Citation: Afis Saliu, Khalida Inayat Noor, Saqib Hussain, Maslina Darus. Some results for the family of univalent functions related with Limaçon domain[J]. AIMS Mathematics, 2021, 6(4): 3410-3431. doi: 10.3934/math.2021204
[1] | R. M. Ali, V. Ravichandran, N. Seenivasagan, Coefficient bounds for $p$-valent functions, Appl. Math. Comput., 187 (2007), 35–46. |
[2] | K. O. Babalola, On $H_{3}(1)$ Hankel determinant for some classes of univalent functions, Inequality Theory and Applications, 6 (2010), 1–7. |
[3] | N. E. Cho, V. Kumar, S. S. Kumar, V. Ravichandran, Radius problems for starlike functions associated with the sine function, B. Iran. Math. Soc., 45 (2019), 213–232. doi: 10.1007/s41980-018-0127-5 |
[4] | M. Darus, I. Faisal, Some subclasses of analytic functions of complex order defined by new differential operator, Tamkang J. Math., 43 (2012), 223–242. doi: 10.5556/j.tkjm.43.2012.740 |
[5] | M. Darus, S. Hussain, M. Raza, J. Sokół, On a subclass of starlike functions, Results Math., 73 (2018), 22. doi: 10.1007/s00025-018-0771-3 |
[6] | R. M. El-Ashwash, M. K. Aouf, M. Darus, Differential subordination results for analytic functions, Asian-Eur. J. Math., 6 (2013), 1350044. doi: 10.1142/S1793557113500447 |
[7] | A. W. Goodman, Univalent functions, Vols. I and II, Polygonal Publishing House, Washinton, New Jersey, 1983. |
[8] | A. Goodman, On uniformly convex functions, Ann. Polon. Math., 56 (1991), 87–92. doi: 10.4064/ap-56-1-87-92 |
[9] | S. Hussain, A. Rasheed, M. A. Zaighum, M. Darus, A Subclass of Analytic Functions Related to $k$-Uniformly Convex and Starlike Functions, J. Funct. Spaces, 2017 (2017), 9010964. |
[10] | S. Hussain, S. Khan, M. A. Zaighum, M. Darus, Certain subclass of analytic functions related with conic domains and associated with Salagean q-differential operator, AIMS Math., 2 (2017), 622–634. doi: 10.3934/Math.2017.4.622 |
[11] | I. S. Jack, Functions starlike and convex of order $\alpha$, J. Lond. Math. Soc., 2 (1971), 469–474. |
[12] | W. Janowski, Some extremal problems for certain families of analytic functions I, Ann. Polon. Math., 28 (1973), 297–326. doi: 10.4064/ap-28-3-297-326 |
[13] | S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327–336. doi: 10.1016/S0377-0427(99)00018-7 |
[14] | S. Kanas, A. Wisniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45 (2000), 647–658. |
[15] | S. Kanas, V. S. Masih, A. Ebadian, Relations of a planar domains bounded by hyperbolas with families of holomorphic functions, J. Inequal. Appl., 2019 (2019), 246. doi: 10.1186/s13660-019-2190-8 |
[16] | S. Kanas, V. S. Masih, A. Ebadian, Coefficients problems for families of holomorphic functions related to hyperbola, $\overset\frown{\text{M}}$ath. Slovaca, 70 (2020), 605–616. |
[17] | W. Ma, D. Minda, A unified treatment of some special classes of univalent functions. In: Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA. |
[18] | V. S. Masih, S. Kanas, Subclasses of Starlike and Convex Functions Associated with the Limaçon Domain, Symmetry, 12 (2020), 942. doi: 10.3390/sym12060942 |
[19] | S. S. Miller, P. T. Mocanu, Differential Subordinations, Theory and Applications, Series of Monographs and Textbooks in Pure and Applied Mathematics, vol. 225, Marcel Dekker Inc., New York/Basel, 2000. |
[20] | G. Murugusundaramoorthy, T. Bulboaca, Hankel Determinants for New Subclasses of Analytic Functions Related to a Shell Shaped Region, Mathematics, 8 (2020), 1041. doi: 10.3390/math8061041 |
[21] | Z. Nehari, Conformal mapping, McGraw-Hill, New York, 1952. |
[22] | J. W. Noonan, D. K. Thomas, On the Hankel determinants of areally mean p-valent functions, Proc. Lond. Math. Soc., 3 (1972), 503–524. |
[23] | K. I. Noor, S. N. Malik, On coefficient inequalities of functions associated with conic domains, Comput. Math. Appl., 62 (2011), 2209–2217. doi: 10.1016/j.camwa.2011.07.006 |
[24] | R. K. Raina, J. Sokól, On coefficient estimates for a certain class of starlike functions, Hacet. J. Math. Stat., 44 (2015), 1427–1433. |
[25] | R. K. Raina, J. Sokól, On a class of analytic functions governed by subordination, Acta Univ. Sapientiae Math., 11 (2019), 144–155. |
[26] | A. Rasheed, S. Hussain, M. A. Zaighum, M. Darus, Class of analytic function related with uniformly convex and Janowski's functions, J. Funct. Spaces, 2018 (2018), 4679857. |
[27] | V. Ravichandran, F. Rønning, T. N. Shanmugam, Radius of convexity and radius of starlikeness for some classes of analytic functions, Complex Var. Elliptic Equ., 33 (1997), 265–280. |
[28] | M. Raza, K. I. Noor, Subclass of Bazilevic functions of complex order, AIMS Math., 5 (2020), 2448–2460. doi: 10.3934/math.2020162 |
[29] | W. Rogosinski, On the coefficients of subordinate functions, Proc. Lond. Math. Soc., 2 (1945), 48–82. |
[30] | F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118 (1993), 189–196. doi: 10.1090/S0002-9939-1993-1128729-7 |
[31] | A. Saliu, On Generalized k-Uniformly Close-to-Convex Functions of Janowski Type, International Journal of Analysis and Applications, 17 (2019), 958–973. |
[32] | A. Saliu, K. I. Noor, On Janowski Close-to-Convex Functions Associated with Conic Regions, International Journal of Analysis and Applications, 18 (2020), 614–623. |
[33] | A. Saliu, K. I. Noor, S. Hussain, M. Darus, On Quantum Differential Subordination Related with Certain Family of Analytic Functions, J. Math., 2020 (2020), 6675732. |
[34] | A. Saliu, K. I. Noor, On subclasses of functions with boundary and radius rotations associated with crescent domains, Bull. Korean Math. Soc., 57 (2020), 1529–1539. |
[35] | P. Sharma, R. K. Raina, J. Sokól, Certain Ma-Minda type classes of analytic functions associated with the crescent-shaped region, Anal. Math. Phys., 9 (2019), 1887–1903. doi: 10.1007/s13324-019-00285-y |
[36] | S. Siregar, M. Darus, Certain conditions for starlikeness of analytic functions of Koebe type, Int. J. Math. Math. Sci., 2011 (2011), 679704. |
[37] | H. M. Srivastava, K. Bilal, K. Nazar, Q. Z. Ahmad, Coefficient inequalities for $ q $-starlike functions associated with the Janowski functions, Hokkaido Math. J., 48 (2019), 407–425. doi: 10.14492/hokmj/1562810517 |
[38] | N. Tuneski, M. Darus, E. Gelova, Simple sufficient conditions for bounded turning, Rend. Semin. Mat. Univ. Padova, 132 (2014), 231–238. doi: 10.4171/RSMUP/132-11 |
[39] | Y. Yunus, S. A. Halim, A. B. Akbarally, Subclass of starlike functions associated with a limaçon, AIP Conference Proceedings, 1974 (2018), 030023. doi: 10.1063/1.5041667 |