Citation: Arivazhagan Anbu, Sakthivel Kumarasamy, Barani Balan Natesan. Lipschitz stability of an inverse problem for the Kawahara equation with damping[J]. AIMS Mathematics, 2020, 5(5): 4529-4545. doi: 10.3934/math.2020291
[1] | F. D. Araruna, R. A. Capistrano-Filho, G. Doronin, Energy decay for the modified Kawahara equation posed in a bounded domain, J. Math. Anal. Appl., 385 (2012), 743-756. doi: 10.1016/j.jmaa.2011.07.003 |
[2] | L. Baudouin, E. Cerpa, E. Crepeau, et al. On the determination of the principal coefficient from boundary measurements in a KdV equation, J. Inverse Ill-Posed Probl., 22 (2013), 819-845. |
[3] | L. Baudouin, E. Cerpa, E. Crepeau, et al. Lipschitz stability in an inverse problem for the KuramotoSivashinsky equation, Appl. Anal., 92 (2013), 2084-2102. doi: 10.1080/00036811.2012.716589 |
[4] | A. L. Bukhgeim, M. V. Klibanov, Uniqueness in the large class of multidimensional inverse problems, Sov. Math. Dokl., 24 (1981), 244-247. |
[5] | A. L. Bukhgeim, Carleman estimates for Volterra operators and uniqueness of inverse problems, Siberian Math. J., 25 (1984), 43-50. doi: 10.1007/BF00969507 |
[6] | R. A. Capistrano-Filho, A. F. Pazoto, L. Rosier, Internal controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM: COCV, 21 (2015), 1076-1107. doi: 10.1051/cocv/2014059 |
[7] | M. Chen, Internal controllability of the Kawahara equation on a bounded domain, Nonlinear Anal., 185 (2019), 356-373. doi: 10.1016/j.na.2019.03.016 |
[8] | O. Glass, S. Guerrero, On the controllability of the fifth-order Korteweg-de Vries equation, Ann. I. H. Poincaré - AN., 26 (2009), 2181-2209. |
[9] | P. Gao, A new global Carleman estimate for the one-dimensional Kuramoto-Sivashinsky equation and applications to exact controllability to the trajectories and an inverse problem, Nonlinear Anal., 117 (2015), 133-147. doi: 10.1016/j.na.2015.01.015 |
[10] | P. Gao, Global Carleman Estimate for the Kawahara equation and its applications, Commun. Pure Appl. Anal., 17 (2018), 1853-1874. doi: 10.3934/cpaa.2018088 |
[11] | O. Yu. Imanuvilov, M. Yamamoto, Lipschitz stability in inverse problems by the Carleman estimates, Inverse Probl., 14 (1998), 1229-1245. doi: 10.1088/0266-5611/14/5/009 |
[12] | T. Kawahara, Oscillatory solitary waves in dispersive media, J. Phys. Soc. Japan, 33 (1972), 260-264. doi: 10.1143/JPSJ.33.260 |
[13] | P. G. Meléndez, Lipschitz stability in an inverse problem for the mian coefficient of a KuramotoSivashinsky type equation, J. Math. Anal. Appl., 408 (2013), 275-290. doi: 10.1016/j.jmaa.2013.05.050 |
[14] | M. Renardy, B. Rogers, An Introduction to Partial Differential Equations, Springer-Verlag, New York Inc, 2004. |
[15] | C. F. Vasconcellos, P. N. Da Silva, Stabilization of the Kawahara Equation with localized damping, ESAIM: COCV, 17 (2011), 102-116. doi: 10.1051/cocv/2009041 |
[16] | M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Probl., 25 (2009), 123013. |