In this paper, we prove some results on the Hausdorff partial $ b $-metrics. We prove some new Lemmas regarding convergence of the sequences in the Hausdorff partial b-metric spaces. The obtained results generalize and improve many existing fixed-point results. The examples are given for the explanation of theory. The existence of the solution to the boundary value problem is proved via fixed-point approach.
Citation: Saeed Anwar, Muhammad Nazam, Hamed H Al Sulami, Aftab Hussain, Khalil Javed, Muhammad Arshad. Existence fixed-point theorems in the partial $ b $-metric spaces and an application to the boundary value problem[J]. AIMS Mathematics, 2022, 7(5): 8188-8205. doi: 10.3934/math.2022456
In this paper, we prove some results on the Hausdorff partial $ b $-metrics. We prove some new Lemmas regarding convergence of the sequences in the Hausdorff partial b-metric spaces. The obtained results generalize and improve many existing fixed-point results. The examples are given for the explanation of theory. The existence of the solution to the boundary value problem is proved via fixed-point approach.
[1] | K. Agarwal, S. Qureshi, J. Nema, A fixed point theorem for $b$-metric space, International Journal of Pure and Applied Mathematical Sciences, 9 (2016), 45–50. |
[2] | A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mapping in partially ordered $b$-metric spaces, Math. Slovaca, 64 (2014), 941–960. http://dx.doi.org/10.2478/s12175-014-0250-6 doi: 10.2478/s12175-014-0250-6 |
[3] | I. Altun, O. Acar, Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces, Topol. Appl., 159 (2012), 2642–2648. http://dx.doi.org/10.1016/j.topol.2012.04.004 doi: 10.1016/j.topol.2012.04.004 |
[4] | E. Ameer, H. Huang, M. Nazam, M. Arshad, Fixed point theorems for multivalued $\gamma-FG-$ contractions with $(\alpha_{*}, \beta_{*})$ admissible mappings in the partial b-metric spaces and application, U.P.B. Sci. Bull., Series A, 81 (2019), 97–108. |
[5] | H. Aydi, M. Abbas, C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topol. Appl., 159 (2012), 3234–3242. http://dx.doi.org/10.1016/j.topol.2012.06.012 doi: 10.1016/j.topol.2012.06.012 |
[6] | V. Berinde, On the approximation of fixed points of weak contractive mappings, Carpathian J. Math., 19 (2003), 7–22. |
[7] | S. Czerwik, Contraction mappings in $b$ -metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1993), 5–11. |
[8] | D. Dolicanin-Dhekic, On some Ćirić type results in partial b-metric spaces, Filomat, 31 (2017), 3473–3481. http://dx.doi.org/10.2298/FIL1711473D doi: 10.2298/FIL1711473D |
[9] | A. Felhi, Some fixed point results for multivalued contractive mappings in partial $b$-metric spaces, J. Adv. Math. Stud., 9 (2016), 208–225. |
[10] | Y. Feng, S. Liu, Fixed point theorems for multivalued contractive mappings and multivalued Caristi type mappings, J. Math. Anal. Appl., 317 (2006), 103–112. http://dx.doi.org/10.1016/j.jmaa.2005.12.004 doi: 10.1016/j.jmaa.2005.12.004 |
[11] | T. Hicks, B. E. Rhoades, Fixed points and continuity for multivalued mappings, Int. J. Math. Math. Sci., 15 (1992), 893291. http://dx.doi.org/10.1155/S0161171292000024 doi: 10.1155/S0161171292000024 |
[12] | M. Iqbal, A. Batool, O. Ege, M. de la Sen, Fixed point of almost contraction in $b$-metric spaces, J. Math., 2020 (2020), 3218134. http://dx.doi.org/10.1155/2020/3218134 doi: 10.1155/2020/3218134 |
[13] | M. A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal. Theor., 73 (2010), 3123–3129. http://dx.doi.org/10.1016/j.na.2010.06.084 doi: 10.1016/j.na.2010.06.084 |
[14] | S. G. Matthews, Partial metric topology, Ann. NY Acad. Sci., 728 (1994), 183–197. http://dx.doi.org/10.1111/j.1749-6632.1994.tb44144.x doi: 10.1111/j.1749-6632.1994.tb44144.x |
[15] | R. Miculescu, A. Mihail, New fixed point theorems for set-valued contractions in $b$-metric spaces, J. Fixed Point Theory Appl., 19 (2017), 2153–2163. http://dx.doi.org/10.1007/s11784-016-0400-2 doi: 10.1007/s11784-016-0400-2 |
[16] | Z. Mustafa, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Some common fixed point results in ordered partial b-metric spaces, J. Inequal. Appl., 2013 (2013), 562. http://dx.doi.org/10.1186/1029-242X-2013-562 doi: 10.1186/1029-242X-2013-562 |
[17] | M. Nazam, On Jc-contraction and related fixed point problem with applications, Math. Method. Appl. Sci., 43 (2020), 10221–10236. http://dx.doi.org/10.1002/mma.6689 doi: 10.1002/mma.6689 |
[18] | M. Nazam, O. Acar, Fixed points of $(\alpha-\psi)$-contractions in Hausdorff partial metric spaces, Math. Method. Appl. Sci., 42 (2019), 5159–5173. http://dx.doi.org/10.1002/mma.5251 doi: 10.1002/mma.5251 |
[19] | M. Nazam, Z. Hamid, H. Al Sulam, A. Hussain, Common fixed-point theorems in the partial b-metric spaces and an application to the system of boundary value problems, J. Funct. Space, 2021 (2021), 7777754. http://dx.doi.org/10.1155/2021/7777754 doi: 10.1155/2021/7777754 |
[20] | S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475–488. |
[21] | R. T. Rockafellar, R. J. B. Wets, Variational analysis, Berlin, Heidelberg: Springer, 1998. http://dx.doi.org/10.1007/978-3-642-02431-3 |
[22] | B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $(\alpha-\psi)$-contractive type mappings, Nonlinear Anal. Theor., 75 (2012), 2154–2165. http://dx.doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014 |
[23] | S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterr. J. Math., 11 (2014), 703–711. http://dx.doi.org/10.1007/s00009-013-0327-4 doi: 10.1007/s00009-013-0327-4 |