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Abstract: In this paper, we study a particular n × n matrix A = [aki j]
n
i, j=1 and its Hadamard inverse

A◦(−1), whose entire elements are exponential form ak = e( k
n ) = e

2πik
n , where ki j = min(i, j) + 1. We

study determinants, leading principal minor and inversions of A, A◦(−1). Then the defined values of
Euclidean norms, lp norms and spectral norms of these matrices are presented, rather than upper and
lower bounds, which are different from other articles.
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1. Introduction

Matrix theory is widely used in a variety of areas including computing science, applied mathematics,
neural network nonlinear system and others. Recently, studying the determinants and some norms
of particular matrix has been a hot and important topic in matrix theory[1]. From past to present,
different types of matrices have been defined and studied properties of various properties, such as
determinants, inverse, norms have been studied by some mathematicians. For example, Akbulak [2]
studied Hadamard exponential Hankel matrix of the form e◦Hn = [ei+ j]i, j and presented lp norm,
two upper bounds for spectral norm and eigenvalues of this matrix. By the identities of Gamma
function, Bozkurt [3,4,5] determined lp norm of Cauchy-Toeplitz matrices and Cauchy-Hankel
matrices respectively. Civciv [6] established a bound for spectral and lp norms of the Khatri-Rao
products of Cauchy-Hankel matrices. Solak [7] studied the matrix of the form B = [bi j], where
bi j = a + min (i, j) + 1 and obtained its Euclidean norm and inversion of B. A few years ago, these
matrices attracted the attention of C. Moler, who had experimentally discovered that most of their
singular values are clustered near π. The authors in [8] studied some bounds for the spectral norm of
particular matrix of the form A = [amin (i, j)]n−1

i, j=0, where a is a real positive number.
Inspired by above articles, we study a particular matrix A = [aki j]

n−1
i, j=0 and its Hadamard inverse

A◦(−1), where ki j = min (i, j) + 1, ak = e( k
n ), and e(x) = e2πix. Particularly, e(n) = 1, and |e(x)| = 1.

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2022458


8225

Hadamard inverse of A is

A◦(−1) =

 1
e( k

n )


n×n

=

[
e
(
−k
n

)]
n×n

.

Two of these matrices are called Min and Hadamard inverse matrices as following, respectively, for
more information, we can see reference [3],

A =



e(1
n ) e(1

n ) e(1
n ) · · · e( 1

n ) e( 1
n )

e( 1
n ) e(2

n ) e(2
n ) · · · e( 2

n ) e( 2
n )

e( 1
n ) e(2

n ) e(3
n ) · · · e( 3

n ) e( 3
n )

...
...

...
...

...

e( 1
n ) e(2

n ) e(3
n ) · · · e( n−1

n ) e( n−1
n )

e( 1
n ) e(2

n ) e(3
n ) · · · e( n−1

n ) e( n
n )


n×n

, (1.1)

A◦(−1) =



e(−1
n ) e(−1

n ) e(−1
n ) · · · e(−1

n ) e(−1
n )

e(−1
n ) e(−2

n ) e(−2
n ) · · · e(−2

n ) e(−2
n )

e(−1
n ) e(−2

n ) e(−3
n ) · · · e(−3

n ) e(−3
n )

...
...

...
...

...

e(−1
n ) e(−2

n ) e(−3
n ) · · · e(−(n−1)

n ) e(−(n−1)
n )

e(−1
n ) e(−2

n ) e(−3
n ) · · · e(−(n−1)

n ) e(−n
n )


n×n

. (1.2)

Looking at above matrices we see that these matrices are symmetric, so they are normal matrix, and
the positions of the each entries make a “Γ pattern”.
For any m × n matrix A, the lp norm of A is defined by

‖A‖p =

 m∑
i=1

n∑
j=1

|ai j|
p


1
p

.

For p = 2 this norm is called Euclidean norm showed by

‖A‖E =

 m∑
i=1

n∑
j=1

|ai j|
2


1
2

.

The spectral norm of matrix A is defined by

‖A‖2 =

√
max
1≤i≤n

λi(AHA),

where λi(AHA) are the eigenvalues of matrices AHA and AH is the conjugate transpose of A.
The spectral radius of A is defined by

ρ(A) = max
i
|λi(A)|, i = 1, 2, · · · , n.

For normal matrix, we know that the spectral norm of A is equal to spectral radius. Different from
other articles, the matrix elements are complex numbers e( k

n ) whose modulus is 1. Therefore, based
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on the special identities, we can give the defined value of spectral norm rather than upper and lower
bound estimates.

First, by some methods, in the beginning of this section we show that determinants of matrix A and
its Hadamard inverse A◦(−1). Then we get some relationship of leading principle minor. Subsequently
we present that these two matrices are invertible but not positive definite, and then we present that the
inversion of A and A◦(−1) are tridiagonal matrices. After that we get the defined value of Euclidean
norm, lp norm and spectral norm. All definitions and statements of this paper are available in
reference [1,9].

2. Preliminaries and main results

Theorem 1. Let A be a matrix as in (1.1), n ≥ 2, then

det A = −e
(
1
n

+
n
2

) (
e
(
1
n

)
− 1

)n−1

, 0.

Proof. By using elementary row operations on (1.1), we have

det A =

det



e(1
n ) e( 1

n ) e( 1
n ) · · · e( 1

n ) e( 1
n )

0 e(2
n ) − e( 1

n ) e(2
n ) − e( 1

n ) · · · e(2
n ) − e(1

n ) e(2
n ) − e(1

n )
0 0 e(3

n ) − e( 2
n ) · · · e(3

n ) − e(2
n ) e(3

n ) − e(2
n )

...
...

...
...

...

0 0 0 · · · e( n−1
n ) − e(n−2

n ) e(n−1
n ) − e(n−2

n )
0 0 0 · · · 0 e(n

n ) − e(n−1
n )


n×n

= −e
(
1
n

+
n
2

) (
e
(
1
n

)
− 1

)n−1

, 0.

Therefore, the matrix A is invertible. However, because the matrix elements are complex numbers, we
can’t confirm that all leading principal minor or all eigenvalues of A are positive, and then matrix A
isn’t positive definite. Now we give the inversion of matrix A.
Lemma 1. Let A is an n × n nonsigular matrix and b is an n × 1 matrix, c is a real number.
If

M =

(
A b
bT c

)
,

then the inversion of M is

N =

(
A−1 + 1

l A−1bbT A−1 −1
l A−1b

−1
l bT A−1 1

l

)
,

where l = c − bT A−1b.
Proof. By the definition of M and N we have M · N = En+1. Thus M−1 = N.
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Theorem 2. Let A be as in (1.1), then A is invertible and the inversion of A is a symmetric tridiagonal
matrix of the form

A−1 =



c0 −c1 0 0 · · · 0
−c1 b2 −c2 0 · · · 0
0 −c2 b3 −c3 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 −cn−2 bn−1 −cn−1

0 0 · · · 0 −cn−1 cn−1


n×n

,

where

bk =
e( 1

n ) + 1

e( k
n )(e( 1

n ) − 1)
, ck =

1
e( k

n )(e(1
n ) − 1)

.

Proof. Using elementary row operations to solve the inversion of A, namely

(A I)→ (I A−1).

By mathematical induction on n, for n = 2, we have

A =

(
e( 1

n ) e( 1
n )

e( 1
n ) e( 2

n )

)
2×2

(
e( 1

n ) e( 1
n ) 1 0

e( 1
n ) e( 2

n ) 0 1

)
→

(
e( 1

n ) e(1
n ) 1 0

0 e( 2
n ) − e( 1

n ) −1 1

)

→

 1 1 1
e( 1

n )
0

0 1 − 1
e( 2

n )−e( 1
n )

1
e( 2

n )−e( 1
n )


→

 1 0 1
e( 1

n )
+ 1

e( 2
n )−e( 1

n )
− 1

e( 2
n )−e( 1

n )

0 1 − 1
e( 2

n )−e( 1
n )

1
e( 2

n )−e( 1
n )

 ,
so we have, for 2 × 2 matrix A,

A−1 =

 1
e( 1

n )
+ 1

e( 2
n )−e( 1

n )
− 1

e( 2
n )−e( 1

n )

− 1
e( 2

n )−e( 1
n )

1
e( 2

n )−e( 1
n )

 .
In this way, for 3 × 3 matrix A, we can get

A−1 =


1

e( 1
n )

+ 1
e( 2

n )−e( 1
n )

− 1
e( 2

n )−e( 1
n )

0

− 1
e( 2

n )−e( 1
n )

1
e( 2

n )−e( 1
n )

+ 1
e( 3

n )−e( 2
n )
− 1

e( 3
n )−e( 2

n )

0 − 1
e( 3

n )−e( 2
n )

1
e( 3

n )−e( 2
n )

 ,
AIMS Mathematics Volume 7, Issue 5, 8224–8234.
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Therefore, for n × n matrix A, we can get

A−1 =



1
a1

+ 1
a2−a1

− 1
a2−a1

0 · · · 0
− 1

a2−a1

1
a2−a1

+ 1
a3−a2

− 1
a3−a2

· · · 0
0 − 1

a3−a2

1
a3−a2

+ 1
a4−a3

· · · 0
...

. . .
. . .

. . .
...

− 1
an−1−an−2

1
an−1−an−2

+ 1
an−an−1

− 1
an−an−1

0 0 − 1
an−an−1

1
an−an−1


n×n

,

where ak = e( k
n ).

In addition,

1
e( k+1

n ) − e( k
n )

=
1

e( k
n )(e( 1

n ) − 1)
,

1
e( k

n ) − e( k−1
n )

+
1

e( k+1
n ) − e( k

n )
=

e( 1
n ) + 1

e( k
n )(e(1

n ) − 1)
.

In fact, by mathematical induction on n.
The result is true for n = 2, now assume that the result is true for n, that is A = [aki j]n×n, A−1 =

[aki j]
−1
n×n.

Thus by taking b = (e( 1
n ), e(2

n ), · · · , e( n
n ))T , bT = (e( 1

n ), e( 2
n ), · · · , e( n

n )), and c = e( n+1
n ) along with

Lemma 1 the proof is completed for n + 1. Therefore the result is true for each n. For convenience, we
denote

bk =
e( 1

n ) + 1

e( k
n )(e( 1

n ) − 1)
, ck =

1
e( k

n )(e(1
n ) − 1)

.

Hence, we get

A−1 =



c0 −c1 0 0 · · · 0
−c1 b2 −c2 0 · · · 0
0 −c2 b3 −c3 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 −cn−2 bn−1 −cn−1

0 0 · · · 0 −cn−1 cn−1


n×n

.

The proof of Theorem 2 provides a method to solve the inversion of ”Γ” matrix which is tridiagonal
matrix.

The next part, Euclidean norm, lp norm and spectral norms of matrix A, are considered, we can get
concise results.
Theorem 3. Let A be a matrix as in (1.1), then the lp norm of A is

‖A‖p = n
2
p .

Proof. By definition of the Euclidean norm, by |e
(

k
n

)
| = 1, we have

‖A‖p
p =

n∑
k=1

(2n − 2k + 1)|e
(

k
n

)
|p =

n∑
k=1

(2n − 2k + 1) = n2.
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Theorem 4. Let A be a matrix as in (1.1), then we get the spectral norm of A,

‖A‖2 = max
(
1, 2 sin

(
π

n

))
.

Proof. Since matrix A is Hermite matrix which are also normal matrix. So the spectral norm of A is
equal to its spectral radius. By Theorem 1, we have the eigenvalues of A are respectively:

e
(
1
n

)
, e

(
2
n

)
− e

(
1
n

)
, e

(
3
n

)
− e

(
2
n

)
, · · · , e

(n
n

)
− e

(
n − 1

n

)
.

For the modulus of these eigenvalues, we have |e
(

1
n

)
| = 1, and

|e
(
k + 1

n

)
− e

(
k
n

)
| = |e

(
k
n

)
(e

(
1
n

)
− 1)| = |e

(
1
n

)
− 1|

= | cos
(
2π
n

)
− 1 + i sin

(
2π
n

)
|

= 2 sin
(
π

n

)
.

Hence, spectral radius of A is ρ(A) = max
(
1, 2 sin

(
π
n

))
.

Namely,

‖A‖2 = ρ(A) = max
(
1, 2 sin

(
π

n

))
.

Theorem 5. Let A be a matrix as in (1.1) and 4n denotes the leading principal minor of A, then we
have

(1) 41 = e
(
1
n

)
, 4n = −e

(
1
n

+
n
2

) (
e
(
1
n

)
− 1

)n−1

= det A;

(2)
4k+1

4k
= e

(
k + 1

n

)
− e

(
k
n

)
;

(3) 4n4n−2 = e
(
1
n

)
42

n−1;

(4) 41 42 · · · 4n = e
(
n2

3
+

n
2

+
1
6

) (
e
(
1
n

)
− 1

) n(n−1)
2

.

Proof. By Theorem 1, we can get (1)

41 = e
(
1
n

)
,

42 = e
(
1
n

)
e
(
1
n

) (
e
(
1
n

)
− 1

)
,

43 = e
(
1
n

)
e
(
1 + 2

n

) (
e
(
1
n

)
− 1

)2

,
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44 = e
(
1
n

)
e
(
1 + 2 + 3

n

) (
e
(
1
n

)
− 1

)3

, · · ·

4n−2 = e
(
1
n

)
e
(
1 + 2 + 3 + · · · + (n − 3)

n

) (
e
(
1
n

)
− 1

)n−1

= −e
(
1
n

+
n
2

) (
e
(
1
n

)
− 1

)n−3

,

4n−1 = e
(
1
n

)
e
(
1 + 2 + 3 + · · · + (n − 2)

n

) (
e
(
1
n

)
− 1

)n−1

= −e
(
1
n

+
n
2

) (
e
(
1
n

)
− 1

)n−2

,

4n = e
(
1
n

)
e
(
1 + 2 + 3 + · · · + (n − 1)

n

) (
e
(
1
n

)
− 1

)n−1

= −e
(
1
n

+
n
2

) (
e
(
1
n

)
− 1

)n−1

= det A.

Hence, we have

(2)
4k+1

4k
= e

(
k
n

) (
e
(
1
n

)
− 1

)
= e

(
k + 1

n

)
− e

(
k
n

)
.

(3) 4n4n−2 = e
(
5
n

) (
e
(
1
n

)
− 1

)2n−4

,42
n−1 = e

(
4
n

) (
e
(
1
n

)
− 1

)2n−4

.

So we get

4n4n−2 = e
(
1
n

)
42

n−1 .

By e(n) = 1, and n(n−1)
2 is always integer number, that is to say e

(
n(n−1)

2

)
= 1, then we have

(4) 41 42 · · · 4n

= e
(
1 + (1 + 2) + (1 + 2 + 3) + · · · + (1 + 2 + · · · + (n − 1))

n

) (
e
(
1
n

)
− 1

) n(n−1)
2

= e
(
n2

3
+

n
2

+
1
6

) (
e
(
1
n

)
− 1

) n(n−1)
2

.

Next we’re going to discuss the determinant, inversion, Euclidean norm, lp norm and spectral norm of
A◦(−1).
Theorem 6. Let A◦(−1) be a matrix as in (1.2), n ≥ 2, then

det A◦(−1) = −e
(
−

n
2

) (
1 − e

(
1
n

))n−1

, 0.
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Proof. By using elementary row operations on (1.2), by e( 1
2 ) = −1, we have

det A◦(−1)

= det



e(−1
n ) e(−1

n ) e(−1
n ) · · · e(−1

n ) e(−1
n )

0 e(−2
n ) − e(−1

n ) e(−2
n ) − e(−1

n ) · · · e(−2
n ) − e(−1

n ) e(−2
n ) − e(−1

n )
0 0 e(−3

n ) − e(−2
n ) · · · e(−3

n ) − e(−2
n ) e(−3

n ) − e(−2
n )

...
...

...
...

...

0 0 0 · · · e( 1−n
n ) − e( 2−n

n ) e( 1−n
n ) − e(2−n

n )
0 0 0 · · · 0 e(−n

n ) − e( 1−n
n )


= −e

(
−

n
2

) (
1 − e

(
1
n

))n−1

, 0.

Therefore, the matrix A◦(−1) is invertible. Now we give the inversion of matrix A◦(−1).
Theorem 7. Let A◦(−1) be a matrix as in (1.2), n ≥ 2, then the inversion of A◦(−1) is a tridiagonal matrix
as following:

[A◦(−1)]−1 =



h0 −h1 0 0 · · · 0
−h1 f2 −h2 0 · · · 0

0 −h2 f3 −h3 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 −hn−2 fn−1 −hn−1

0 0 · · · 0 −hn−1 hn−1


n×n

,

where

fk =
e( k

n )(1 + e(1
n ))

1 − e( 1
n )

, hk =
e( k

n )

1 − e( 1
n )
.

Proof. In similar way, by using elementary row operations to solve the inversion of A◦(−1), namely
(A◦(−1) I)→ (I [A◦(−1)]−1).
For n = 2, we have

A◦(−1) =

(
e(−1

n ) e(−1
n )

e(−1
n ) e(−2

n )

)
2×2(

e(−1
n ) e(−1

n ) 1 0
e(−1

n ) e(−2
n ) 0 1

)
→

(
e(−1

n ) e(−1
n ) 1 0

0 e(−2
n ) − e(−1

n ) −1 1

)

→

 1 1 e( 1
n ) 0

0 1 − 1
e( −2

n )−e( −1
n )

1
e( −2

n )−e( −1
n )


→

 1 0 e( 1
n ) + 1

e( −2
n )−e( −1

n )
− 1

e( −2
n )−e( −1

n )

0 1 − 1
e( −2

n )−e( −1
n )

1
e( −2

n )−e( −1
n )

 ,
so for 2 × 2 matrix A◦(−1),

[A◦(−1)]−1 =

 e( 1
n ) + 1

e( −2
n )−e( −1

n )
− 1

e( −2
n )−e( −1

n )

− 1
e( −2

n )−e( −1
n )

1
e( −2

n )−e( −1
n )

 .
AIMS Mathematics Volume 7, Issue 5, 8224–8234.
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In this way, for 3 × 3 matrix A◦(−1), we can get

[A◦(−1)]−1 =


e(1

n ) + 1
e( −2

n )−e( −1
n )

− 1
e( −2

n )−e( −1
n )

0

− 1
e( −2

n )−e( −1
n )

1
e( −2

n )−e( −1
n )

+ 1
e( −3

n )−e( −2
n )
− 1

e( −3
n )−e( −2

n )

0 − 1
e( −3

n )−e( −2
n )

1
e( −3

n )−e( −2
n )

 .
Therefore, for n × n matrix A◦(−1), we can get

[A◦(−1)]−1 =



1
a1

+ 1
a2−a1

− 1
a2−a1

0 · · · 0
− 1

a2−a1

1
a2−a1

+ 1
a3−a2

− 1
a3−a2

· · · 0
0 − 1

a3−a2

1
a3−a2

+ 1
a4−a3

· · · 0
...

. . .
. . .

. . .
...

− 1
an−1−an−2

1
an−1−an−2

+ 1
an−an−1

− 1
an−an−1

0 0 − 1
an−an−1

1
an−an−1


n×n

,

where ak = e(−k
n ).

Actually,

1
e(−k

n ) − e(− k−1
n )

=
1

e(−k
n )(1 − e( 1

n ))
=

e( k
n )

1 − e( 1
n )
,

1
e(−k

n ) − e(− k−1
n )

+
1

e(− k+1
n ) − e(− k

n )
=

e( k
n )(e(1

n ) + 1)

(1 − e( 1
n ))

.

By mathematical induction on n. The result is true for n = 2. Now assume that the result is true for
n, Thus by taking b = (e(−1

n ), e(−2
n ), · · · , e(−n

n ))T , bT = (e(−1
n ), e(−2

n ), · · · , e(−n
n )), and c = e(−n+1

n ) along
with Lemma 1 the proof is completed for n+1. Therefore the result is true for each n. For convenience,
we denote

fk =
e( k

n )(1 + e(1
n ))

1 − e( 1
n )

, hk =
e( k

n )

1 − e( 1
n )
.

Hence, we have

[A◦(−1)]−1 =



h0 −h1 0 0 · · · 0
−h1 f2 −h2 0 · · · 0

0 −h2 f3 −h3 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 −hn−2 fn−1 −hn−1

0 0 · · · 0 −hn−1 hn−1


.

Theorem 8. Let A◦(−1) be a matrix as in (1.2), then its lp norm is:

‖A◦(−1)‖p = n
2
p .

Proof. By the definition of lp norm, we have

‖A◦(−1)‖p
p =

n∑
k=1

(2n − 2k + 1)|e
(
−k
n

)
|p =

n∑
k=1

(2n − 2k + 1) = n2.
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When n = 2, we can get the Euclidean norm‖A◦(−1)‖E =
√

n.
Theorem 9. Let A◦(−1) be a matrix as in (1.2), n ≥ 2, then the spectral norm is

‖A◦(−1)‖2 = max
(
1, 2 sin

(
π

n

))
.

Proof. By Theorem 6, we have the eigenvalues of A◦(−1) are respectively:

e
(
−1
n

)
, e

(
−2
n

)
− e

(
−1
n

)
, · · · , e

(
−n
n

)
− e

(
−

n − 1
n

)
.

Since matrix A◦(−1) is normal matrix whose spectral norm is equal to its spectral radius. So we find the
modulus of above eigenvalues: |e

(
−1
n

)
| = 1,

|e
(
−k
n

)
− e

(
−

k − 1
n

)
| = |e

(
−k
n

) (
1 − e

(
1
n

))
|

= |1 − e
(
1
n

)
| = |1 − cos

(
2π
n

)
− i sin

(
2π
n

)
|

= 2 sin
(
π

n

)
.

Hence,

‖A◦(−1)‖2 = ρ(A) = max
(
1, 2 sin

(
π

n

))
=

{
1, n ≥ 6;
2 sin(πn ), n < 6.

So far, we’ve proved all the theorems. We can easily find that matrix A and A◦(−1) have same Euclidean
norm, lp norm and spectral norm.

3. Conclusions

In this paper, we attempt to compute the determinant, inverse, lp-norm, and some other properties
including those of its Hadamard inverse of particular matrices involving exponential forms and
trigonometric functions. The computation complexity of this paper is lower than the previous work.
Based on the special properties of exponential form, we get the defined values of lp norms and spectral
norms of particular matrix whose entries are complex numbers e

(
k
n

)
. These results will expand the

application range of matrix norm and enrich the system of matrix theory.
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