |
for any s \geq CT^2. From (5.5) , we have
\begin{array}{l} { \int_{\Omega} |v(x,{\theta})|^2 e^{2s\alpha(x,\theta)} dx}\\ \leq C(\Omega) T^6 s^{-3}\left( \iint_{Q} e^{2s\alpha}|f|^2 dxdt + s^9 \iint_{Q_\omega} \phi^{9}e^{2s\alpha}|u|^2 dxdt+s \iint_{Q_\omega} \phi e^{2s\alpha} | u_{xxxx}|^2 dxdt \right. \\ \left.+ s^9 \iint_{Q_\omega} \phi^{9}e^{2s\alpha}|v|^2 dxdt+s \iint_{Q_\omega} \phi e^{2s\alpha} | v_{xxxx}|^2 dxdt \right), \end{array} | (5.10) |
for any s\geq CT^{2} . From (2.1), we get that
\begin{eqnarray*} f(x)r({\theta}) = v(\theta)+u_{xxx}(\theta)- {u_{xxxxx}}({\theta})+p(\theta)u_x({\theta})+q({\theta}) u({\theta}), \end{eqnarray*} |
and from (5.10), we have
\begin{array}{l} \label{A33} {\int_\Omega |f(x)r({\theta})|^2 e^{2s\alpha({\theta})} dx}\\ \leq C(\Omega, y_{0}) T^6 s^{-3}\left(\iint_{Q} e^{2s\alpha}|f|^2 dxdt + s^9 \iint_{Q_\omega} \phi^{9}e^{2s\alpha}|u|^2 dxdt+s \iint_{Q_\omega} \phi e^{2s\alpha} | u_{xxxx}|^2 dxdt \right. \\ \left.+ s^9 \iint_{Q_\omega} \phi^{9}e^{2s\alpha}|v|^2 dxdt+s \iint_{Q_\omega} \phi e^{2s\alpha} | v_{xxxx}|^2 dxdt \right) \\ +C \left(\int_\Omega e^{2s\alpha({\theta})}( |{u_{xxxxx}}({\theta})|^2+|u_{xxx}(\theta)|^2+|u_x({\theta})|^2+ |u({\theta})|^2 )dx \right), \end{array} | (5.11) |
where we have used \|p\|_{L^{\infty}(0, T;L^{\infty}(\Omega))} \leq C and \|q\|_{L^{\infty}(0, T;L^{\infty}(\Omega))}\leq C. By assumption, \inf\limits_{x\in \Omega}|r(x, {\theta})|\geq b > 0 and Carleman weight function satisfies the inequality e^{2s\alpha}\leq e^{2s\alpha({\theta})} for all (x, t)\in Q , we obtain
\begin{array}{l} \label{A35} {\int_\Omega |f(x)|^2 \left(b^2-\frac{CT^7}{s^3}\right)e^{2s\alpha({\theta})} dx} \\ \leq C \left( s^9 \iint_{Q_\omega} \phi^{9}e^{2s\alpha}|u|^2 dxdt+s \iint_{Q_\omega} \phi e^{2s\alpha} | u_{xxxx}|^2 dxdt+ s^9 \iint_{Q_\omega} \phi^{9}e^{2s\alpha}|v|^2 dxdt \right. \\ \left. +s \iint_{Q_\omega} \phi e^{2s\alpha} | v_{xxxx}|^2 dxdt +\int_\Omega e^{2s\alpha({\theta})}\left(|{u_{xxxxx}}({\theta})|^2+|u_{xxx}(\theta)|^2+ |u_x({\theta})|^2+ |u({\theta})|^2 \right)dx \right), \end{array} |
for any s\geq \tilde{s}_2 = \max\{\tilde{s}_0, \tilde{s}_1\} . {For the choice of s large enough such that s\geq \tilde{s}_3 = \max \Big \{ \tilde{s}_2, \frac{CT^{\frac{7}{3}}}{b^{\frac{2}{3}}} \Big \} and using the fact that \inf\limits_{x \in \Omega} e^{2\tilde{s}_3\alpha({\theta})} \geq b_0 > 0, \ \forall x \in \bar{\Omega} and e^{2\tilde{s}_3\alpha} \phi^k \leq C < \infty, \ \mbox{for any } k \in \mathbb{R} , we have
\begin{eqnarray} \|f\|_{L^2(\Omega)}^2 \leq {C} \left( \|u\|_{{H^1(0,T;L^2(\omega))}}^2+\|u_{xxxx}\|_{H^1(0,T;L^2(\omega))}^2 +\|u(\theta)\|_{H^5(\Omega)}^2\right), \end{eqnarray} | (5.12) |
where C is depending on \Omega, T, M, b, b_0 and y_0 . This completes the proof of the stability result.
The third author was supported by National Board for Higher Mathematics (NBHM), Department of Atomic Energy, India through research project Grant. The authors thank the referees for useful comments and suggestion which led to an improvement in the quality of this article.
All authors declare no conflicts of interest in this paper.
[1] |
F. D. Araruna, R. A. Capistrano-Filho, G. Doronin, Energy decay for the modified Kawahara equation posed in a bounded domain, J. Math. Anal. Appl., 385 (2012), 743-756. doi: 10.1016/j.jmaa.2011.07.003
![]() |
[2] | L. Baudouin, E. Cerpa, E. Crepeau, et al. On the determination of the principal coefficient from boundary measurements in a KdV equation, J. Inverse Ill-Posed Probl., 22 (2013), 819-845. |
[3] |
L. Baudouin, E. Cerpa, E. Crepeau, et al. Lipschitz stability in an inverse problem for the KuramotoSivashinsky equation, Appl. Anal., 92 (2013), 2084-2102. doi: 10.1080/00036811.2012.716589
![]() |
[4] | A. L. Bukhgeim, M. V. Klibanov, Uniqueness in the large class of multidimensional inverse problems, Sov. Math. Dokl., 24 (1981), 244-247. |
[5] |
A. L. Bukhgeim, Carleman estimates for Volterra operators and uniqueness of inverse problems, Siberian Math. J., 25 (1984), 43-50. doi: 10.1007/BF00969507
![]() |
[6] |
R. A. Capistrano-Filho, A. F. Pazoto, L. Rosier, Internal controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM: COCV, 21 (2015), 1076-1107. doi: 10.1051/cocv/2014059
![]() |
[7] |
M. Chen, Internal controllability of the Kawahara equation on a bounded domain, Nonlinear Anal., 185 (2019), 356-373. doi: 10.1016/j.na.2019.03.016
![]() |
[8] | O. Glass, S. Guerrero, On the controllability of the fifth-order Korteweg-de Vries equation, Ann. I. H. Poincaré - AN., 26 (2009), 2181-2209. |
[9] |
P. Gao, A new global Carleman estimate for the one-dimensional Kuramoto-Sivashinsky equation and applications to exact controllability to the trajectories and an inverse problem, Nonlinear Anal., 117 (2015), 133-147. doi: 10.1016/j.na.2015.01.015
![]() |
[10] |
P. Gao, Global Carleman Estimate for the Kawahara equation and its applications, Commun. Pure Appl. Anal., 17 (2018), 1853-1874. doi: 10.3934/cpaa.2018088
![]() |
[11] |
O. Yu. Imanuvilov, M. Yamamoto, Lipschitz stability in inverse problems by the Carleman estimates, Inverse Probl., 14 (1998), 1229-1245. doi: 10.1088/0266-5611/14/5/009
![]() |
[12] |
T. Kawahara, Oscillatory solitary waves in dispersive media, J. Phys. Soc. Japan, 33 (1972), 260-264. doi: 10.1143/JPSJ.33.260
![]() |
[13] |
P. G. Meléndez, Lipschitz stability in an inverse problem for the mian coefficient of a KuramotoSivashinsky type equation, J. Math. Anal. Appl., 408 (2013), 275-290. doi: 10.1016/j.jmaa.2013.05.050
![]() |
[14] | M. Renardy, B. Rogers, An Introduction to Partial Differential Equations, Springer-Verlag, New York Inc, 2004. |
[15] |
C. F. Vasconcellos, P. N. Da Silva, Stabilization of the Kawahara Equation with localized damping, ESAIM: COCV, 17 (2011), 102-116. doi: 10.1051/cocv/2009041
![]() |
[16] | M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Probl., 25 (2009), 123013. |
1. | Souhila Loucif, 2023, Chapter 8, 978-3-031-36334-4, 155, 10.1007/978-3-031-35675-9_8 |