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Abstract: Topological data analysis (TDA) has experienced significant advancements with the
integration of various advanced mathematical tools. While traditional TDA has primarily focused
on point cloud data, there is a growing emphasis on the analysis of graph data. In this work,
we proposed a spectral analysis method for digraph data, grounded in the theory of Hochschild
cohomology. To enable efficient computation and practical application of Hochschild spectral analysis,
we introduced the concept of truncated path algebras, along with key mathematical results that
support the computation of the Hochschild Laplacian. Our study established key mathematical
results, including a relationship between Hochschild Betti numbers and the Euler characteristic of
digraphs, as well as efficient representations of Hochschild Laplacian matrices. These innovations
enabled us to extract multiscale topological and geometric features from graph data. We demonstrated
the effectiveness of our method by analyzing the molecular structures of common drugs, such as
ibuprofen and aspirin, producing visualized Hochschild feature curves that capture intricate topological
properties. This work provides a novel perspective on digraph analysis and offers practical tools for
topological data analysis in molecular and broader scientific applications.
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1. Introduction

Topological data analysis (TDA), as a relatively new method, has gained increasing attention
across various fields. The key tool in TDA is persistent homology, introduced by G. Carlsson, H.
Edelsbrunner, and others [6, 18]. The main idea of persistent homology is to extract multi-scale
topological features that capture the geometric shape and topological structures of data. Persistent
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homology has increasingly found success in fields such as molecular biology [4, 30], materials
science [22, 23], image science [8, 20], and artificial intelligence [15, 28].

In recent years, with the rapid development of TDA, many advanced topological theories have been
applied to this field. These methods include cohomology rings [16], de Rham-Hodge theory [13],
Steenrod algebra [27], and others, which have enriched and expanded the scope of topological data
analysis. Overall, the development of TDA has progressed across three main areas: topological objects,
topological persistence, and topological features. In terms of topological objects, simplicial complex
models such as Vietoris-Rips complexes and Čech complexes are no longer sufficient for broader
applications, as they typically handle point cloud data but struggle with graph data. As a result, TDA
based on the topological theories like embedded homology of hypergraphs [26], path homology of
digraphs [14], and hyperdigraph homology [12] has emerged. In terms of topological persistence, new
theories have been developed, including multiparameter persistence [9, 10], zigzag persistence [7],
and Cayley-persistence algebra [3]. Regarding topological features, in addition to the aforementioned
theories, other forms of persistent homology have been introduced, such as persistent intersection
homology [2] and persistent interaction homology [24]. The persistent Laplacian, first introduced by
Guo-Wei Wei and his coauthors [13,29], marks an important advancement in topological data analysis.
It has since been widely applied in molecular biology, proving effective in capturing the complex
structural and functional properties of biomolecules.

Hochschild homology was initially introduced by Gerhard Hochschild [21] for studying the
cohomology of associative algebras. Over time, it has been developed as a tool for investigating
topological invariants of algebraic structures such as rings, Hopf algebras, Lie algebras, and more.
Today, Hochschild homology serves as a fundamental concept in algebraic topology and algebraic
geometry, providing insights into the internal structure and symmetries of these algebraic objects.
Given a quiver, the path algebra can be constructed in a standard way, allowing us to define Hochschild
homology on this path algebra, referred to as the path algebra of the quiver [17]. In particular,
Hochschild homology can be defined on digraphs. In [5], the authors introduced persistent Hochschild
homology using connectivity digraphs. Inspired by the above work, in this paper, we develop a
multiscale Hochschild spectral analysis on graph data.

Traditional simplicial complexes struggle to capture directed edges and multiscale topological
features, creating a gap in the application of TDA to directed graph data, which are increasingly
common in fields like molecular biology and network science. Motivated by these challenges, we
develop a spectral analysis framework for digraphs using Hochschild cohomology. This approach not
only addresses the computational inefficiencies of infinite-dimensional path algebras but also integrates
harmonic and non-harmonic information to provide a richer characterization of graph data.

In this paper, we introduce the Hochschild Laplacian, and propose a multiscale Hochschild spectral
analysis on digraphs. Hochschild cohomology offers a new perspective for analyzing digraph data;
however, homological information alone is often insufficient for fully characterizing the structure of
graph data. To address this, we introduce the spectral information of the Hochschild Laplacian to study
the multiscale topological features and geometric properties of digraphs. The Hochschild Laplacian is
of particular interest because its harmonic component contains Hochschild cohomology information,
while its non-harmonic component encodes the geometric information of digraphs in a metric space.
One challenge in computing and applying the Hochschild Laplacian is that the path algebra is often
infinite-dimensional. Instead of adopting the connectivity digraph construction from [5] to circumvent
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this issue, we consider the truncated path algebra, which is more computationally feasible and whose
Hochschild Laplacian construction also encompasses information from the traditional graph Laplacian.
Additionally, some mathematical results in this paper simplify the computation of certain Hochschild
Laplacian matrices. For specific molecules, we utilize the distances between atoms to construct
multiscale information, enabling the computation of their topological features and geometric properties
across scales. We demonstrate the application of this method on common drug molecules, such as
ibuprofen and aspirin, yielding rich topological and geometric insights. Compared to existing methods,
our approach combines computational efficiency with the ability to capture both harmonic and non-
harmonic features of digraphs, including higher-order topological and geometric information. These
advantages make it particularly suitable for analyzing complex graph structures, such as molecular
data.

The paper is organized as follows. In the next section, we review some fundamental concepts and
results related to Hochschild cohomology and path algebras. Section 3 outlines our main methods
and relevant mathematical results, including truncated path algebras, the Hochschild Laplacian, and
multiscale Hochschild spectra. In Section 4, we apply the Hochschild spectral analysis to drug
molecules. The final section provides a summary of the paper.

2. Hochschild cohomology and path algebra

In this section, we will review the basic concepts of Hochschild cohomology and path algebras.
From now on, K is assumed to be a field of characteristic zero.

2.1. Hochschild cohomology

Let A be an associative algebra over K. From now on, unless otherwise specified, the tensor product
⊗ denotes ⊗K, and Hom(−,−) denotes HomK(−,−) for simplicity. Let A⊗n = A ⊗ · · · ⊗ A︸       ︷︷       ︸

n

. For an

A-bimodule M, let Cn(A,M) = Hom(A⊗n,M). Then, we have homomorphisms di : Cn(A,M) →
Cn+1(A,M) given by

(d0m)(a) = am − ma,

(dn f )(a1 ⊗ · · · ⊗ an+1) = a1 f (a2 ⊗ · · · ⊗ an+1) +
n∑

i=1

(−1)i f (a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1)

−(−1)n f (a1 ⊗ · · · ⊗ an)an+1.

It can be proved that dn+1dn = 0 for n ≥ 0. The Hochschild complex C∗(A,M) is the cochain
complex

0 // M d0
// C1(A,M) d1

// · · ·
dn−2
// Cn−1(A,M) dn−1

// Cn(A,M) dn
// · · · .

The differential dn is called the Hochschild differential. Let us denote Zn(A,M) = ker dn and
Bn(A,M) = imdn−1. Then, we have Bn(A,M) ⊆ Zn(A,M).

Definition 2.1. The Hochschild cohomology of A with coefficients in M is defined by

HHn(A,M) = Zn(A,M)/Bn(A,M), n ≥ 0.
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In particular, we denote HHn(A) = HHn(A, A). The rank of the Hochschild cohomology, denoted
by βn

H(A,M) = rankKHHn(A,M) for n ≥ 0, is called the Hochschild Betti number. The following
lemma is obtained by a straightforward calculation.

Lemma 2.1. (i) HH0(A,M) = ZA(M) = {x ∈ M|xa = ax for any a ∈ A}.

(ii) Z1(A,M) = DerA(M) = {δ ∈ Hom(A,M)|δ(ab) = δ(a)b + aδ(b) for any a, b ∈ A}.

Example 2.1. (i) Let A = K[x] be a one-variable polynomial algebra. Then, the Hochschild

cohomology of A is HHn(A) �
{

A, n = 0, 1;
0, otherwise.

(ii) Consider the truncated polynomial algebra A = K[x]/(xk) for k > 1. Then, we have the

Hochschild cohomology HHn(A) =


A, n = 0;
(x)A, n > 0 is even;
A/(xk−1), n > 0 is odd.

The Hochschild cohomology generators offer critical insights into the algebraic and geometric
structures of a given algebra. In dimension 0, the Hochschild cohomology (HH0) corresponds
to the center of the algebra A, consisting of elements that commute with every other element.
This reflects the algebra’s symmetries. Geometrically, HH0 represents zero-dimensional topological
features of the associated manifold, such as fixed points or isolated structures that remain invariant
under transformations. In dimension 1, the Hochschild cohomology (HH1) captures the infinitesimal
deformations of the algebra A, describing how the algebra changes under small perturbations or
parameter adjustments. Geometrically, HH1 corresponds to vector fields on the manifold, which
represent directional flows or infinitesimal symmetries, illustrating how the structure can be locally
deformed. For higher dimensions (HHn, n ≥ 2), the generators encode more complex interactions
within the algebra, such as multi-variable deformations and nested relationships among elements of
A. Geometrically, these cohomology classes generalize the concepts of vector fields and symmetries
to higher dimensions, representing multi-directional flows, higher-order deformations, or constraints
within the manifold’s structure.

2.2. Hochschild cohomology of path algebra

A directed graph (digraph) G = (V, E) is a finite nonempty set V , called the vertex set, equipped
with an edge set E ⊆ V × V . For an edge e = (v, v′) ∈ E, we denote s(e) = v as the source of e,
and t(e) = v′ as the target of e. A path on G is a sequence of v0v1 · · · vk such that (vi−1, vi) ∈ E for
i = 1, 2, . . . , k. The length of a path γ = v0v1 · · · vk is defined as ℓ(γ) = k. The vertices can be regarded
as trivial paths of length zero.

Let K be a field, and let G be a digraph. The path algebraΩ(G) of G is the K-linear space generated
by all the paths on G, with the product defined as follows:

(v0v1 · · · vk) ∗ (w0w1 · · ·wl) =
{

v0v1 · · · vkw1 · · ·wl, if vk = w0;
0, otherwise.

Note that ℓ((v0v1 · · · vk) ∗ (w0w1 · · ·wl)) =
{

k + l, vk = w0;
0, otherwise.

Hence, Ω(G) is a graded algebra, and

we can express it as Ω(G) =
⊕
i≥0
Ωi(G). A cycle in G is a path v0v1 · · · vk of k ≥ 1 such that v0 = vk.
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Proposition 2.2. Let G = (V, E) be a digraph. Then, Ω(G) is a finite-dimensional associative algebra
if and only if G has no cycles.

Proof. If G has no cycles, then each path is of the form γ = v0v1 · · · vk for distinct vertices v0, v1, . . . , vk

in V . Since V is finite, the length of γ is at most N − 1, where N = |V | denotes the number of elements
in V . The number of directed paths of length no greater than N − 1 is less than (N + 1)N . Therefore,
we have dimΩ(G) < (N + 1)N .

On the other hand, if G contains a cycle γ = v0v1 · · · vk for some k ≥ 1, then there exists a family of
paths {γr}r≥1. Since γr , 0 for any r ≥ 1 and ℓ(γr) = kr, it follows that there are infinitely many paths
in Ω(G). Thus, Ω(G) is not a finite-dimensional algebra. □

Example 2.2. Let G = (V, E) be a digraph given by V = {v} and E = {(v, v)}. Then, Ω(G) = K[x]
is a polynomial algebra. The corresponding Hochschild cohomology is given by HHk(Ω(G)) ={
K[x], k = 0, 1;
0, otherwise.

Thus, the Hochschild cohomology HHk(Ω(G)) is an infinite dimensional algebra.

Example 2.3. Consider the digraph G = (V, E) given by

V = {v0, v1, v2}, E = {(v0, v1), (v0, v2), (v1, v2)}.

The corresponding path algebra Ω(G) is a K-linear space generated by v0, v1, v2, and v0v1, v0v2, v1v2.
The identity element is v0 + v1 + v2. The nontrivial product is given by

v0 ∗ v0v1 = v0v1 ∗ v1 = v0v1,

v0 ∗ v0v2 = v0v2 ∗ v2 = v0v2,

v1 ∗ v1v2 = v1v2 ∗ v2 = v1v2,

v0v1 ∗ v1v2 = v0v1v2.

By a direct computation, we have

HH0(Ω(G)) = K{v0 + v1 + v2}.

Let Cn(Ω(G)) = Cn(Ω(G),Ω(G)). We have the following cochain complex:

0 // Ω(G) d0
// C1(Ω(G)) d1

// C2(Ω(G)) d2
// · · · .

Let us compute

ker d1 = {δ ∈ Hom(Ω(G),Ω(G))|δ(ab) = δ(a)b + aδ(b) for any a, b ∈ Ω(G)}.

By considering the equation δ(vs ∗ vt) = δ(vs) ∗ vt + vs ∗ δ(vt), we have

δ(v0) = a1v0v1 + a2v0v2 + b1v0v1v2,

δ(v1) = −a1v0v1 + a3v1v2,

δ(v2) = −a2v0v2 − a3v1v2 − b1v0v1v2,
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where a1, a2, a3, b1 ∈ K. Similarly, by using the Leibniz rule on δ(vs ∗ v0v1) and δ(v0v1 ∗ vt), we have

δ(v0v1) = c1v0v1 + a3v0v1v2,

δ(v0v2) = c2v0v2 + b2v0v1v2,

δ(v1v2) = c3v1v2 − a1v0v1v2,

where c1, c2, c3, b2 ∈ K. Besides, we have δ(v0v1v2) = (c1 + c3)v0v1v2. For path γ1, γ1 on G, let us
denote γ1 · γ

♯
2 : Ω(G)→ Ω(G) as follows:

(γ1 · γ
♯
2)(γ) =

{
γ1, γ = γ2;
0, otherwise.

Then, Z1(Ω(G)) = ker d1 is a K-linear space generated by the elements

v0v1 · (v
♯
0 − v♯1) + v0v1v2 · (v1v2)♯, v0v2 · (v

♯
0 − v♯2), v1v2 · (v

♯
1 − v♯2) + v0v1v2 · (v0v1)♯,

v0v1v2 · (v
♯
0 − v♯2), v0v1 · (v0v1)♯ + v0v1v2 · (v0v1v2)♯, v0v2 · (v0v2)♯,

v1v2 · (v1v2)♯ + v0v1v2 · (v0v1v2)♯, v0v1v2 · (v0v2)♯.

On the other hand, a step-by-step calculation shows that imd0 is generated by

v0v1 · (v
♯
0 − v♯1) + v0v1v2 · (v1v2)♯, v0v2 · (v

♯
0 − v♯2), v1v2 · (v

♯
1 − v♯2) + v0v1v2 · (v0v1)♯,

v0v1v2 · (v
♯
0 − v♯2), v0v1 · (v0v1)♯ + v0v1v2 · (v0v1v2)♯, v1v2 · (v1v2)♯ + v0v1v2 · (v0v1v2)♯.

It follows that
HH1(Ω(G)) � K{v0v2 · (v0v2)♯, v0v1v2 · (v0v2)♯}.

Let K be a simplicial complex. The subdivision sd(K) of K is the simplicial complex whose p-
simplices are of the form σ0σ1 · · ·σp, where σ0 ⊂ σ1 ⊂ · · · ⊂ σp and σ0, σ1, . . . , σp ∈ K. We can
regard sd(K) as a digraph, whose vertex set is the set of simplices of K, and whose edge set consists of
pairs (σ, τ) where τ ⊆ σ. Let Λ(K) denote the path algebra associated with the digraph obtained from
sd(K). It is a classical result that the Hochschild cohomology of Λ(K) coincides with the simplicial
cohomology of K.

Theorem 2.3. [19] HH∗(Λ(K)) � H∗(K).

3. Hochschild Laplacians on truncated algebra

Digraphs are common mathematical objects and data structures. A natural idea presented in this
paper is to use Hochschild homology information as a topological feature of digraphs for data
analysis. As mentioned in Proposition 2.2 in the previous section, the path algebra of a digraph with
directed cycles is infinite-dimensional, which is unsuitable for computation and practical applications.
Therefore, we consider working with truncated path algebras to obtain Hochschild homology and
spectral information for data analysis. In this section, we will establish the theoretical foundation for
Hochschild homotopy and Hochschild Laplacians based on truncated path algebras.
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3.1. Truncated path algebra

Let G be a digraph. The N-truncated path algebra Ω≤N(G) of G is the K-linear space generated
by all paths of length not larger than N. The product of two paths γ · γ′ in Ω≤N(G) coincides with the
product in Ω(G) if ℓ(γ) + ℓ(γ′) ≤ N, and γ · γ′ = 0 if ℓ(γ) + ℓ(γ′) > N. A digraph is simple if it has
no loops or parallel edges. From now on, for the sake of simplicity, all the digraphs considered are
assumed to be simple.

Lemma 3.1. Let A = K{x1, . . . , xr} be a K-algebra with the multiplication given by

xix j =

{
xi, xi = x j;
0, otherwise.

Then, we have

HHn(A) =
{

A, n = 0;
0, n ≥ 1.

Proof. Let Aop be the opposite algebra of A, and let Ae = A⊗Aop be the enveloping algebra of A. Then,
we have a free resolution of A as follows:

· · ·
η // Ae λ // Ae η // Ae λ // Ae µ // A // 0.

Here, µ(x ⊗ y) = xy, λ(xi ⊗ x j) =
{

xi ⊗ x j, i , j;
0, i = j,

and η(xi ⊗ x j) =
{

xi ⊗ x j, i = j;
0, i , j.

By applying

the left exact functor HomAe(−, A), we have the sequence

0 // HomAe(Ae, A) λ∗ // HomAe(Ae, A)
η∗ // HomAe(Ae, A) λ∗ // · · ·

0 // A λ∗ // A
η∗ // A λ∗ // A

η∗ // · · · ,

where λ∗ = 0 and η∗ = id. By the well-known isomorphism HHn(A,M) = Extn
Ae(A,M), we have the

desired result. □

Proposition 3.2. Let G = (V, E) be a digraph. Then, we have

HHn(Ω≤0(G)) =
{
Ω≤0(G), n = 0;
0, n ≥ 1.

Proof. It is a direct result of Lemma 3.1. □

Theorem 3.3. Let G be a digraph. Then, we have

β0
H(Ω≤1(G)) = 1, β1

H(Ω≤1(G)) = 1 − χ(G).

Here, χ(G) denotes the Euler characteristic of G as a 1-dimensional simplicial complex.
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Proof. By definition, we have

HH0(Ω≤1(G)) = Z(Ω≤1(G)) = K{
∑
v∈V

v}.

Let V = {v1, v2, . . . , vk} and E = {e1, e1, . . . , vl}. Consider the following cochain complex:

0 // Ω≤1(G) d0
// C1(Ω≤1(G)) d1

// C2(Ω≤1(G)) d2
// · · · .

Note that ker d1 = Der(Ω≤1(G)). For any δ ∈ ker d1, we have δ(ab) = δ(a)b + aδ(b) for a, b ∈ Ω≤1(G).
By applying δ(vs ∗ vt) = δ(vs) ∗ vt + vs ∗ δ(vt) for the case s = t, we obtain that

δ(vs) =
∑

e j

as, je j, as, j ∈ K,

where the sum
∑

runs over all edges of the form (vs,−) or (−, vs). Here, we use the edge e to denote a
path of length 1 for simplicity. For s , t, if e j is of the form (vs, vt) or (vt, vs), we obtain

as, j + at, j = 0.

Thus, the basis of δ on v1, v2, . . . , vk is given by {vsvt · (vs − vt)♯}s,t, where vsvt or vtvs is an edge in E.
Note that

δ(vrvs ∗ vt) = δ(vrvs) ∗ vt + vrvs ∗ δ(vt) = δ(vrvs) ∗ vt.

Assume that δ(vrvs) =
k∑

i=1
bivi +

l∑
j=1

c je j for some bi, c j ∈ K. We have

k∑
i=1

bivi +

l∑
j=1

c je j = bsvs +

l∑
j=1

c je jvs.

It follows that bi = 0 for i , s. Similarly, by applying the Leibniz rule on vr ∗ vsvt, we obtain bi = 0 for

i , r. Since G is simple, we have r , s. It follows that bi = 0 for any i. Note that
l∑

j=1
c je j =

l∑
j=1

c je jvs

and
l∑

j=1
c je j = vr

l∑
j=1

c je j, and we obtain that

δ(vrvs) = crsvrvs, crs ∈ K.

Let S v denote the set of edges of the form (v,−) or (−, v). Hence, the linear space ker d1 is generated
by {vsvt · (vs − vt)♯}s,t for edges vsvt or vtvs and

e1 · e
♯
1, e2 · e

♯
2, . . . , el · e

♯
l .

Thus, we have

dim ker d1 = (
k∑

i=1

di) − l + l = 2l.
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Here, di denotes the degree of the vertex vi, meaning the number of edges connected to vi. On the other
hand,

dim imd0 = dimΩ≤1(G) − dim ker d0 = k + l − 1.

It follows that
β1

H(Ω≤1(G)) = dim ker d1 − dim imd0 = l − k + 1.

By the Euler formula, we have χ(G) = β0(G) − β1(G) = k − l. It follows that β1
H = 1 − χ(G). □

Example 3.1. Let G = Cm be a digraph with the vertex set and edge set

V = {v1, v2, . . . , vm}, E = {(v1, v2), . . . , (vm−1, vm), (vm, v1)}.

By Lemma 2.1, one has that

HH0(Ω≤1(G)) = K{v1 + v2 + · · · + vm}.

On the other hand, the space ker d1 = Der(Ω≤1(G)) is generated by the elements

v1v2 · (v
♯
1 − v♯2), . . . , vm−1vm · (v

♯
m−1 − v♯m), vmv1 · (v♯m − v♯1),

v1v2 · (v1v2)♯, . . . , vm−1vm · (vm−1vm)♯, vmv1 · (vmv1)♯.

Recall that d0 : Ω≤1(G)→ C1(Ω≤1(G)) is given by d0(a)x = xa − ax. It follows that

d0(vr)(x) =


−x, x = vrvr+1;
x, x = vr−1vr;
0, otherwise.

Here, we make the convention that v−1 = vm and vm+1 = v1 for convenience. Moreover, we have

d0(vrvr+1)(x) =


vrvr+1, x = vr;
−vrvr+1, x = vr+1;
0, otherwise.

It follows that imd0 is generated by

vr−1vr · (vr−1vr)♯ − vrvr+1 · (vrvr+1)♯, vrvr+1 · (v♯r − v♯r+1)

for r = 1, 2, . . . ,m. Thus, the Hochschild homology is

HH1(Ω≤1(G)) = K{[v1v2 · (v
♯
1 − v♯2)]}.

Here, [v1v2 · (v
♯
1 − v♯2)] is an equivalent class of the homology generator. The Euler characteristic of a

circle is 0. By Theorem 3.3, one has β1
H(Ω≤1(G)) = 1 − χ(G) = 1. This aligns with the result from the

above calculations.
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3.2. Hochschild Laplacians

In this section, the field K is taken to be the real number field R.
Let V and W be inner product spaces. Then the tensor product V ⊗W is also an inner product space,

with the inner product defined as:

⟨v1 ⊗ w1, v2 ⊗ w2⟩V⊗W = ⟨v1, v2⟩V⟨w1,w2⟩W ,

where v1, v2 ∈ V and w1,w2 ∈ W. For any map f ∈ Hom(V,W), the adjoint map f ∗ of f is defined as

⟨ f (v),w⟩ = ⟨v, f ∗(w)⟩, for any v ∈ V,w ∈ W.

Then, the space Hom(V,W) is an inner product space, with the inner product, known as the Frobenius
inner product, given by

⟨ f , g⟩Hom(V,W) = tr( f ∗g) = tr(g f ∗),

where f , g ∈ Hom(V,W) and tr denotes the trace of linear transformations.
From now on, for simplicity, all inner products will be denoted by ⟨−,−⟩. Let A be a finite

dimensional algebra over R. Suppose A is an inner product space with the inner product structure
⟨−,−⟩. Then, A⊗n and Cn(A) are also inner product spaces.

We have a Hochschild complex C∗(A) as follows:

0 // A d0
// C1(A) d1

// · · ·
dn−2
// Cn−1(A) dn−1

// Cn(A) dn
// · · · .

The n-th Hochschild Laplacian of A is

∆n = (dn)∗ ◦ dn + dn−1 ◦ (dn−1)∗, n ≥ 0.

Specifically, for n = 0, we have ∆0 = (d0)∗ ◦ d0. It is clear that ∆n is a self-adjoint and non-negative
operator.

Let G be a digraph. The truncated algebra Ω≤N(G) is a finite dimensional algebra. We endow
Ω≤N(G) with the inner product structure defined as follows:

⟨γ, γ′⟩ =

{
1, γ = γ′;
0, otherwise.

Thus, we can obtain the Hochschild Laplacian ∆n
N : Cn(Ω≤N(G)) → Cn(Ω≤N(G)) of truncated

algebra Ω≤N(G).

Theorem 3.4. Let G be a digraph. Then, we have

HHn(Ω≤N(G)) � ker∆n
N , n ≥ 0.

Proof. Consider the cochain complex

0 // Ω≤N(G) d0
// C1(Ω≤N(G)) d1

// · · ·
dn−1
// Cn(Ω≤N(G)) dn

// · · · .

It follows that ker∆n
N = ker dn ∩ ker(dn−1)∗. Note that the inclusion ι : (ker∆∗N , 0) ↪→ C∗(Ω≤N(G) is a

morphism of cochain complexes, which induces a K-linear map ι∗ : ker∆∗N → HH∗(Ω≤N(G)). Here,
ker∆∗N =

⊕
n≥0 ∆

n
N . If ι(x) is a coboundary in C∗(Ω≤N(G) for x ∈ ker∆n

N , we can write x = dn−1z for
some z ∈ Cn−1(Ω≤N(G). But x ∈ ker dn, so it follows that x = 0. Thus the map ι∗ is an injection. On the
other hand, for any cocycle y in Cn(Ω≤N(G)), by [25, Proposition 3.1], we can write y = y0 + dn−1y1 for
y0 ∈ ker∆n

N and y1 ∈ Cn−1(Ω≤N(G)). It follows that ι∗([y0]) = [y]. Thus the map ι∗ is a surjection. The
desired result follows. □
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3.3. The representation matrix of the Hochschild Laplacian

The Laplacian matrix of a graph is a fundamental tool for analyzing graph structure, connectivity,
and spectral clustering, with its eigenvalues and eigenvectors revealing essential properties of the graph.
It also has broad applications in signal processing, random walks, and optimization problems, making
it a crucial instrument for studying networks and graph data, as illustrated in recent studies [1]. Note
that a digraph G can be regarded as a graph if the direction of its edges is ignored. The corresponding
Laplacian matrix for this graph is referred to as the symmetric Laplacian of G.

Let G be a digraph. Let V = {v1, v2, . . . , vk} be the set of vertices in G, and let E = {e1, e2, . . . , el}.
We denote v = (v1, v2, . . . , vk)T and e = (e1, e2, . . . , el)T . Besides, let v♯ = (v♯1, v

♯
2, . . . , v

♯
k)

T and e♯ =
(e♯1, e

♯
2, . . . , e

♯
l )

T . Then the representation matrix D0 of the differential d0 : C0(Ω≤1(G)) → C1(Ω≤1(G))
is given by

d0
(

v
e

)
= D0


v ⊗ v♯
v ⊗ e♯
e ⊗ v♯
e ⊗ e♯

 .

Here, v ⊗ v♯ =


v1 · v♯
...

vk · v♯

, v ⊗ e♯ =


v1 · e♯
...

vk · e♯

, e ⊗ v♯ =


e1 · v♯
...

el · v♯

, and e ⊗ e♯ =


e1 · e♯
...

el · e♯

.
Theorem 3.5. Let G = (V, E) be a digraph. Suppose the symmetrization of G is a simple graph. Then
the representation matrix of ∆0

1 is given by

L0
1 =

(
LG 0
0 2I|E|

)
.

Here, LG is the symmetric Laplacian matrix of G, and I|E| is the identity matrix of ord |E|.

Proof. Similar to Example 3.1, the differential d0 : Ω≤1(G)→ C1(Ω≤1(G)) is given by

d0(vr)(x) =


−x, x = vrvs;
x, x = vsvr;
0, otherwise,

and

d0(vrvs)(x) =


vrvs, x = vr;
−vrvs, x = vs;
0, otherwise.

Hence, the representation matrix D0 is of the form
(

0 0 0 A
0 0 B 0

)
. Here, the matrices A and B are

given by
d0v = Ae ⊗ e♯, d0e = Be ⊗ v♯.

Note that the coefficients of er · e
♯
s in Ae ⊗ e♯ are zero. Let us denote AAT = (ai, j)1≤i, j≤k. It follows that

ai j =


deg vi, i = j;
−1, viv j or v jvi is an edge;
0, otherwise.
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Thus, AAT is the Laplacian matrix. Similarly, let BBT = (bi, j)1≤i, j≤l. One can obtain:

bi j =

{
2, i = j;
0, otherwise.

Hence, the matrix BBT is given by 2I|E|. □

Remark 3.1. Let G = (V, E) be a digraph. Recall that the Laplacian matrix of a graph is given by
L = D − M, where D is the degree matrix, and M is the adjacency matrix of G. Alternatively, the
Laplacian can be expressed using the incidence matrix. The incidence matrix N = (Ni j) is defined as
follows:

Ni j =


1, if e j originates from vi,

−1, if e j points to vi,

0, otherwise.

With this definition, the Laplacian matrix can be written as L = NNT .
Let G = (V, E) be a digraph. Define Ωi as the linear subspace generated by paths of length i. Then,

the space Ω≤N(G) admits a direct sum decomposition:

Ω≤N(G) =
N⊕

i=0

Ωi(G).

Consequently, we have
C1(Ω≤N(G)) =

⊕
i, j

Hom(Ωi(G),Ω j(G)).

This decomposition provides a clearer understanding of the differential d0.

Lemma 3.6. Let G be a digraph. The differential d0 : Ω≤N(G) → C1(Ω≤N(G)) has a decomposition

d0 =
N⊕

i=1
d0

i , where d0
i : Ωi(G)→ Hom(Ωi(G),Ωi(G)).

Proof. It can be obtained directly by definition. □

The above decomposition also provides a decomposition of the Hochschild cohomology

HH0(Ω≤N(G)) =
N⊕

i=1

HH0,i(Ω≤N(G)).

Here, HH0,i(Ω≤N(G)) denotes the subspace of HH0(Ω≤N(G)) spanned by the generators derived from
the elements of Ωi(G). We denote the rank of HH0,i(Ω≤N(G)) by β0,i

H,N , which is equal to the number of
zero eigenvalues of ∆0

N,i.

Proposition 3.7. Let G = (V, E) be a digraph. The Hochschild Laplacian ∆0
N : Ω≤N(G)→ Ω≤N(G) has

a decomposition ∆0
N =

N⊕
i=1
∆0

N,i, where ∆0
N,i = (d0

i )∗d0
i : Ωi(G)→ Ωi(G).
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Proof. By Lemma 3.6, we have that (d0
i )∗d0

j = 0 for any i , j. It follows that

∆0
N = (d0)∗d0 = (

N⊕
i=1

d0
i )∗

N⊕
i=1

d0
i =

N⊕
i=1

N⊕
j=1

(d0
i )∗d0

j =

N⊕
i=1

(d0
i )∗d0

i .

The desired result follows. □

Theorem 3.8. Let G = (V, E) be a digraph. The representation matrix of ∆0
N,0 is given by

N∑
i=1

L0
N,i, where

L0
N,i = (xrs)1≤r,s≤|V | is defined by

xrs =

degi(vr), if r = s,

−nrs, otherwise.

Here, degi(v) denotes the number of paths of length i that either begin from or end at v, and nrs

represents the number of paths of length i between vr and vs.

Proof. Let γ1, . . . , γki be the basis of Ωi(G). Note that the image of

d0
i : Ωi(G)→ Hom(Ωi(G),Ωi(G))

contracts to the space generated by γ1 · γ
♯
1, . . . , γki · γ

♯
ki

. Thus the representation matrix of d0
i is given by

d0
i


v1
...

vk

 = Di


γ1 · γ

♯
1
...

γki · γ
♯
ki

 ,
where v1, . . . , vk is the basis of Ωi(G), and Di = (ars)1≤r≤k,1≤s≤ki is given by

ars =


1, γs ends at vr;
−1, γs begins from vr;
0, otherwise.

It is worth noting that for a path γ that both starts and ends at v, we have d0
i (v)(γ) = 0. Thus, the

representation of ∆0
N,i is given by DiDT

i = (xrs)1≤r,s≤k, where

xrs =

degi(vr), if r = s,

−nrs, otherwise,

where degi(v) is the number of paths of length i that either begin or end at v, and nrs is the number of
paths of length i between vr and vs. The desired result follows from Proposition 3.7. □

The computation of the combinatorial Laplacian is generally more complex compared to the graph
Laplacian. The graph Laplacian is computationally the least expensive, as it primarily involves
operations on adjacency or degree matrices, which are typically of size n × n, where n is the number
of vertices. In contrast, the combinatorial Laplacian requires more computational resources due to
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the need for higher-dimensional boundary operators and larger matrices associated with simplicial
complexes. The size of these matrices depends on the number of k-simplices, which can grow
significantly in higher dimensions. The Hochschild Laplacian involves even higher-order algebraic
operations, leading to larger and more complex matrices. However, we have developed results such
as Theorem 3.5, Proposition 3.7, and Theorem 3.8, which offer efficient methods for computing the
Hochschild Laplacian in certain special cases. These results enable our computational approach to
achieve efficiency comparable to that of the graph Laplacian and combinatorial Laplacian.

For the Hochschild Laplacian in dimensions larger than 0, it is also possible to compute explicit
examples. Below, we provide a simple example to demonstrate the computation process.

Example 3.2. Let us consider the digraph G = (V, E) from Example 2.2. Note that Ω(G) = K[x] is a
polynomial algebra, and the Hochschild cohomology in this case is infinite-dimensional. To simplify,
we consider the truncated algebra Ω≤1(G) = K{1, x} with the relation x2 = 0. This results in the
following cochain complex:

0 // K{1, x} d0
// Hom(K{1, x},K{1, x}) d1

// Hom(K{1, x} ⊗ K{1, x},K{1, x}) d2
// · · · .

Now, consider the linear maps δ1, δx : K{1, x} → K{1, x} defined as follows:

δ1(a) =

1, if a = 1;
0, if a = x;

δx(a) =

0, if a = 1;
1, if a = x.

It is worth noting that the space Hom(K{1, x},K{1, x}) is a K-linear space spanned by the four
elements δ1, δx, xδ1, xδx, which are mutually orthogonal. Here, the actions of xδ1 and xδx are given
by (xδ1)(a) = xδ1(a) and (xδx)(a) = xδx(a), respectively. On the other hand, consider the linear maps
ω11, ω1x, ωx1, ωxx : K{1, x} ⊗ K{1, x} → K{1, x} defined as follows:

ω11(a ⊗ b) = δ1(a)δ1(b), ω1x(a ⊗ b) = δ1(a)δx(b),
ωx1(a ⊗ b) = δx(a)δ1(b), ωxx(a ⊗ b) = δx(a)δx(b).

The space Hom(K{1, x} ⊗ K{1, x},K{1, x}) is spanned by the following mutually orthogonal elements:

ω11, ω1x, ωx1, ωxx, xω11, xω1x, xωx1, xωxx.

Here, the action of xωuv for u, v ∈ {1, x} is defined by

(xωuv)(a ⊗ b) = xωuv(a ⊗ b).

Now, by definition, we have

d1(δ1)(a ⊗ b) = aδ1(b) + δ1(a)b − δ1(ab).

It follows that

d1(δ1)(a ⊗ b) =


1, if a = b = 1;
x, if a = 1, b = x;
x, if a = x, b = 1;
0, if a = b = x.
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Thus, we obtain:
d1(δ1) = ω11 + xω1x + xωx1.

Similar calculations yield

d1(δx) = 2xωxx,

d1(xδ1) = xω11,

d1(xδx) = 0.

Thus, we can express the action of d1 in matrix form as

d1


δ1

δx

xδ1

xδx

 =


1 0 0 0 0 1 1 0
0 0 0 0 0 0 0 2
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0





ω11

ω1x

ωx1

ωxx

xω11

xω1x

xωx1

xωxx


.

Note that d0 = 0 on K{1, x}. It follows that the representation matrix of the Laplacian ∆1
1 :

Hom(K{1, x},K{1, x})→ Hom(K{1, x},K{1, x}) is
3 0 0 0
0 4 0 0
0 0 1 0
0 0 0 0

 .
The corresponding spectrum is Spectra(∆1

1) = {0, 1, 3, 4}.

3.4. Multi-scale Hochschild spectra

A filtration of digraphs is a family of digraphs {Gε}ε∈R parameterized by a variable ε ∈ R, such that
for any ε ≤ ε′, the digraph Gε is a subgraph of Gε′ . More precisely, for any real numbers ε0 ≤ ε1 ≤

· · · ≤ εm, there exists a sequence of digraphs

Gε0 ↪→ Gε1 ↪→ · · · ↪→ Gεm .

This filtration of digraphs captures the multi-scale structure of the digraph.
Let G be a digraph embedded in Euclidean space, meaning that the vertices of the digraph are points

in Euclidean space and the edges are line segments. We define a function ℓ : E → R by ℓ(e) = ∥e∥2,
where ∥ · ∥2 denotes the L2-norm. For any real number ε, we define the set Eε = {e ∈ E | ℓ(e) ≤ ε}. This
gives rise to the subgraph Gε = (V, Eε) of G. It is clear that the sequence of digraphs {Gε}ε∈R forms a
filtration.

Given a digraph G, recall that the number of zero eigenvalues of the Hochschild Laplacian
∆n

N : Cn(ΩN(G)) → Cn(ΩN(G)) equals the Betti number of the corresponding Hochschild homology
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HHn(ΩN(G)) (Theorem 3.4). The number of zero eigenvalues of the Hochschild Laplacian corresponds
to the harmonic feature. Furthermore, the non-zero eigenvalues of the Hochschild Laplacian ∆n reflect
its non-harmonic information. Specifically, the harmonic part refers to the component that corresponds
to the most stable or long-lasting features of the graph structure, often capturing the core topological
structure. The non-harmonic part, on the other hand, represents more transient features, highlighting
the finer details and variations that are not captured by the harmonic part. In particular, the smallest
non-zero eigenvalue is a crucial non-harmonic feature and serves as a key geometric characteristic in
our applications.

Let {Gε}ε∈R be a filtration of digraphs. Fix an integer N ≥ 0. We can define the function βn
H,N : R→

R given by βn
H,N(ε) = βn

H,N(Ω≤N(Gε)) for each n ≥ 0. This function provides a Betti number for each
scale, characterizing the multi-scale topological information of the filtration of digraphs. Additionally,
we can consider the smallest non-zero eigenvalue of the Hochschild Laplacian to define the function
λn

H,N : R → R, given by the smallest non-zero eigenvalue of the Hochschild Laplacian ∆n
N on Gε for

each n ≥ 0. The two functions βn
H,N and λn

H,N are the main topological features we develop in this work
for data analysis. For computational convenience, the functions β0

H,N and λ0
H,N , or more specifically,

the functions β0,i
H,N and λ0,i

H,N , are used to compute Hochschild features. Here, λ0,i
H,N denotes the smallest

nonzero eigenvalue of the Laplacian component ∆0
N,i.

Example 3.3. Consider the finite set of points X in the Euclidean plane given by

P1 (0, 1) , P2

 √3
2
,

1
2

 , P3

 √3
2
,−

1
2

 , P4 (0,−1) , P5

− √3
2
,−

1
2

 , P6

− √3
2
,

1
2

 .
The digraph G is given in Example 3.3. Note that the algebra Ω(G) is infinite-dimensional. We

consider the truncated algebra Ω≤2(G). The filtration parameter changes at the values ε = 1 and
ε =
√

3. By a direct calculation, the representation matrix of ∆0
N,0 at ε = 1 is given by

4 −1 −1 0 −1 −1
−1 4 −1 −1 0 −1
−1 −1 4 −1 −1 0
0 −1 −1 4 −1 −1
−1 0 −1 −1 4 −1
−1 −1 0 −1 −1 4


.

The spectra of ∆0
N,0 is given by

Spectra(∆0
N,0) = {0, 4, 4, 4, 6, 6}.

Similarly, we can obtain the spectra of ∆0
N,1 as follows:

Spectra(∆0
N,1) = {0.693, 12, 12, 12, 17.307, 18}.

Thus, we obtain the functions β0,0
H,2 and λ0,0

H,2, as shown in Figure 1. The simplicity of the curves is due
to the high symmetry of the digraph in this example. For more complex structural applications, we can
observe greater variability in the functions.
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P1

P2

P3

P4

P5

P6

Figure 1. The left figure is the digraph in the Euclidean plane in Example 3.3, and the right
figure shows the functions β0,0

H,2 and λ0,0
H,2 that represent the Hochschild topological features.

3.5. Comparison with persistent homology and multi-scale graph spectra

To further highlight the strengths of the multi-scale Hochschild spectra, we provide a comparative
analysis with traditional persistent homology and multi-scale graph spectra approaches across three
key aspects: directed edge support, topological and geometric information, and high-dimensional
information, as summarized in Table 1.

Table 1. Comparative analysis of persistent homology, graph Laplacian, and multi-scale
Hochschild spectra

Aspect Persistent Homology Multi-scale Graph Spectra Multi-scale Hochschild Spectra
Directed Edge Support Not supported Undirected graphs Supports directed edges
Topological and Geometric Information Harmonic only Harmonic and non-harmonic Harmonic and non-harmonic (via multi-scale Hochschild spectras)
High-Dimensional Information Supports high dimensions Limited to 0th and 1st dimensions Supports high dimensions

First, in terms of directed edge support, traditional persistent homology relies on simplicial
complexes such as Vietoris-Rips and Čech complexes, which are primarily designed for point clouds
and undirected graphs. As a result, they cannot represent directed edges, making them unsuitable for
digraph analysis. Similarly, the multi-scale graph spectra is defined for undirected graphs and fails to
account for edge directionality. In contrast, the multi-scale Hochschild spectra leverages Hochschild
cohomology, enabling the direct incorporation of directed edges into the analysis. This makes it
particularly effective for studying digraph data.

Second, regarding topological and geometric information, traditional persistent homology
exclusively captures harmonic information, focusing on stable topological features while neglecting
non-harmonic components. On the other hand, the multi-scale graph spectra combines both
harmonic and non-harmonic information, offering insights into the spectral and geometric properties
of undirected graphs. The multi-scale Hochschild spectra advances this further by integrating both
harmonic and non-harmonic information within the framework of Hochschild cohomology. This
integration allows for a richer characterization of the topological and geometric features of digraphs,
making it highly suitable for analyzing complex directed networks.

Finally, when considering high-dimensional information, the multi-scale graph spectra is restricted
to the 0th and 1st dimensions, limiting its applicability to higher-dimensional analysis. In contrast,
the persistent homology and multi-scale Hochschild spectra support high-dimensional analysis by
utilizing truncated path algebras, balancing computational efficiency with the ability to extract complex
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topological features.
These comparisons demonstrate the unique advantages of the multi-scale Hochschild spectra over

traditional approaches, particularly in its capacity to handle directed edges, integrate harmonic and
non-harmonic information, and efficiently analyze high-dimensional structures.

4. Applications

In the previous sections, we explore Hochschild cohomology of path algebra and multi-scale
Hochschild spectra. The harmonic information provided by the multi-scale Hochschild spectra
is reflected in the Betti numbers, while its non-harmonic information is captured by the positive
eigenvalues. In this section, our main work is to demonstrate how to extract Hochschild characteristics
from the three-dimensional structure of molecules. We will not perform a deeper analysis of these
Hochschild characteristics in this work, as there are many powerful methods for analyzing topological
features, including deep learning and natural language models [11].

In this work, we will consider two of the most common drugs: ibuprofen (C13H18O2) and aspirin
(C9H8O4). Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) commonly used to reduce
pain, fever, and inflammation in conditions such as headaches and arthritis. Aspirin, also an NSAID,
is used to relieve pain and inflammation and, in low doses, helps reduce the risk of heart attacks and
strokes due to its blood-thinning effects.

As shown in Figure 3(a), green balls represent hydrogen atoms, brown balls represent carbon atoms,
and blue balls represent oxygen atoms. Based on the electronegativities of these atoms, carbon: 2.55,
hydrogen: 2.20, and oxygen: 3.44, we can determine the directed edges in the graph, with the direction
always pointing from the atom with lower electronegativity to the atom with higher electronegativity.
For any filtration parameter ε, we connect atoms within a distance of ε with directed edges, resulting
in a digraph. As the filtration parameter increases, we obtain a filtration of digraphs. Subsequently, we
compute the Hochschild cohomology and Hochschild Laplacian to obtain the Hochschild Betti number
β0,0

H,N and the smallest positive eigenvalue λ0,0
H,N . Here, we typically use N = 2, indicating the use of the

2-truncated path algebra.

Figure 2. (a) The graphical representation of benzene and the filtration of digraphs
derived from the benzene structure; (b) the Hochschild Betti number β0,0

H,2 of aspirin and
the Hochschild smallest positive eigenvalue λ0,0

H,2 of benzene.

As shown in Figure 2(a), the benzene molecule, composed of 6 carbon atoms and 6 hydrogen atoms,
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develops directed edges between atoms as the filtration parameter increases. At a parameter value of
approximately 1.086 Å, directed edges from hydrogen atoms to carbon atoms appear. At around 1.395
Å, two directed edges emerge between each pair of adjacent carbon atoms, pointing to various carbon
atoms. At approximately 2.154 Å, six new directed edges from hydrogen atoms to carbon atoms are
formed. This process continues, resulting in a filtration of digraphs. Figure 2(b) shows the variation of
the Hochschild Betti number and the smallest positive eigenvalue for benzene.

For ibuprofen and aspirin, we can similarly obtain their corresponding filtrations of digraphs,
analogous to the treatment of the benzene structure, and compute their Hochschild topological features.
Figures 3(a) and (b) provide graphical representations of ibuprofen and aspirin, respectively. Figures
3(c) and (d) show the Hochschild topological features for ibuprofen and aspirin, namely the Hochschild
Betti number β0,0

H,2 and the smallest positive eigenvalue λ0,0
H,2. For more general values of N, our

calculations follow a similar approach; however, computations for higher-dimensional Laplacians
become more complex. Therefore, the algorithm still has potential for improvement.

Figure 3. (a) The graphical representation of ibuprofen; (b) the graphical representation
of aspirin; (c) the Hochschild Betti number β0,0

H,2 of ibuprofen and the Hochschild smallest
positive eigenvalue λ0,0

H,2 of ibuprofen; (d) the Hochschild Betti number β0,0
H,2 of aspirin and the

Hochschild smallest positive eigenvalue λ0,0
H,2 of aspirin.

In our computations, we calculated the filtration parameter from 0 to its maximum value, which
ensures that any two points are connected. The filtration range shown in Figures 2 and 3 is chosen
from 0 to 5 Å to highlight the variations in Betti numbers, which are primarily observed within the 1–
1.5 Å range. The computational cost for calculating the Hochschild spectra for ibuprofen and aspirin
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is approximately 2.05 seconds and 0.38 seconds, respectively. These computations were performed
on a personal laptop equipped with an AMD Ryzen 5 5600H processor, Radeon Graphics, and 16 GB
of RAM. We believe these computation times are reasonable for larger datasets and can be further
optimized when executed on a dedicated server with higher computational resources.

5. Conclusions

The development of topological data analysis has become increasingly advanced, with a growing
array of topological and geometric methods being explored. It is challenging to determine the absolute
effectiveness of these methods, as their performance can vary depending on the dataset and application
context. Generally, a method is considered effective if it meets at least two criteria: first, it
should have a suitable framework for modeling the dataset; second, it should ensure computational
efficiency. The multiscale Hochschild spectral analysis developed in this work meets both of these
criteria. This method is applicable to digraph data and can even model certain weighted point cloud
data. Additionally, the corresponding Hochschild spectral information is relatively straightforward to
compute.

In this work, we introduce the Hochschild Laplacians for digraphs and propose a Hochschild
spectral analysis for digraph data. Compared to the classical spectral analysis of graphs, Hochschild
spectral analysis offers a new perspective based on a different mathematical theory. We begin by
providing an overview of Hochschild cohomology and path algebras for digraphs. For digraphs with
directed cycles, the path algebra is infinite-dimensional, as shown in Proposition 2.2. To address this,
we consider truncated path algebras, which are finite-dimensional. We present some interesting results
on truncated path algebras, such as the relationship between the 1st Hochschild Betti number and
the Euler characteristic of the digraph, as discussed in Theorem 3.3. Additionally, we introduce the
Hochschild Laplacian, whose harmonic spectral information aligns with Hochschild cohomology, as
stated in Theorem 3.4, while its non-harmonic components provide further geometric insights. We
also compute the matrix representation of the Hochschild Laplacian and find connections between
this matrix and the classical graph Laplacian, with details provided in Section 3.3. Furthermore, we
define and compute the multiscale Hochschild spectra. Finally, we apply this method to calculate the
Hochschild Betti numbers and the smallest positive eigenvalue for common drug molecules such as
ibuprofen and aspirin, which serve as visualizable topological features. The proposed framework not
only extends Hochschild cohomology to a practical tool for digraph analysis but also achieves a balance
between computational feasibility and the richness of extracted features, demonstrating its potential in
both theoretical and applied domains.

This work introduces a novel method for processing graph data; however, it has certain limitations
that require further refinement. From a theoretical perspective, extending Hochschild cohomology into
a persistent cohomology framework remains challenging, largely because Hochschild cohomology is
not functorial with respect to path algebras. In terms of applications, while we have demonstrated the
potential of Hochschild spectral analysis in extracting features of molecular structures, its application
to concrete datasets through topological feature analysis remains underdeveloped. Future research will
address these challenges. Additionally, we focus on further optimization of computational methods for
handling large-scale digraphs. Moreover, integrating the multi-scale Hochschild spectra with machine
learning models for feature extraction and prediction opens new possibilities for interdisciplinary
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applications, bridging topology and data-driven approaches. Consequently, there is significant scope
for further exploration of Hochschild spectral analysis, and we anticipate that it will provide valuable
insights in both theoretical and applied topology.
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