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Abstract: Regularity for elliptic equations with oscillatory coefficients was concerned. Problem
domains were periodic and consisted of a connected region with normal permeability and a
disconnected matrix block subset with high permeability. Coefficients of the elliptic equations
depending on the permeability of the domains were highly oscillatory. Let € € (0, 1) be the periodic
size of domain, eu € (0, 1) the size ratio of a matrix block to the whole domain, and w? € (1, o) the
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This work presented Lipschitz estimate uniformly in €, u, w for the Green’s functions and the solutions
of the elliptic equations.
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1. Introduction

Regularity for elliptic equations with oscillatory coefficients is concerned. Problem domains are
periodic and consist of a connected region with normal permeability and a disconnected matrix block
subset with high permeability. Let ¥ = [, 1)" for n > 3; Y,,,(= B,4(0)) be a ball centered at
0 and with radius u/4 for u € (0,1); Y,y = Y \ Y,,,; Q be a domain in R” with boundary 0Q;
I.={jeZeY +]j c Q}fore € (0,1) Q. = Ujer,€(Yym + J) be a disconnected subset of Q;
Q (5 Q\ Q) be a connected sub-region of Q. Here, € is the periodic size of domain; ey is the
size ratio of a matrix block to the whole domain. Let w® € (1, o0) denote the permeability ratio of
the disconnected matrix block subset to the connected sub-region of Q. For any o, u,w > 0, define

Eg’ﬂ =X a7 + wX o7, (here, Xp is the characteristic function on D). The problem that we consider is

(1.1)

-V (EZZNV(D) =F inQ,
=g on 0Q),
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where €, € (0,1) and w € (1, 00). Problem (1.1) contains strongly elliptic equations with oscillatory
coeflicients; it has applications in flows in fractured media, contaminant flow problems, and the stress
in composite materials [4,8,11,19,31]. It is clear that a solution of problem (1.1) for each €, u, w exists
uniquely in H'(Q) if F, g are smooth. However, it is not clear how the regularity of the solutions of
problem (1.1) depends on the parameters €, i, w. This work presents the Lipschitz estimate uniformly
in €, i, w for the solutions of problem (1.1).

Regularity for the uniform linear elliptic equations (e.g., w € [d,,d,], d; > 0, and €, u fixed in (1.1))
with smooth coefficients was investigated extensively in [13, 15, 16, 24]. Regularity for the uniform
elliptic equations with non-smooth coefficients can be found in [21,22,27]. Holder, W'?, and Lipschitz
estimates uniformly in € for uniform elliptic equations with Holder continuous periodic coefficients
(e.g., w € [di,d>], dy > 0, € € (0,1), and u fixed in (1.1)) and with Dirichlet or Neumann boundary
were derived in [2, 3,20,23,32].

For nonuniform linear elliptic equations, regularity results for diffraction problems (e.g., €, u fixed
in (1.1)) are available in [12, 17, 19, 24, 26, 29] and references therein. Holder and W'? estimates
uniformly in €, u for the nonuniform elliptic equations (e.g., €,w € (0,1) and u fixed in (1.1)) with
Neumann boundary as well as Lipschitz estimate for the non-uniform elliptic equations with Dirichlet
boundary were shown in [33,34]. Elliptic equations with highly oscillatory coefficients (e.g., (1.1),
with € € (0,1), w € (0,0), and u = 1) were studied in [30], where the Lipschitz estimate uniformly
in €, w for the fundamental solutions and uniform interior Lipschitz estimate for the elliptic solutions
were derived.

Quasi-linear elliptic equations with high-contrast coefficients (whose solutions are minimizers of
convex functionals with (p, g)-growth) may arise from compressible flows in porous media and non-
Newtonian flow through thin fissures [28]. Homogenization for quasi-linear elliptic equations in
heterogeneous media (corresponding to the €,w € (0, 1) case) was studied in [28]. Some C!® and
W2 estimates of the minimizers of convex functionals with (p, g)-growth in homogeneous media can
be found in [5,6, 10, 18].

The coefficients of problem (1.1) under €,u € (0,1) and w € (1, 00) are globally discontinuous
and highly oscillatory as € closes to 0, but the coefficients are locally smooth in the connected sub-
region QZ’ 5 as well as in each cell €(Y,,, + j) of the matrix block subset € . This work presents
the Lipschitz estimate uniformly in €, 4, w for the Green’s functions and the solutions of the strongly
elliptic Eq (1.1). We find that the external sources F, g do not generate oscillatory solutions for (1.1)
and that the maximum norm of the gradient of elliptic solutions in the discontinuous matrix block
subset of the problem domains can be very small. These results are different from those in [33,34]. In
the latter, w € (0, 1); elliptic solutions can be oscillatory; and the maximum norm of the gradient of
elliptic solutions in the discontinuous matrix block subset of domains can be very large.

Our results are proved by employing a compactness argument in [2, 3] and ideas from [30]. More
precisely, consider the homogenization problems of Eq (1.1) first. Next, find regularity properties
satisfied by the solutions of the homogenized equations and show, by an iteration argument, that
these properties are also satisfied by the solutions of (1.1) from macroscopic scale to some level of
microscopic scale. Then, derive local a priori estimates to explain that the regularity properties are
satisfied by the solutions of (1.1) in all scales. In order to get above a priori estimates, the first step
is to locally flatten the boundaries of the matrix blocks of the domains and to derive estimates for the
elliptic solutions around the boundaries of the matrix blocks. Next is to study the Lipschitz estimates
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for the diffraction problem of each matrix block. Since the elliptic solutions change rapidly around
the boundary of the domains, to obtain the Lipschitz estimate around the boundary, we need estimates
uniformly in €, u, w for the Green’s functions and the corrector functions of the elliptic equations.
Lipschitz estimate for (1.1) can be shown by applying partition of unity and these local a priori
estimates.

The rest of this work is organized as follows: Notations and main results are stated in Section 2.
In Section 3, we derive uniform Lipschitz estimates for diffraction problems and a uniform estimate
for strongly elliptic equations. Section 4 is to consider the Holder estimate for elliptic equations with
oscillatory coefficients. Interior Lipschitz estimate for the elliptic equations is obtained in Section 5.
Section 6 is to study the boundary Lipschitz estimates for elliptic solutions. Main results (which are
Lipschitz estimates for the Green’s functions and the solutions of the elliptic equations) are proved in
Section 7. Section 8 shows an estimate for a diffraction problem (i.e., proof of Lemma 3.5).

2. Notations and main results

cka, Lr, Wk HX and LP* are the Holder space, Lebesgue space, Sobolev space, Hilbert space,
and Morrey space, respectively [13]. Cg’ contains C* functions with compact support; H}OC(R")
contains local H! functions; H;(R”) - H}OC(R”) contains periodic functions with period Y. [{]comn) =

sup % is the C* semi-norm of £ in D and supp({) is the support of £. For any set D and r > 0,
x,yeD

D/r= %D = {x| rx € D}; ID| is the volume of D; D; € D, means that D, is a compact subset of D;

1
(()Dzj(l;{dx=ﬂ£§dx.

Br = dist(x,0€Q/r) denotes the distance from x to the boundary 0Q/r; if r = 1, set §* = 7. Suppose
U,V are two vectors, and (U, V) denotes the inner product of U and V. For any r > 0, B,(x) is a ball
centered at x with radius r, E¢,(x) = Ez)’ﬂ(rx), and " (x) = A(rx) is the unit outward normal vector on
dQ/r. Forany o, y, @ > 0, define Oy, = Ujezno (Y, mt)), Oif = R”\Og’f, and K7 (x) = X01f+wqu.
Set Kg . (x) = K7 (%) if o = 1. Let us make the following statements:

Al. we (1,00), u€(0,1),n>3, w*u" <1<y,

A2. €€(0,1),ae(0,1),

A3. Qisa C" connected domain.

If x € Q, a Green’s function l"fy#(x, -) for the elliptic operator -V - (EZ2 #V) in Q is the solution of

{_Vy ’ (EZZ’#V}’FZ)#(-X? ')) = 6()(:, ') in Qa (2 1)

I5,(x)=0 on 0Q2,
where 6(x, -) is the Dirac delta function with pole at x. Under A1-A3, a Green’s function I';, (x,-) €
W1(Q) exists uniquely and 5,06 y) =I5, (v, x) for x,y € Q [25]. Moreover, we prove the following.

Theorem 2.1. Under AI-A3, there is a constant c independent of €, u, w such that any Green’s function
for problem (2.1) satisfies

I, (x,y)| < clx -y

) Q.
{|Vyrfu,p(x, y>| + |er2),p(x’ y)| <clx - yll_n fOrx y €
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Lipschitz estimate uniformly in € is the best possible estimate for the solutions of uniform elliptic
equations with periodic coefficients [3,20,32]. Here, we show

Theorem 2.2. Under AI-A3 and g € C*(0Q), there is a constant c independent of €, u, w such that
(1) if F € LP(Q) for p > n, then
IVl < ¢ (IIFlr@ + lgllcron) - (2.2)

(2) if F € LP(Q) for p > nand F € L*"***2(Q) for A € (0, 1), then

1
||E22#V(D||L°°(Q) <c (”F”LP(Q) + llgllcreaq) + |leul” sup ||F||L2v”+24‘2(e(Y+j)))~ (2.3)
jel.

Theorem 2.2 implies that the external sources F,g do not generate oscillatory solutions for
problem (1.1) and that the maximum norm of the gradient of elliptic solutions in the discontinuous
matrix block subset of the problem domains can be very small. Theorems 2.1 and 2.2 are proved in §7.

3. Diffraction problems and strongly elliptic equations

This section derives uniform Lipschitz estimates for diffraction problems and a uniform estimate
for strongly elliptic equations.

3.1. Diffraction problems

Setw > O’ = (Zla e ,Zn—1,Zn) = (Z/’Zn) € Rn’ and

To(x) = X 2)1k20(%) + TX (2 2)1,<01 (1),
Ko (x) = AX 2 2)2200(X) + TAX (2 2 )2, <04(X)-

By [35, Lemma 4.9], and the Poincaré inequality, we see

Lemma 3.1. If w,A € (0,1), e € [0,2], and 0 < m; < A € C"(By(0)), there is a constant c
independent of @, e such that any solution of

-V - (K, V¥) =G in B,(0)
satisfies
”TweVlP”Lm(Bl(O)) < C(min{”Twe‘PHLZ(BZ(O)), ||TweV‘P||L2(Bz(0))} + ||Tmfe—2G||L2,n+24-2(32(0)))-

By change of variables, Lemma 3.1 implies the following result.

Lemma 3.2. Ifw € (1,00), 1 € (0,1), e € [0,2], and 0 < m; < A € C'(B,(0)), there is a constant c
independent of w, e such that any solution of

V- (K,.V¥)=G in B,(0)
satisfies

ITwe V5,00 < C(min{IITwe‘PIIszz(o», ”TwEV\IJHLZ(Bz(O))}"'||Twe*2Glles"*u*Z(Bz(O)))-
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Define H'(D)/R = {¢ € H'(D)| ({)p = 0} for any set D. See §2 for ({)p. We have the following
extension result.

Lemma 3.3. If 1 € (0, 1), there is a mapping I, : H'(Y,,n,)/R — Hy(2Y,,,) such that

{Hﬂ(p = ¢ in Y,

for any ¢ € H'(Y,,n)/R,
||Hﬂ¢||H1(2Y,J,,,,) < C||V¢||L2(YH,,,,) !
where c is a constant independent of L.

Proof. Let ¢ be a constant independent of u. By [15, Theorem 7.25] and the Poincaré inequality, there
is a linear mapping IT : Hl(/llYH,m)/R — H(l)(l%Yﬂ,m) such that

H = iIl lY m
{ £=¢ poH for any{eHl(/llYu,m)/R.

||H§||H‘(,%Y#,,,,) < C||V§||L2(llly,1,,,,)
Define a mapping I1, : H'(Y,,,)/R — Hy(2Y,,,,) as follows: Set {(x) = ¢(ux) for ¢ € H'(Y,,,)/R and
X € iY#,m, and set I1,¢(y) = H{(iy) for I/ € Hl(;%Y#,m) and y € 2Y,,,,. Then,

I =¢ in ¥ m,
{Ilﬂufﬁllm(zy,,m) < C#%_IIIHQVIIH](%YM) < CM%_IIIV{HLz(iYM) < clVellra,,)-
So, we prove the lemma. O
Next is a local L?-gradient estimate for elliptic solutions inside the set Y. The idea is from [30].
Lemma 3.4. If w € (1,00) and p € (0, 1), any solution ¥ € H'(Y) of
-V (K., V¥) =G inY (3.1)
satisfies
10>Vl 2qy,,, < € (IVPl2@ym b + 1G]H-103,,) -

where c is a constant independent of u, w. See §2 for K, .

Proof. Let ¢ be a constant independent of u, w. Take a constant 4 so that the average is (¥ — h)y,,, = 0.
By Lemma 3.3, there is a { € Hy(2Y,,,,) satisfying

(=Y-h inY,,,
' (3.2)
Il 2y, < V2,
Test (3.1) against  to get
f K., V¥V dx = f G{ dx.
2Yy,m 2Y,u,m
Then, we have
wzllle”iZ(yﬂ,m) <c (||V‘P||L2(2Y,,,m\yﬂ,m) + ||G||H-'(2Y,,,m)) ||V§||L2(2YH,,,,)-
Together with (3.2), we prove the lemma. O
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Lemma 3.5. If w € (1,00), u € (0, 1), w’u > 1, and p > n, any solution of
-V-(K,,V¥) =G inY (3.3)

satisfies [[V'W||=,50) < (P20, 00 + 1K1 /02,4Gllery)), where ¢ is a constant independent of u, w.
See §2 for K, ,2,.

Proof of Lemma 3.5 is given in §8.
Lemma 3.6. If w € (1,00), u, A € (0,1), w?u > 1, and p > n, any solution of
-V-(K.,,V¥) =G inY
satisfies

1
K 2, VPl y, 0 < € (Wl 81 40 + K o2 4 Glloy + 1G22, )
where c is a constant independent of u, w.

Proof. Let c be independent of u, w. If {(x) = lll‘P(/Jx) and ¢(x) = uG(ux), then

-V-(KMV)=¢ inly.

w?.u

By partition of unity, the argument in [1, pages 3964 and 3965], Lemma 3.2 with e = 2, and the
Poincaré inequality,

1/p 1/p
1K Vo, < UK Loy, ) + Ml ,)
1/
S C(”szl,l/lvé/”Lz(AY#m) + ||¢”L2’"+21_2(§Yy,m))' (34)
4y,

(3.4) can be written as, by Lemmas 3.4 and 3.5,

||Kw2,,uVlIl||L°°(2Y”.m) < c (#_7"||Kw2,uVlP||L2(4Y,,,m) + ,Uﬂ||G||L2,n+24-2<4y,,,m))
< c (/«l% IVWll2@y,,0\ v + /«l% G|z sy,,,) + ,UA||G||L2v"+24-2(4Y#,,,,))
< c(IV¥llswy, v, + 172G sy, + H 1G22y, )
< C<||‘P||L2(Y\Bl/4(0)) + 1Ky /02, Glleery + //l/l”G”Ll"“f“‘z(EéY%m))- (3.5)
Lemma 3.6 follows from (3.5). |

3.2. Strongly elliptic equations
By Lemma 3.2 in [19, page 88], we have the following.

Lemma 3.7. Suppose €,u,r,< € (0,1). There is a constant ¢ (independent of €,,r) and a linear

continuous mapping ﬁe/r P H'(SQYyum \ Yum)) — Hl(%Yﬂ’m) such that if p € H'(SQY . \ Y,,n)), then

He/r¢ = ¢ in f(zyp,m \ Yp,m)a
”He/r¢”L2(%Yﬂ,m) < C”¢”L2(§(2Yl,wm\Y#,m))9
IIVHS/r¢“L2(%YH,m) < C||V¢||L2(§(2Y,,,m\yﬂym))-
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Lemma 3.8. Suppose AI-A3, <,r,R € (0,1), and < < R. There is a constant c independent of
€, U, w, 1, R such that

(1) if0 € 0Q/r, ¥}, € C(B2x(0) N OQ/r), and

{—v (B VW) =0 in Bi(0) N Q/r, 36
Y=Y, on Brr(0) N o/ r,
then
IES, V¥laonam < ¢ (R TI¥z@wonam + I¥ollcismonann) (3.7)
(2) if Bap(0) € Q/r and =V - (ES; VW) = 0 in Byg(0), then
”EZ;’#V\P”LZ(BR(O)) < CR—1||‘P||L2(32R(0))- (3.8)

Proof. Let c be a constant independent of €, u, w, r, R.
Step L. Let p € Cg"(B% z(0)) denote a bell-shaped function with n € [0,1], = 1 in Bg(0) and
”VUHL“’(B%R(O) < %- By Lemma 3.4,

IES,  Vl@m.0n0m < AIVEI@0n0rm- (3.9)

If W), € C'(Byz(0)NAQ/r), there is a function £ € C'(Byz(0) N Q/r) such that ¥, = £ on B3(0)N oY/ r

and M”C](BQR(O)”Q/’) < WollcrByrynagyr by [15, Lemma 6.38]. Test (3.6) against (‘¥ — On? to see, by
2

Al,

IES, VI

IA

cllES, (¥ = OVl + CllES, VI

L2(BR(0)NQ/r) LZ(B LONQ/r)

2
+ ¥ llE

L2(B 3 rONQ/r)

IA

¢ (RPIES, I (3.10)

L2(Bar(0)NQ/7) (Bar(0)NIQY/ r)) )

Step IL If (Y, +J) C B2r(0) N Q/r, we see, by Lemmas 3.7 and 3.5 and Al,
lw¥llr2cey,, 4y < @ (||ﬁe/r‘P||L2(§<Yﬂ,m+j>) +|¥ - ﬁs/r‘P||L2(§<Y#,m+j>))
€u ~
< Ccw (||T||L2(5(2YH,,,\Yﬂm+j)) + —||V(‘P - He/r‘P)||L2(§(Y,,,m+j)))

EU1+5
g e

< cwu? ||‘P||L2(§(Y ) = C||‘P||L2( (Y +i))- (3.11)

< (|—| ¥l cs @Y, Vymriny + |

See §1 for Y, ;. In (3.11), we use, by Lemma 3.5,
6|1+

| | IWllz e @y, Y + | IVl ey, < P2y, -

(3.7) follows from (3.9)—(3.11). (3.8) follows by (3.9), (3.11), and a modification of the argument
for (3.10). O

From now on, A1-A3 are always assumed.
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4. Holder estimate

This section includes three subsections. The first subsection (see §84.1) is to consider a
homogenization problem for periodic elliptic equations. Then, we derive the Holder estimate for
the elliptic equations in the interior region (see §§4.2) and around the boundary (see §§4.3). If
i€{l,2,---,n}, find X,,,; € Hy(R") by solving

{—V (Ko (VX +8)) =0 inY, @i

(Xw,ﬂ,i) y =0,

where &; is the unit vector in the i-th coordinate direction. See §2 for K., H;(R"), and (X, )y
By the energy method and Al, ||K,,,VX,,,.ll2yvy) £ ¢, where ¢ is a constant independent of u, w. If
{(x) = Xypui(x) +(x, &) fori =1,--- ,n,then V- (K,2,V{) = 0in Y. By Lemmas 3.5 and 3.6, the
Poincaré inequality, and (4.1),,
K2, (VX i + Ellory = 1Ko, VEli=r) < c, 4.2)
IXo pill=ry < ¢,

where c is independent of 7, u, w. Define a n X n matrix K, ,, whose (i, j)-entry is
1 ifi=j,
o (4.3)
0 ifi+#j.
By remark in [19, pages 43 and 44] and (4.2), K, , is a continuous symmetric positive definite matrix
of 1, w and satisfies

Ww,y,i,j = fYK(UZ,/J ((5,',1' + ana),,u,i(x)) dx where (5,-,]-

where [/ is the identity matrix and ms, my are positive constants independent of u, w. For any o > 0
andi=1,---,n, define

X7, = 0Kppui(x/o), X7 () = (X0, (0, X, (). (4.5)

W,UN

After translation and rotation, we can move any point z € dQ to 0. By A3, there is a number
¥. € (0,2) and a C'* function T : R*"! — R such that

T0) =0=VTY(),

IVl o @n1y < ms,

mex, < B <myx, foranyx=(0,x,)€ B, (0)NQ,

B, (0)NnQ/r =B, (0) N {(x',x,) € R"| rx, > Y(rx')} if r e (0,1].

(4.6)

If r = 0, we define B, (0) N Q/r = B, (0) N {(x', x,) € R"| x, > 0}. See §2 for 5*. Here, y., ms, mg, m;
are positive numbers independent of z (€ 0Q2), x (€ B, (0) N Q). By [15, Lemma 6.38] and its remark,

Lemma 4.1. Under A3 and (4.6), there is an operator : C'(Br(0) N 0Q/r) — C'(Bx(0) N Q/r)
for any R,r € (0, 77*) such that if ¢ € C'(Bxx(0) N 0Q/r), then ﬁ(w) = on B3g;n(0) N 0Q/r and
||ﬁ(¢)||C|(B3R/2(O)mQ/,) < e Booynoayn, Where ¢ is a constant independent of R,r. Note space C'
above can be replaced by space C* for a € (0, 1).
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4.1. Homogenization

Lemma 4.2. Suppose 0 € 0Q and a sequence {€, e, We, Ye, Ye, Up e, K.} Satisfies

V(B VW) =0 inBi(0)NQ/r,

Ve =Ype on B1(0) N 0Q/r, @7
Upe(0) =0
el 2, 0n0/r0s VWb elle onoasr) < €,
and
€ €/re—>0, rc€(0,1)—>rel0,1], K, — K. (4.8)
Then,

(S1) ||E® rfﬂ Vi elli2ay sy are bounded independent of €, pie, we, re,
(S2) a subsequence of (Y., Y.} (same notation for subsequence) satisfies

Ve > Y in L*(B4/5(0) N Q/r) strongly
o) > gy, in C(Bys(0) N Q/r) strongly — as £ — 0,
ESY Ve — ¢ in L(Bys(0) N Q/r) weakly

—V'{:O in B4/5(0)OQ/T,
U=y on By5(0) N oQ/r,
(84) { =K. Vy.

(S3)

Here, K, . (see (4.3)) and K, are symmetric positive definite matrices; convergence of K,,_,. in (4.8)
is from (4.4); see Lemma 4.1 for I

If Bi(0) € Q/r, (S1)—(S4) are also true. In this case, Y. and Yy, in (4.7) and (S2) should be
neglected.

Proof of Lemma 4.2 is given in §8.

4.2. Interior region

Assume B(0) € Q.

Lemma 4.3. For any a € (0, 1), there are 6,,6, € (0, 1) (depending on «) with 6, < 0% and ¢ € (0, 1)
(depending on «, 6y, 6,) so that if v € (0, ) and 0 € [0y, 6,], any solution of

-V (B, V) =0 inBy(0), wo)
W20 < 1
satisfies
12
(f |W - ('//)39(0)|2 dz) < 6. (4.10)
By(0)
See §2f0r (lﬁ)Bg(O).
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Proof. Consider the elliptic equation
-V (K.Vy)=0 in By5(0), (4.11)

where K. is a constant symmetric positive definite matrix satisfying (4.4). Any solution ¢ of (4.11)
satisfies

et (s, p0n < cllllz2s, s 0y

where c is a constant. For any @’ € (o, 1), we have, by Theorem 1.2 in [13, page 70],

2 ’
f [ = Wpy0)| dz < 6 f *dz, (4.12)
By(0) Bys5(0)

if # (depending on «) is sufficiently small. Let us find 6,6, € (0, 1) such that 6, < 9% and (4.12) holds
for any 6 € [6,, 6,].
We claim (4.10). If not, there is a sequence {v, u,, w,, 6,, ¥, K,,, ., } satisfying (4.9) and

v—0, 6,—-60, K, —K,
2 a
J( v, - (¢V)Bgv(0)| dz > 6.
By, (0)

See (4.3) for K, ,,. Convergence of K, , in (4.13); is from (4.4). By Lemma 4.2, there is a
subsequence (same notation for subsequence) such that

(4.13)

, = in L*(B4/5(0)) strongl
{w W (Bys() strongly 1

EZ)E,;;VV"&V - «*V'ﬁ in LZ(B4/5(0)) Weakly

where K, is a constant symmetric positive definite matrix satisfying (4.4). Also, the limit function ¢
in (4.14) satisfies (4.11). Equations (4.12)—(4.14) imply

Jo . @ . 2 2 a
6 = lme" <limt |y, ~ W)s,0f dz= f ¥ = s | dz < & f yldz.
=0 =0 By, 0 By(0) Byys5(0)
We get a contradiction if 6, is sufficiently small. So, Lemma 4.3 is proved. O

Lemma 4.4. For any a € (0, 1), there are 6,6, € (0, 1) (depending on o) with 6, < 0% and € € (0, 1)
(depending on a, 0y, 0,) so that if € € (0, &), 6 € [01,6,], and k € N with E—Z < 6%, any solution of

-V. (EZZ,NVU) =0 in B1(0) (4.15)

satisfies
5 1/2
( f U - W0 ds) < NUem0n (4.16)
B (0)

Proof. This lemma is proved by induction for k. Let J = ||Ull|;2p,). For k = 1,if ¢ = % then ¢
satisfies (4.9) with v = €. (4.16) follows from Lemma 4.3. If (4.16) holds for some k € N with é < 6,
define

U(z) = J 07 (UE ) - U)p,0)  in Bi(0).
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Then, ¢ satisfies (4.9) with v = €/6*. By Lemma 4.3,

2 107

J( |'7” - (W)BH(0)| dz < 6. 4.17)
By(0)
Rewrite the left-hand side of (4.17) in terms of U in Bg+i(0) to see
2
2 U - W)s,..0)
)[ |¢ﬁ - ($)39(0)| dz :)( 7 92]5:1 dz. (4.18)
By(0) Byt 1(0)

(4.17) and (4.18) imply (4.16) for k + 1. This proves Lemma 4.4. O

Lemma 4.5. For any a € (0, 1), there is a number €: € (0, 1) (depending on «) such that if € € (0, €),
any solution of (4.15) satisfies

[Ulces, 50 < U2, 0 4.19)

where c is a constant independent of €, u, w.

Proof. Let 0y, 6,, g be the same as Lemma 4.4; define J = ||U||2(5,(0)) and & = %; let € < €;. For any

he (é, 6,], there are 6 € [6;,6,] and k € N such that 4 = 6*. Lemma 4.4 implies, for any h € (e—fo, 6],

f U - (U)g0|'dz < WI (4.20)
By (0)
Since € < € = %, take h = i—f € (£, 6,]. Define

0 €0

Y(2) =T (U(€) = (Upy0) 0 By (0).

By (4.20), y satisfies (4.9); with v = 1 and ||W||L2(Bz/go(0)) < c¢. By [15, Theorems 8.17 and 8.22], and
Lemma 3.5,

[Wlces,,0) < €, 4.21)

where ¢ is constant independent of €,u,w. By Theorem 1.2 in [13, page 70], inequality (4.21)
implies (4.20) true for i < é In other words, (4.20) holds for & < 6,, i.e.,

f U= (U)y 0 dz<ch® P forh <6, (4.22)
B;,(0)

where ¢ is a constant independent of €, u, w. For any z € B,»(0), we repeat the above argument to
see that (4.22) is also true with O replaced by any z € B;»(0). Theorem 1.2 in [13, page 70] implies
[Ulcos, 20y < ¢J, where c is independent of €, u, w. O

By Lemma 4.5, [15, Theorems 8.17 and 8.22], and Lemma 3.5, we conclude the following.

Corollary 4.6. There is a constant c independent of €,u,w such that any solution of (4.15)
satisfies (4.19).
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4.3. Boundary region
Assume 0 € 0Q2.
Lemma 4.7. For any a € (0, 1), there are 0,,0, € (0, 1) (depending on a,0Q) with 0, < é% and

& € (0,1) (depending on a, 0,,0,, 0Q) so that if €, £€(0,&), re(0,1), and 0 € [0, 6], any solution
of

-V. (Ezgﬂng) =0 in Bi(0O)NQ/r,
= B N o0Q
Y=y on B1(0) N 0Q/r, (4.23)
1 228, 0)n02/m IVl a0 < 1,
Y(0)=0
satisfies
1/2
( f |w|2dz) <. (4.24)
Bo(0)NQ/r
Proof. Consider the elliptic equation
-V (W*Vlﬁ) =0 in B4/5(0) N Q/l",
lﬂ = l//b on B4/5(0) N GQ/r, (425)

¥(0) =0,

where r € [0, 1] and K, is a constant symmetric positive definite matrix satisfying (4.4). See (4.6) for
the definition of By;5(0) N Q/r for r € [0, 1]. Any solution ¥ of (4.25) satisfies, by [15, Theorems 8.25
and 8.29],

Wl ce 8, 0pnam < C(||¢||L2(B4/5(0)mg/r) + ||VL//b||C(B4/5(0)maQ/r)) )

where @’ € (@, 1) and c is a constant depending on Q. By Theorem 1.2 in [13, page 70],

2 20/ 2 2
)g oy 1142 = 8 (WA o * IV, o) (4.26)
/] r

for sufficiently small 6 (depending on «, Q). Let us find 0,,6, € (0,1) such that §, < é% and (4.26)
holds for any 6 € [él, éz].
We claim (4.24). If not, there is a sequence {€, lte, We, Fe, O, Ye, Y.e, Ko, .} satisfying (4.23) and

£
Te

J[ Wel* dz > 6.
Bg (0)NQ/r¢

See (4.3) for K, .. Convergence of K, _, in (4.27); is from (4.4). By Lemma 4.2, there is a
subsequence (same notation for subsequence) such that

€=-—0, re—->r, 6.0, K,, — K,

(4.27)

e —> W in L*(By;5(0) N Q/r) strongly
W) — ¥ in C(By/5(0) N Q/r) strongly  as £ — 0, (4.28)
EY Ve — K.Yy in L2(Bys(0) N Q/r) weakly
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where K. is a constant symmetric positive definite matrix satisfying (4.4). The limit function
in (4.28) satisfies (4.25). Equations (4.26)—(4.28) imply

02&

lim 62" < lim Wol? dz = J( WI* dz
By (0)NQ/re By(0)NQ/r

e—0 e—0

IA

2a’ 2 2
6 (||w||L2(B4/5(O)mQ/r) + ”V’WHC(BMs(O)ﬂﬁQ/r))'
We have a contradiction if 6, is sufficiently small. So, Lemma 4.7 is proved. O

Lemma 4.8. For any a € (0, 1), there are 0,,6, € (0,1) (depending on a,0Q) with g, < é% and
& € (0, 1) (depending on a,6,,6,,0Q) such that if € € (0,&), 6 € [6,,6,], and k € N with £ < ¢, any
solution of

-V (EZ)Z’#VU) =0 inB(0)NQ,

U=U, on B(0) N 042, (4.29)
U©)=0
satisfies
2 1/2 .
( f Ufdz) < 0 (10N 0men + IVUslcas,orim) - (4.30)
By (0)NQ

Proof. This is proved by induction. Set J = WUl 28,0000 + IVUbllcs,0)noq)- Fork =1, 1f ¢ = % and
Uy = %, then ¢, Y, satisfy (4.23) with r = 1. So, (4.30) follows from Lemma 4.7. If (4.30) holds for
some k € N with £ < 6, define

W(z) = J'o*U@%z)  in Bi(0) N Q/6,
Wp(2) = J'07%UL6*z)  on B1(0) N 0Q/6".

Then,  and y,, satisfy (4.23) with r = ¢*. By Lemma 4.7,

f WiPdz < 6*. 4.31)
Bo(0)NQ/6k
Rewrite the left-hand side of (4.31) in terms of U in Bg+1(0) N € to see
J( lW*dz = J( |U|2 dz (4.32)
ByO)NQ/6* By O J2 62K
(4.31) and (4.32) imply (4.30) for k + 1. This proves Lemma 4.8. O

Lemma 4.9. For any a € (0,1), there is a number & € (0,1) (depending on a,d<) such that if
€ € (0, &), any solution of (4.29) satisfies

[Ulces, pone) < clUll2s,0000) + IV Uslles, 0noo), (4.33)
where c is a constant independent of €, u, w.
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Proof. él, éz, &, J are the same as Lemma 4.8; & = min{é"ﬁ €}. See Lemma 4.5 for €. There is a

3 b
constant ¢ independent of €, u, w so that, by (4.29)3,

Ubllcr,0yn00) < cllVUllcs,onon)- (4.34)

For any x € By, 5(0) N Q, define * = |x — x.| = minyego [x — y|, where x, € €, and define

((2)=U(x)-Ux,) inB0)NQ, 435)

5p(2) = Up(z) — U(x,) on B(0) N OQ. '
Then, ¢ and ¢, satisfy

-V (Efuz’uvf) =0 inB;(x,) NQ,

(= on By »(x,) N 0Q, (4.36)

{(x.) = 0.

Let ¢ be a constant independent of €, u, w, x, x.. Since 0, < é%, for any h € [é, 0], there are 6 € [0, 6,]
and k € N such that 4 = 6*. By Lemma 4.8, any solution of (4.36) satisfies

J( ((Pdy < h**J?  forh e [£,6,], (4.37)
By (x.)NQ

yo_ - 2 2
where J. = [I{ll28, pxone) + [IVEllcs pana). Next, consider case (1) 8* > 52 and case (2) B < 52
separately.

Case 1. For g* > 2. If p € [5, %], then B, (x) C B3 (x.). (4.37) with h = 3p implies

2
f £ = ©,0n0| dy <c Jf ICP dy < cp™ J7. (4.38)
Bp(0)NQ B3p(x.)NQ

Define

= EE 2
{ﬂ@) €2 By + ) in B,O).

() = LIBT (208" + %) = (D)
By (4.38) with p = %, we get [|[l125,(0)) < ¢. Also, ¢ satisfies

-V-(AVWY)=0 in B(0). (4.39)

Apply Corollary 4.6 to (4.39) to obtain [{/]ce, ,0) < ¢, which implies

2 X
J[ ¢ = Qp,0| dy < cp™ T forp < 5. (4.40)
By(x)

Case 2. For §* < 2. If p € [, 2], then B,(x) C By,(x.). (4.37) with h = 3p implies

2
f £ = O,0n0| dy <c Jf 1L dy < cp™ J7. (4.41)
Bp(0)NQ

B3,p(x.)NQ
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Again, we define

A) = E, (ey+x),
w() = e (e + 1) = Dbna) i Biyg(0) N (Q - {xh)/e,
V() = L€ (G(ey + 1) = (D mn) 0N Bijgy(0) N (AQ = {x))/e.
Then, ¢ satisfies
~V - (AVY) =0 in By/(0) N (Q - {x)/e,
{w =) on By/5,(0) N (9Q — {x})/e.

By (4.41) for p = &, W2, 0n@-tnre + IVblles, i onea-txne < ¢ By [15, Theorems 8.25
and 8.29] and Lemma 3.5,

[W]cas) e, n@-(x1y/e) < C- (4.42)
(4.42) implies that (4.41) holds for p < i. (4.34), (4.35), (4.38), and (4.40)—(4.42) imply that, if
x € By, 3(0)NQand p < 6,/3,

2 2
f U = (U)s,onal dy = f ¢ = Ds,conal dy < cp™ 7 < 0™ . (4.43)
B,(0)NQ B,(0)NQ
The Holder estimate of U follows from (4.43) and Theorem 1.2 in [13, page 70]. O

By [15, Theorems 8.25 and 8.29], Lemma 3.5, and Lemma 4.9, we conclude the following.

Corollary 4.10. There is a constant ¢ independent of €,u,w so that any solution of (4.29)
satisfies (4.33).

Lemma 4.11. Ifz € Q, g € (0,2], and 0 < h < R < 3, any solution of (4.29) satisfies

sup |U|l<c¢ ((R = 1) 7 |Ul|LaBrzing) + ||VUb||C(BR(z)mog)) ,
By()NQ

where c is a constant independent of €, u, w, h, R, z.

Proof. We trace the argument in [14, pages 80—82]. Let ¢ denote a constant independent of €, u, w, h, R.
First, consider z € 90Q case. By translation, we move z to the origin and assume (4.6). For any

6,7 € (0,1), find x € B,z(0) N Q so that [U*(x) > sup |U)> - 6. By Corollaries 4.6 and 4.10,
Ber(0)NQ

2 2
sup |UP < 0+|UF <0+2(Ws),  conal +2{UGK) = W)y, el
B:r(0)NQ
2a

IA

2 2
0+ 2|(U)B%(1—1)R(x)mg| + C|(1 — T)R [U]C(I(B%(I—T)R(x))

IA

2 2, 2 2
0+c|(Ws,,,_conal +cl =D (UM a0 + IV Ul g0
C

0+ ST

2 2
(U )BR(O)ﬂQ + C”VUb”C(BR(())m('jQ)a

where c is independent of 6. Let & — 0 and define 4 = 7R to obtain

sup |U| <

c
(R—h)} WU 2Broyne) + <V Usllcsronan- (4.44)
BL(0)NQ -
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So, we obtain Lemma 4.11 for 0 € 0Q and the g = 2 case.
To show Lemma 4.11 for 0 € 0Q and the g € (0, 2) case, we apply Young’s inequality to (4.44) to
see

c /2 24
sup [U] < —|U! sup U7 + clIVUpllcronon
ByONQ (R—h)s " "HEOMD g ona g
1
< = sup |Ul+ Ul zaBroyne) + €lIVUpllcaronan)- (4.45)

2 prone (R - )3

Lemma 4.11 for 0 € 0Q and the g < 2 case follows from (4.45) and Lemma 3.1 on [13, page 161].
Next, consider the Bg(z) N 02 = () case. Lemma 4.11 is proved by repeating the above process
without U,,. So, we skip the proof. O

By Corollaries 4.6 and 4.10 and Lemma 4.11, we obtain the following.

Corollary 4.12. If g € (0, 2], there is a constant ¢ independent of €, u, w so that any solution of (4.29)
satisfies
NUllce s, p0n) < Ul one + IV Uslles onan)-

5. Interior Lipschitz estimate

The section is to study the interior Lipschitz estimates for strongly elliptic equations. Assume
B;(0) € Q.

Lemma 5.1. For any a € (0, 1), there are constants 0, € € (0, 1) depending on a such that if v € (0, &),
any solution of

V- (B, V) =0 inBy(0), 5
Wm0y < 1
satisfies
sup [¢(2) = ¥(0) = (z + X,,(2))buy| < 6, (5.2)

2€By(0)

where by, = %;,L(EZ)Z,#VM/)BH(O) and K}, is the inverse matrix of K, ,. See §2 for (EZJ2qub)BG(O)
and (4.3) for K, ,,-

Proof. Consider =V - (K. Vy) = 0 in By4/5(0), where K. is a constant symmetric positive definite matrix
satisfying (4.4). By [15, Corollary 6.3], there is a § € (0, 1) such that, for any @’ € (a, 1),

sup [ (2) — ¥(0) — Z(Vi) 09| < 0" IWlliomyscop- (5.3)

By(0)

We claim (5.2). If not, there is a sequence {v, u,, wy, ¥, K., ., } satisfying (5.1) and

> 91+a- (54)

sup
2€By(0)

v—=0, Ky — K,
Yy(2) = Y, (0) = (z + ng,uv(z))bwv’ﬂwv

AIMS Mathematics Volume 9, Issue 10, 29135-29166.



29151

By Lemma 4.2, (5.1),, and Corollary 4.6, there is a subsequence (same notation for subsequence) of
{¢/,} such that, as v — 0,
vy oY in C(By/5(0)),
W LB, 0y) < 1,
Ez)zﬂ Vi, = K.Vy  in L*(By5(0)) weakly,
=V (K.Vy) =0 in By;5(0),

(5.5)

where K, is a constant symmetric positive definite matrix satisfying (4.4). By (5.4); and (5.5)3, we see

b, =Y, B, Vi de= (T, 56)

By(0)

By (5.4)2, (5.5), (4.2), (4.5), (5.6), and (5.3),

91+a < hm SUP l//v(z) - l,//v(O) - (Z + XZ,V,#V(Z))wa,pV,V
=0 zeBy(0)
= sup (@) —¢(0) ~ LTz < 07 Wllioys0-
2€By(0)
We get a contradiction. So, (5.2) is true. O

Lemma 5.2. For any « € (0, 1), there are constants 0, € € (0, 1) depending on « such that if € € (0, &),
kENwithé < 6~ and
-V- (EZZ#VU) =0 in B(0), (5.7)

K pek oo
there are constants ag,,, by, satisfying

€,k €,k
[ag,| + byl < ¢,
sup |U(2) - U(0) - eas, — (z + X5 ,(2)) b,

2€B (0)

< gix g (5.8)

where J = ||U|| =,y and c is a constant independent of €, i1, w.

Proof. For k = 1, (5.8) is from Lemma 5.1 with v = € and ¢ = % In this case, ai;,ll, = 0, bfl;,lﬂ =
(K;L(EZHVU ) By(0)- BY Lemma 3.8 and (4.4), Ibf;,l,ll < ¢J, where c is a constant independent of €, i, w.

If (5.8) holds for some k € N with é < 6, define

U(6'2) - U(0) — eall, — (02 + X5, ,(60)) b,

W(z) = K ] in B;(0).
By induction and (4.1), y satisfies (5.1) with v = €/6*. Apply Lemma 5.1 to obtain
s W@ = w(0) = (2 + X% ()b eser| < 6", (5.9)
where b, , /ot = ’K;L(EZZV&) B,(0)- Define
aght! = —X| (Ob,  and  bSST =bSE + 0D, e (5.10)

By (5.10) and (4.2), we obtain (5.8);. Rewrite (5.9) in terms of U in Bg:1(0) and apply (5.10) to
obtain (5.8),. O

By Lemma 3.8, (4.4), and [[Y/||z=~5,0) < 1, we see [b,,, | is a constant independent of €, u, w, k.
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Lemma 5.3. There is a number € € (0, 1) such that if € € (0, &), any solution of (5.7) satisfies
IE:  VUll=@,.0) < llUllL=@,0)- (5.11)

where c is a constant independent of €, u, w.
Proof. Let @, 0, €, J be the same as Lemma 5.2 and ¢ be a constant independent of €, u, w. Suppose

k € N satisfies 6! < < 6*. By Lemma 5.2,

Z€B, €/eg (0)

< c|65|””J. (5.12)
0

Define
U(ez) - UO0) — eall, — (ez + X, (2))bS,
v = T R

(4.1) and (5.12) imply that ¢ satisfies (5.1); with v = 1 and ||¢//||Loo(31/€0(0)) < c. [15, Corollary 6.3] and
Lemma 3.6 imply

in Bl/eo(0)~

IES: , V¥los, ey 0 < € (5.13)
(5.13), (5.8)1, and (4.2) imply (5.11), .

Remark 5.4. By [15, Corollary 6.3], Lemmas 3.6 and 5.3, we conclude any solution of (5.7)
satisfies (5.11).

6. Boundary Lipschitz estimate for elliptic solutions

Assume (4.6). Let d = d,---,d,), d; € [%,y*], and & ; = 11" [~d;, d;]. See (4.6) for y,. Find a
bell-shaped function 77 € C°(R ;) satisfying € [0,1] and 77 = 1 in IT!_ [-Z=, Z-]. For any r, € € (0, 1),
find W, , € H'(R ;N Q/r) satisfying

{—V (B (VWL +2)) =0 in%;nQ/r, 61

W, =(1-7) X, on AR ;N Q/r),

€/r

where &, is the unit vector in the n-th coordinate direction. See (4.5) for X, , and §2 for E* . Adjust
M W

the constant vector d of R g so thatif £(Y,, +]j) € Q ,/r for any j € Z", then | ;N £(Y + j)| is either 0
or [£|". Define

D = U (Y + ). 62)

Jezr; %(Yy,m‘*'j)cgzj mQ;,m/r

{D’ =R;NQr,

From (6.2), and the definition of Qf , in §1, we see

T=0 0D" N ID,
{’7 on 6.3)

D"\ DL C {x € Q /r| B = dist(x,0Q/r) < 25},
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Let G, (x, -) be a Green’s function of -V - (E%; V) in D, that is, a solution of
) w?u

{—Vy H(ES V,GEL(x, ) = 6(x,-) in D", 60

Gl(x,) =0 on 0D,
where 6(x, ) is the Dirac delta function with pole at x. So, Gg,(x,) € WD) exists uniquely [25].
Below is a local L™ estimate.

Lemma 6.1. Ifr, < € (0,1), x € D', and t > 0, any solution of

-V. (EZQ#ch) =0 inB(x)ynD", 65)
=0 on B;(x) N 0D"
satisfies
1/2
Wwsdf o (6.6)
B,()ND"

for some constant c independent of €, u, w, 1, X, 1.

Proof. To start, we assume x = 0 € D" and define {(z) = ¢(7z). Then, (6.5) implies
-V. (EZ;LV{) =0 inB{(0)ND"/t,
=0 on B1(0) N oD’ /t.

Note r_Et <lor ﬁ > 1. Ifft <1 (resp., 5 > 1), then Lemma 4.11 (resp., [15, Theorems 8.25 and 8.29]
and Lemmas 3.2 and 3.5) implies

N8, 000Dy < clil2(8y)nD7 /1) (6.7)

where c is a constant independent of €, u, w, r, t. By (6.7),

2 % 2
f C@rd < f ]
B (0O)ND"/t B,(0)nD"

So, (6.6) holds for the x = 0 case. If x # 0, (6.6) is proved by shifting x to the origin of the coordinate
system and repeating the above argument. O

1
2

le(O)] = 1£(0) < ¢

Lemma 6.2. If r, <, a € (0, 1), there is a constant c independent of €, u, w, r, @ such that any Green’s
function of (6.4) satisfies, for x,y € D,

|G2;¢(x’ )’)| < clx =y,

IGS, (6 Y| < clBHx =y, (6.8)
IGS (6 )| < clBHIB) x =y,
and
IV,GE” (x, )| < clx =y for |x—y| < 4, 69)
9,654,061 < BB~y for eyl 2 4% ©

See §2 for Br = dist(x,0Q/r).
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Proof. Let ¢ be a constant independent of €, i, w, r,@ and set p = |x — y|.

Step 1. For (6.8),. Take & € Ci'(B,/3(y) N D) and find ¢ € Hé(Z)”) satisfying

V- (B V) =¢ inD,
=0 on 0.
Note ¢ is solvable uniquely in Hé (D). By the Sobolev embedding theorem [15],
||V90||L2(z)-r) < C||§||LI%(D,) < CP||§||L2(Bp/3(y)nz)r)- (6.10)
By [25] and Lemma 6.1,

p(x) = fB G (x, 2)€(2) dz,

0 /3(MNDT
on
f |90 n=2 dZ
B /3()6)0@"

f 6l? dz
B,;3(x)ND" 73

0
on
f G, (x, 2)é(2)dz J( |cp "2dz
By/3 mNDr By/3 (x)ND"

2n 4-n
< ep 2 IVellipry < ep 2 I€llr28,500n00)- (6.12)

2 6.11)

1
2 2n
lp(x) < ¢ <c

(6.10) and (6.11) imply

-2

2n
<c

(6.12) and Lemma 6.1 imply

1
2
|GZL(x, y)| <c < cp®™.

]( IG5 (x, 2)I’dz
B,

0 i3()HNDT

So, (6.8); is proved.
Step II. For (6.8),3. Recall p = [x—y|. By (6.8),, it is enough to show (6.8), for case 5} < g. By (6.8)y,

IGoL(E Y S clx =y forany ¥ € Bys(x) N D,

Applying [15, Theorems 8.25 and 8.29], Lemmas 3.2 and 3.5, Corollary 4.12, and (4.6); to G5,(-,y)
in B,;3(x) N D", we obtain

IG5 (&9 < clB|*lx =y for any % € B,s(x) N D"

(6.8), follows by setting X = x. (6.8); is obtained by (6.8), and an argument similar to that for (6.8),.

So, we skip its proof.

Step I1I. For (6.9). If p =[x —y| < 475, then [15, Theorem 4.16], Lemmas 3.2 and 3.5, and (6.8); imply

1
|

, - -
IVyG5L (X e, pmnpn < o~ G, oy, umnony < clx =y

So, (6.9); holds. If [x — y| > 476, set t = £. By [15, Theorem 4.16] and Lemmas 3.2 and 3.5,

r

s -1
IVy G (X, e ponpn < 1 IGx, leesysmnpn- (6.13)

(6.9), follows from (6.13) and (6.8);. O
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Recall problem (2.1). Trace the argument of Lemmas 6.1 and 6.2 to see

Corollary 6.3. There is a constant c independent of €,u,w such that any Green’s function of
problem (2.1) satisfies

I, (%, }’)| <clx-y" for x,y € Q.

Lemma 6.4. Solution of (6.1) exists uniquely in H'(D"). For any r,€ € (0,1), there is a constant c
independent of €, u, w, r such that

€
W5 ll@n < -

Proof. Let ¢ denote a constant independent of €, u, w, .

Step 1. Unique existence of a solution of (6.1) in H'(D") is from the Lax-Milgram theorem [15]
and (4.2). If Yg,, = W, — x¢/ wn I DL (see (6.2)), then

V(B VYS,,) =0 in D"
€,r _ €,r €/r €1
Youn = Ww,ﬂ,n - Xw,n on 095"

By the maximal principle [15], (4.2), and (6.3),,

sup [Wgl, .l < <<+ sup (Wl (6.14)
D r apenoepr
Next, we show
W (0] < c— for x e D"\ D" (6.15)

If (6.15) is true, (6.14) and (6.15) imply Lemma 6.4.
Step II. We claim (6.15). The solution of (6.1) can be written as W, ,, = XZ,/L,, + U, + U,, where U;

is the solution of
{_V (B, VU) =0 inD,

U = -7X00 on 6D,

and U, is the solution of

-V (E (VU + VXJ], +2)) =0 inD",
U, =0 on 0D,

By (4.2), (4.5), and the maximal principle [15],

€
||X§,/Ln||Lw(Dr) + Uillre ) < ¢ (6.16)
Set Z/);f = {x € D' dist(x,0Q/r) < ¢}. Find 7 € C*(D") so that 7 € [0,1], 7 = 1 in Z)Z’E/r
IVitllcpe) < c£, and supp(if) € Dy, By (62) and (6.3), D"\ D' c Dy and B, (x) = K (x)
for x € DS, For any x € D"\ D;", by Green’s formula, (6.8), (6.3), and (6.4),
Us(x) = - f VG5 (6 VES, ( X (0) +2,) dy
D
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- f@ G ()L = HODES (VXL 00 +2,) dy

- [ VGRS, (VE,0)+) dy

- [ G vioEs, (V.00 + 2) d

3e/r

_f@ V, G5 (x IOES, (VX0 +2,) dy

3e/r

IfxeD"\ D andy € Z)Mr then By, B < c£. By (4.2)1, (6.8)13, and @ € (%, 1),

[ e v, (V2,0 + &) @y
D,r

3e/r

r
Sc—(f/\ +fA )|G”(x y)|dy
€ D;e/ NBae/r(x) Dy, Jr\Bae/r(x)

r €
<c- (f Ix — y™"dy + | Iz"f |x — ylz_”_zady) <c-.
€ B4e/r(\) ?e/ \B4e/r(r) r

Similarly, (4.2), (6.9), and a € (%, 1) imply

[ VGBS, (V00 + )

35/;

SC([A +fA )|VG”(xy)|dy
Z)SVE/YOB4E/r(x) D:%rg/r\B%/r(x)
I=n € pa-t 2-n—2a €
<c lx =yl dy+|—| - Ix — | dy) < c<.
B4e/r(x) r D.r r

35/,.\B4e/r(x)

So, [|Us||z=@pnpery < c£. Together with (6.16), we obtain (6.15). So, Lemma 6.4 is proved. O

Lemgla 6.5. Let 0, € be the same as in Lemma 5.1 and 0 € 0Q/r. There are constants 5,%’0 € (0,1
with 0 < 0, &) < € such that ife< ‘€, r€(0,1), and

V(S V) =0 inBi(0)NQ/r, 617
U=y on Bi(0) N 0Q/r,
and if
Yp(0) = dryr,(0) = 0 6.18)
1|28, 0)n2/r)> [VUBIces, 0noar < 1,
then
sup |yY(x) — (xn W‘ffy n(x)) wmer| < g
BAONQ/r

Here, x = (X1, , X1, X,) = (X', x,); @ € (0,1); 7 = 5, 0r(0) is the tangential derivative of Y, at
0; dyy e is the n-th component of W;,L(EZ;#VW BAO)NQ/rs ‘K,;L is the inverse matrix of K, (see (4.3)).
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Proof. The proof is similar to that of Lemma 5.1. Let r € [0, 1] and (¢, ;) satisty

-V (W*Vlﬂ) =0 in B4/5(0) N Q/r,
Y=y on By5(0) N oQ/r,
Yy € CH(B1(0) N AQ/T),  ¥i(0) = drpy(0) = 0,
where XK., is a constant symmetric positive definite matrix satisfxiﬂng (4.4). See (4.6) for the definition

of B45(0) N Q/r for r € [0, 1]. By [15, Theorem 4.16], there are 6 € (0, 2y and 7’ satisfying 7 < 7 < a
such that

sup |l// — X0 B, 00| < 9" (||W||L°°(B4/5(0)mg/r) + [Vl//h]ca(34/5(0)m69/r))- (6.19)

BAONQ/r

Fix a small @ € (0,1) so that (6.19) holds. Lemma 6.5 follows by a contradiction argument (see
Lemma 5.1), Lemma 4.2, Corollary 4.12 (for uniform convergence of solutions), and Lemma 6.4 (for
im0 (W5 all=y s0n0/n = 0). m|

Lemma 6.6. FHV,AE‘O, T, @ are the same as Lemma 6.5. If € < €, k € N with 2% <&, and
V- (B, VU)=0  inBi(0)NQ,

U=U, on B,(0) N 4Q, (6.20)
U(0) = 0rU,(0) = 0,

=1 e
there are constants dg;,, = satisfying

k-1 T
Aoy | < ¢,
k-1
o - 6.21
sup U = > 67 (x, + "W, ,(077x))d5),| < @7, (2D
By (0ONQ e ’ |

where J = ||U||r~5,0n0) + [VUslces,0)no0) and c is independent of €, i, w.

Proof. This is proved by induction. If k = 1, set ¢ = U/, Uy = U,/J. Then, Y and ¥, satisfy (6.17)
and (6.18). So, (6.21) holds by Lemma 6.5 with r = 1.~ Here, dZ;fL is the n-th component of
(K(;L(EZZ’#VU )B0na. By Lemma 3.8 and (4.4), IdZ’fL < c¢J, where c is a constant independent of

€, 4, w. Suppose (6.21) holds for some k with Eio < 5", and we define, in B{(0) N Q/gk,

k-1
W(x) = T gk (U(Ekx) - ZE’J’ (¢x, + W, (0 x) d;i),
j=0
k-1

(o) = TG (U@ - ) 070 3,4, )
j=0

By induction and (6.1), ¥ and ¥, satisty (6.17) and (6.18) with r = 6. Lemma 6.5 implies

<9, (6.22)

sup l//()C) - (-xn + WZizk,n(x)) dw,y,e,gk

Bx(0)NQ/6k
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where dw#,&gk is the n-th component of 7(;;(EZ§;V¢) BAO)NQF- By Lemma 3.8 and (4.4), |dw,,4,e,§k| is a

constant independent of €, u, w,gk. Rewrite (6.22) in terms of U in Bg..:(0) to obtain

k=1
Vi oiwer (i €j _PT Thegred -k |« kD T
sup U= > 67 (x, + /W (077 0)) A, — 67T (x, + W07 0)d,,, .z <0 J.
Bs1(0)NQ jz:(; ( a ) H ( H ) .60
If dZ;ﬁl = .7dw,y7€;§k, then (6.21) holds for k£ + 1. O

Lemma 6.7. Let 0 € 0Q and €, @ be the same as Lemma 6.6. Suppose € € (0,€), and any solution
of (6.20) satisfies

ES:  VUllop000) < € (WUllem0ne) + [VUblcrm ono) » (6.23)
where c is a constant independent of €, u, w.

Proof. By (4.6), there is a local coordinate x = (', x,,) so that
Bi0)NQ={(,x) € Q X +Ixf <1, x>TW&).

To obtain (6.23), it suffices to show, for any (0, x,,) € B;,2(0) N Q,

ES, VU, x,)

< ¢ (1Ull=s,00n0) + [VUpIcos,00n00)) - (6.24)

This is because one can derive (6.23) for any x € B;(0) N Q by moving the origin along the boundary
0Q and repeating the same argument as that for (6.24). .
Let 6, J, T be the same as Lemma 6.6; c is a constant independent of e, u, w; let k satisfy gl < =<

— — — — 0
¢“. If x = (0, x,) € B12(0) N Q, either (1) 16’ < x, <16 'and 1 <€ <kor(2) 0 < x, < 16
Case 1. For 16’ < x, < 16! and 1 < ¢ < k. By Lemma 6.6,

=2

sup UQ) = D67 (v, + OWE, (07y))d5],| < 0. (6.25)
Bg()_l (O)QQ jZO
Hence, by Lemma 6.4, (4.6)3, and (6.25),
sup U< cT ( PO B ey 9”') < BT, (6.26)
Bﬁ[,l 0)NQ =0
See §2 for 8*. Note € < &0 < 2616 < 2&x, < c&B". By (6.26),
sup |U| < cB'J. (6.27)
Bgx5(x)
Define
Aly) = E€ Yy + x
0) ijfff M x) in B1,5(0).
y(y) =B I UBY + x)
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By (6.27), Wl 0y < c. Also ¢ satisfies =V - (AVY) = 0 in B;;,(0)
||EZ)2#VU||Lw(BﬁX/4(X)) < cJ. This proves (6.24) for Case (1).

Case 2. For0 < x, < %5". By Lemma 6.6,

k-1
sup (UG = Y 67 (y, +T97WZ;9'[”(A01" ))ds! | < cJ g0+,
By Lemma 6.4 and (6.21),,
sup |[U(y)| < cJe.
Bz (0)nQ

Define _

Yy(x)=J 'e'U(ex)  in Bi(0) N Q/e,

Up(x) = T '€ 'Uy(ex) on Bi(0) N OQ/e.
By (6.28),

Yp(0) = 07y,(0) = 0,
|8, 00nse) + [Vi¥blces 0)nanse < .
By (6.1), ¢ and ¢, satisfy

V(B V) =0 in Bi(0) N Q/e,
=y, on B;(0) N 0Q/e.
By the definition of EZ); p (see §2), [15, Theorem 4.16], and Lemma 3.6,
IES: V¥l p0n0re < c.
This proves (6.24) for Case (2).

Remark 6.8. By [15, Theorem 4.16], Lemma 3.6, and Lemma 6.7, any
satisfies (6.23).

7. Proofs of Theorems 2.1 and 2.2

We now prove Theorems 2.1 and 2.2.

. By Remark 5.4,

(6.28)

O

solution of (6.20)

Lemma 7.1. There is a constant c independent of €,u,w such that any Green’s function for

problem (2.1) satisfies
VLI, o L+ VLG, (0] < clx — yi for x,y € Q.
Proof. If x,y € Q and x # y, set p = |x — y|. Consider

-V (ES, VIE,(x,)) =0 in B,p() NQ,
re,(x,) =0 on B,(y) N OQ.

(7.1)
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By [15, Theorem 4.16], Lemmas 3.2 and 3.5, Remarks 5.4 and 6.8, and Corollary 6.3,
c -n
IVI, . (X =B, 400n0) < /—)||FZ,,,1(X, Nizes,amne) < o' ™.
Since I';, (x,y) =I7, (v, x) for any x,y € Q [25], a similar argument as (7.2) gives

VLS, Co s, aone) < o'
So, (7.1) is proved.
Theorem 2.1 follows from Corollary 6.3 and Lemma 7.1.

(7.2)

Next, we prove Theorem 2.2. Suppose g € C*(0Q) for a € (0, 1), F € LP(Q) for p > n, and ® is a

solution of problem (1.1). Define

J(x) = fg I (e )FQ) dy.

By [25] and Lemma 7.1,
-V- (EZZ#Vgﬁ) =F in Q,
v=0 on 0€,
IV < cllF |-

Suppose U = @ — i, then

-V. (EZZ#VU) =0 inQ,
U=g¢g on 0Q).

By partition of unity, Remarks 5.4 and 6.8, and Lemma 4.11,

”EZ)z,MVU”L‘”(Q) < (U]~ + ligllcre@a)) < cllgllcre@a)-

Therefore,
VOl < c(IFllr@) + lIgllcreany))-

So, (2.2) follows from (7.3).

(7.3)

Next, consider problem (1.1) in each cell e(Y + j) for j € 7, (see §1). For convenience, let j = 0,

that 1s, consider
-V (EZZ’HV(I)) =F in €Y.

Let us define £(x) = 1®(ex) and ¢(x) = eF (ex). Then,

-V (B VO = ¢ in,
IESS Velleyy, = IES, Vs,
1-2
Bllrr) = € 7 IIFllrcer) for any p > n,
||¢||L2,n+2/l—2(y) = €/1||F||L2,n+2/1—2(6y) for any A1€(0,1).

By Lemma 3.6 and (7.5),

s A
B, VOliwer, = NESS Vellioy, < ¢ (IV2lmm) + Il + a1l

(7.4)

(7.5)
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= c(IVDller) + € TP IIFllrer) + lepl I Fllzrrzier) (7.6)

(7.3) and (7.6) imply

A
|m;ﬂ®m@3c@mwm+mwwm+WAwMﬂmmwme
jele

So, (2.3) is proved.
8. Conclusions

This work studies the regularity of Dirichlet problem for strongly elliptic equations with oscillatory
coeflicients in periodic heterogeneous media. Diffusion coefficients of the elliptic equations are highly
oscillatory functions. This work shows that the elliptic solutions are not oscillatory solutions and
the Lipschitz norms of the elliptic solutions are bounded above uniformly in periodic size and the
magnitude of the permeability of the media. These results are useful in the analysis of the regularity
of the solutions in porous medium problems. The regularity of Neumann problem for strongly elliptic
equations with oscillatory coefficients will be considered later.
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Appendix I

Proof of Lemma 3.5.

Let I'(z — y) denote the fundamental solution of the Laplace equation in R” [15] and D be a bounded

smooth domain. Define a single-layer and a double-layer potential as, for any smooth function  on
the boundary dD,

Fp(D() = j;D [z -y){(y) dS

Don(D)(2) = j; N V,I'(z - y)m, {() dS

for z € dD,

where i, is the unit vector outward normal to dD. By [12, pages 148—151], [7, page 226], and a similar
proof as [34, Lemma 3.2], we see
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Lemma 8.1. For any a € (0, 1), the linear operators

Fsp 1 CU(AD) — C' (D),
Dap : C*(OD) — CL* (D)

are bounded; I — m,% sy, for m, € [-2,2] are invertible in C*(6D); and

I llcre@py < cll = maDap)(Ollcro@n)

where I is the identity operator and c is a constant independent of m,.
If @i is the unit vector outward normal to 81, ,,, we define, for any y € 91Y,,, and any function £
mo 7

only,
u

{m) = lim (£ ), 1)) = 40) = -0, .

05l =V, -1, LOnd1(y) = 0,L(y) — 0,4()).

Proof of Lemma 3.5. Set J= Illz2(r\8y 5000 + K102, Gllr(r) and let ¢ be a constant independent of
U, w. By [15, Theorem 9.11], any solution ¥ of (3.3) satisfies

Il cteqpymonsrmop < ¢J fora € (0,1). (8.2)

Next, we find £ € C"%(B,/5(0)) by solving

—Aé/ = Kl/wz,,uG in 32/5(0),
(: =¥ on 832/5(0).

By [15, Theorem 9.13],
M|, 50y < ¢J- (8.3)

Define ¢ = W — £ in By5(0) and ¢(y) = ¢(uy), £(y) = £(uy) in Bys,(0). Then

LKLIU/ZI:l#V¢J . ﬁ = E on aiY'u,m’
$=0 on (?BSA(O),

where 1 is the unit vector normal to (9/% Yymand E = —LKL/Z“ NVZJ - 1. See §2 for Ki)/z" ) and (8.1) for
Laj, LKL/Z“ #VEJ. Note, by (8.2), (8.3), and the definition of single-layer potential,

(8.5)
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5 =
{”Ellca(a‘llyﬂ,m) < cw /JJ,

yﬁBZ/Sy(O)(an¢|632/5y(0))||Cl,a(aﬁ Yum) < CJ,
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where 3n$|632/sy(0) is the normal derivative of $ on 0B,5,(0). On the set 6/%Y#,m, by Green’s
formula, (8.4), and [12, pages 148—151],

¢ N " >,
5 T @BiY#,m((b) = Spa‘ll yﬂym(V(ﬁ— : nla‘ll y#,m),

5 —~ -~ ey
3~ Doty (®) = ~To1y,, (Vs Moty )+ Sy, O Blanyys,)-
Therefore,

(1 21 -wd)

2 e
l + 6()2 @6;4)/}“") ¢ P (ya‘ll Y,u,m(_E) + Q?532/5#(0)(6n(blaBz/sﬂ(O)))’

1+ w?

where / is the identity matrix. Apply (8.5) and Lemma 8.1 to see

—~ C - 7 -2
Bty < 5 (Elleraynn + %080 @ndlanssoN|cuan, ) < T+ 0. 8.6)
By the maximal principle, (8.4), and (8.6),
o o T -2
”¢”W1'°°(,l,”u~m) + ||¢||W1’°°(Bz/5,,(0)\}1y#,m) <cl(u+w™) (8.7)

By assumptions, (8.7), and the definition of a we see ||Vl 2,50y < cf, which implies Lemma 3.5.
Appendix II

Proof of Lemma 4.2.

Lemma 8.2. If €, u. € (0,1), we € (1,), &(x) = KZZ# (OV(x +X§,_, (0), and K. = lirr& Kooy then
&, converges to K, weakly in L*(Q).
Proof. By [9, Proposition 1.46], we only need to show

i€cllr2) < ¢ (independent of €),
8.8
() dx — | K.dx=DnQK., (8.8)

DNQ <0 Jbno
for any rectangle D. (4.2) implies (8.8);. By (2.9) in [9, page 35] and (4.2),
EMdx= Y €Kyt Y f £(x)dx — DN QK.
DNQ jexe) e Yer+hne -0
where We) ={jeZe(Y +j) cDNQ}and W(e) = {j € 2" e(Y +j) \ (DN Q) # 0}. Hence (8.8), is
true. So, we prove Lemma 8.2. O
Now, we give the proof of Lemma 4.2. (4.6)—(4.8) are assumed. The proof contains three steps.

Step L. (S1) is from (1) of Lemma 3.8. (S2) is from (S1), Lemma 4.1, (4.7), and the Sobolev embedding
theorem [15]. If ¢ € C7°(B4/5(0) NQ/r), then supp(¢) N 0Q/r = @ when = is small. Test (4.7); against
@ to see

€9)

f E°F VY.V dx =0. (8.9)
B1(0)NQY/re €
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29166

As € — 0, then (S2), (8.9), (4.7),, and Lemma 4.1 imply (S3).

Step II. Let D, = By5(0) N Q/r.,, D = By5(0) N Q/r, and ¢ € C;’(D). To show (S4), we consider the
identity

f E“ Vi, ¢V(x; + X/ Vdx = f E“ V(x; + X ) ¢V, dx. (8.10)
D, We e WesHesl D, We e WesHesl

See (4.5) for XZ/:;E’I.. If ri < dist(supp(p),0Q/r), the left-hand side of (8.10) satisfies,
by (4.7)1, (4.2), (4.5), (S2), and (S3),

[ Bz, vweovn e = - [ B VG, )0 d
D, WE e We,Me,l D, We,He We e\l
—>—f§x,~V¢dx=f{é¢dx, (8.11)
i—)O D D

where &; is the unit vector in the i-th coordinate direction in R”. Consider the right-hand side of (8.10).
If £ < dist(supp(9),0Q/r), then EY* = KZ/;; in supp(¢). By (4.1) and Green’s formula,

f E“ V(x;+ X" )¢V dx = —f K" V(x; + X Y.V dx
D, WeHe WesHest D, We He Westlesl

- f KZ/Z’; V(x; + X" WV dx - f KE/Z’; V(x; + X" e = Y)Vé dx.
D. e sMle €Hes D. e s e €o/er

w

Lemma 8.2, (4.3), and (4.8) imply

lim —f KZ/;; V(x; + XZ)/’; VP dx = - f‘K*E} UV dx = fe”,»qﬂ(*Vt// dx. (8.12)
p, “eke one D D

£
re -0

(4.2) and (S2) imply

f K{ V(i + X075 )We =)V dx| —— 0. (8.13)

De e'He €€ i_)

(8.10)—(8.13) imply f{ e dx = f?(*VI,D &:¢ dx. Since ¢ and i are arbitrary, this proves ¢ = K. Vy.
D D

So, we prove (S4).

Step III. To show (S1)—(S4) for B;(0) € Q/r case, we simply repeat the procedure in Steps I and II
and neglect ¥, , ¥,. Details are omitted.
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