Regularity for elliptic equations with oscillatory coefficients was concerned. Problem domains were periodic and consisted of a connected region with normal permeability and a disconnected matrix block subset with high permeability. Coefficients of the elliptic equations depending on the permeability of the domains were highly oscillatory. Let $ {\epsilon}\in(0, 1) $ be the periodic size of domain, $ {\epsilon}\mu\in(0, 1) $ the size ratio of a matrix block to the whole domain, and $ \omega^2\in(1, \infty) $ the permeability ratio of the disconnected matrix block subset to the connected sub-region of the domains. This work presented Lipschitz estimate uniformly in $ {\epsilon}, \mu, \omega $ for the Green's functions and the solutions of the elliptic equations.
Citation: Li-Ming Yeh. Lipschitz estimate for elliptic equations with oscillatory coefficients[J]. AIMS Mathematics, 2024, 9(10): 29135-29166. doi: 10.3934/math.20241413
Regularity for elliptic equations with oscillatory coefficients was concerned. Problem domains were periodic and consisted of a connected region with normal permeability and a disconnected matrix block subset with high permeability. Coefficients of the elliptic equations depending on the permeability of the domains were highly oscillatory. Let $ {\epsilon}\in(0, 1) $ be the periodic size of domain, $ {\epsilon}\mu\in(0, 1) $ the size ratio of a matrix block to the whole domain, and $ \omega^2\in(1, \infty) $ the permeability ratio of the disconnected matrix block subset to the connected sub-region of the domains. This work presented Lipschitz estimate uniformly in $ {\epsilon}, \mu, \omega $ for the Green's functions and the solutions of the elliptic equations.
[1] | A. A. Arkhipova, O. Erlhamahmy, Regularity of solutions to a diffraction-type problem for nondiagonal linear elliptic systems in the Campanato space, J. Math. Sci., 112 (2002), 3944–3966. https://doi.org/10.1023/A:1020093606080 doi: 10.1023/A:1020093606080 |
[2] | M. Avellaneda, F. H. Lin, Homogenization of elliptic problems with $L^p$ boundary data, Appl. Math. Opt., 15 (1987), 93–107. https://doi.org/10.1007/BF01442648 doi: 10.1007/BF01442648 |
[3] | M. Avellaneda, F. H. Lin, Compactness methods in the theory of homogenization, Commun. Pur. Appl. Math., 40 (1987), 803–847. |
[4] | E. S. Bao, Y. Y. Li, B. Yin, Gradient estimates for the perfect and insulated conductivity problems with multiple inclusions, Commun. Part. Diff. Eq., 35 (2010), 1982–2006. https://doi.org/10.1080/03605300903564000 doi: 10.1080/03605300903564000 |
[5] | H. E. Bahja, Regularity and existence of solutions to parabolic equations with nonstandard $p(x, t), q(x, t)$-growth conditions, Opusc. Math., 43 (2023), 759–788. https://doi.org/10.7494/OpMath.2023.43.6.759 doi: 10.7494/OpMath.2023.43.6.759 |
[6] | J. Chaker, M. Kim, Regularity estimates for fractional orthotropic $p$-Laplacians of mixed order, Adv. Nonlinear Anal., 11 (2022), 1307–1331. https://doi.org/10.1515/anona-2022-0243 doi: 10.1515/anona-2022-0243 |
[7] | G. Chen, J. Zhou, Boundary element methods with applications to nonlinear problems, Springer Science & Business Media, 2010. |
[8] | D. Cioranescu, J. S. J. Paulin, Homogenization of reticulated structures, New York: Springer, 1999. |
[9] | D. Cioranescu, P. Donato, An introduction to homogenization, New York: Oxford University Press, 1999. |
[10] | A. Clop, A. Gentile, A. P. D. Napoli, Higher differentiability results for solutions to a class of non-homogeneous elliptic problems under sub-quadratic growth conditions, B. Math. Sci., 13 (2023), 2350008. https://doi.org/10.1142/S166436072350008X doi: 10.1142/S166436072350008X |
[11] | J. Douglas, T. Arbogast, P. J. P. Leme, J. L. Hensley, N. P. Nunes, Immiscible displacement in vertically fractured reservoirs, Transport Porous Med., 12 (1993), 73–106. https://doi.org/10.1007/BF00616363 doi: 10.1007/BF00616363 |
[12] | L. Escauriaza, M. Mitrea, Transmission problems and spectral theory for singular integral operator on Lipschitz domains, J. Funct. Anal., 216 (2004), 141–171. https://doi.org/10.1016/j.jfa.2003.12.005 doi: 10.1016/j.jfa.2003.12.005 |
[13] | M. Giaquinta, Multiple integrals in the calculus of variations, Study 105, Annals of Math. Studies, Princeton Univ. Press., 1983. |
[14] | M. Giaquinta, Introduction to regularity theory for nonlinear elliptic systems, Basel: Birkhauser Verlag, 1993. |
[15] | D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Berlin: Springer, 2 (1983). |
[16] | E. Giusti, Direct methods in calculus of variations, World Scientific, 2003. |
[17] | J. G. Huang, J. Zou, Uniform a priori estimates for elliptic and static Maxwell interface problems, Discrete Cont. Dyn.-B, 7 (2007), 145–170. |
[18] | C. Irving, L. Koch, Boundary regularity results for minimisers of convex functionals with $(p, q)$-growth, Adv. Nonlinear Anal., 12 (2023), 20230110. https://doi.org/10.1515/anona-2023-0110 doi: 10.1515/anona-2023-0110 |
[19] | V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of differential operators and integral functions, Springer-Verlag, 1994. |
[20] | C. E. Kenig, F. H. Lin, Z. W. Shen, Homogenization of elliptic systems with Neumann boundary conditions, J. Am. Math. Soc., 26 (2013), 901–937. https://doi.org/10.1090/S0894-0347-2013-00769-9 doi: 10.1090/S0894-0347-2013-00769-9 |
[21] | C. E. Kenig, J. Pipher, The Neumann problem for elliptic equations with nonsmooth coefficients, Invent. Math., 113 (1993), 447–509. https://doi.org/10.1007/BF01244315 doi: 10.1007/BF01244315 |
[22] | C. E. Kenig, J. Pipher, The Neumann problem for elliptic equations with nonsmooth coefficients: Part II, A celebration of John F. Nash Jr., 1 (1996), 227. |
[23] | C. E. Kenig, Z. W. Shen, Homogenization of elliptic boundary value problems in Lipschitz domains, Math. Ann., 350, (2011), 867–917. https://doi.org/10.1007/s00208-010-0586-3 |
[24] | O. A. Ladyzhenskaya, N. N. Ural'tseva, Elliptic and quasilinear elliptic equations, Academic Press, 1968. |
[25] | W. Littman, G. Stampacchia, H. F. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola. Norm.-Sci., 17 (1963), 43–77. |
[26] | Y. Y. Li, M. Vogelius, Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients, Arch. Ration. Mech. An., 153 (2000), 91–151. |
[27] | A. Maugeri, D. K. Palagachev, L. G. Softova, Elliptic and parabolic equations with discontinuous coefficients, John Wiley & Sons, Inc., 2003. |
[28] | L. Pankratov, C. Choquet, Homogenization of a class of quasilinear elliptic equations with non-standard growth in high-contrast media, In: Proceedings of the Royal Society of Edinburgh, 140 (2010), 495–539. https://doi.org/10.1017/S0308210509000985 |
[29] | B. Schweizer, Uniform estimates in two periodic homogenization problems, Commun. Pur. Appl. Math., 53 (2000), 1153–1176. |
[30] | Z. W. Shen, Large-scale Lipschitz estimates for elliptic systems with periodic high-contrast coefficients, Commun. Part. Diff. Eq., 46 (2021), 1027–1057. https://doi.org/10.1080/03605302.2020.1858098 doi: 10.1080/03605302.2020.1858098 |
[31] | S. Torquato, Random heterogeneous materials: Microstructure and macroscopic properties, New York: Springer, 2002. |
[32] | Q. Xu, Uniform regularity estimates in homogenization theory of elliptic sysyems with lower order terms on the Neumann boundary problem, J. Differ. Equations, 261 (2016), 4368–4423. https://doi.org/10.1016/j.jde.2016.06.027 doi: 10.1016/j.jde.2016.06.027 |
[33] | L. M. Yeh, Elliptic equations in highly heterogeneous porous media, Math. Method. Appl. Sci., 33 (2010), 198–223. |
[34] | L. M. Yeh, Non-uniform elliptic equations in convex Lipschitz domains, Nonlinear Anal., 118 (2015), 63–81. https://doi.org/10.1016/j.na.2015.01.019 doi: 10.1016/j.na.2015.01.019 |
[35] | L. M. Yeh, Linear elliptic equations in composite media with anisotropic fibres, J. Differ. Equations, 266 (2019), 6580–6620. https://doi.org/10.1016/j.jde.2018.11.036 doi: 10.1016/j.jde.2018.11.036 |