In this paper, we prove some results on the Hausdorff partial b-metrics. We prove some new Lemmas regarding convergence of the sequences in the Hausdorff partial b-metric spaces. The obtained results generalize and improve many existing fixed-point results. The examples are given for the explanation of theory. The existence of the solution to the boundary value problem is proved via fixed-point approach.
Citation: Saeed Anwar, Muhammad Nazam, Hamed H Al Sulami, Aftab Hussain, Khalil Javed, Muhammad Arshad. Existence fixed-point theorems in the partial b-metric spaces and an application to the boundary value problem[J]. AIMS Mathematics, 2022, 7(5): 8188-8205. doi: 10.3934/math.2022456
[1] | Monairah Alansari, Mohammed Shehu Shagari, Akbar Azam, Nawab Hussain . Admissible multivalued hybrid Z-contractions with applications. AIMS Mathematics, 2021, 6(1): 420-441. doi: 10.3934/math.2021026 |
[2] | Pragati Gautam, Vishnu Narayan Mishra, Rifaqat Ali, Swapnil Verma . Interpolative Chatterjea and cyclic Chatterjea contraction on quasi-partial b-metric space. AIMS Mathematics, 2021, 6(2): 1727-1742. doi: 10.3934/math.2021103 |
[3] | Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended b-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977 |
[4] | Zili Shi, Huaping Huang, Bessem Samet, Yuxin Wang . On fixed point theorems for ordered contractions with applications. AIMS Mathematics, 2025, 10(3): 5173-5196. doi: 10.3934/math.2025238 |
[5] | Rashid Ali, Faisar Mehmood, Aqib Saghir, Hassen Aydi, Saber Mansour, Wajdi Kallel . Solution of integral equations for multivalued maps in fuzzy b-metric spaces using Geraghty type contractions. AIMS Mathematics, 2023, 8(7): 16633-16654. doi: 10.3934/math.2023851 |
[6] | Samina Batul, Faisar Mehmood, Azhar Hussain, Dur-e-Shehwar Sagheer, Hassen Aydi, Aiman Mukheimer . Multivalued contraction maps on fuzzy b-metric spaces and an application. AIMS Mathematics, 2022, 7(4): 5925-5942. doi: 10.3934/math.2022330 |
[7] | Samina Batul, Faisar Mehmood, Azhar Hussain, Reny George, Muhammad Sohail Ashraf . Some results for multivalued mappings in extended fuzzy b-metric spaces. AIMS Mathematics, 2023, 8(3): 5338-5351. doi: 10.3934/math.2023268 |
[8] | Xun Ge, Songlin Yang . Some fixed point results on generalized metric spaces. AIMS Mathematics, 2021, 6(2): 1769-1780. doi: 10.3934/math.2021106 |
[9] | Gonca Durmaz Güngör, Ishak Altun . Fixed point results for almost (ζ−θρ)-contractions on quasi metric spaces and an application. AIMS Mathematics, 2024, 9(1): 763-774. doi: 10.3934/math.2024039 |
[10] | I. Eroǧlu, E. Güner, H. Aygün, O. Valero . A fixed point principle in ordered metric spaces and applications to rational type contractions. AIMS Mathematics, 2022, 7(7): 13573-13594. doi: 10.3934/math.2022750 |
In this paper, we prove some results on the Hausdorff partial b-metrics. We prove some new Lemmas regarding convergence of the sequences in the Hausdorff partial b-metric spaces. The obtained results generalize and improve many existing fixed-point results. The examples are given for the explanation of theory. The existence of the solution to the boundary value problem is proved via fixed-point approach.
The almost contractions form a class of generalized contractions that includes several contractive type mappings like usual contractions, Kannan mappings, Zamfirescu mappings, etc. Since any usual contraction is continuous, while a Kannan mapping is not generally continuous but is continuous at the fixed point. The almost (multivalued) contractions are not continuous. However, the almost contraction is continuous at its fixed point(s) (see [6,18] for details). This work has been extended to generalized multivalued almost contractions in b-metric spaces [12].The b-metric space was formally introduced by Czerwick [7]. Every metric is a b-metric, but converse is not true. The fixed point theorems in the b- metric spaces have been established by many authors (see [1,2,4,13,22] and references therein).
On the other hand, Matthews [14] introduced the notion of the partial metric space as a part of study of denotational semantics of data flow network. Every metric is a partial metric, but converse is not true. Matthews also initiated the fixed point theory in the partial metric space. He proved Banach contraction principle in this space to be applied in program verification. We can find so many fixed-point theorems in the partial metric spaces by many fixed-point theorists (see [17] and references there in). Shukla [23] extended the concept of partial metric to partial b-metric and investigated fixed points of Banach contraction and Kannan contraction in the partial b-metric spaces. Mustafa [16] modified the triangle property of partial b-metric and established convergence criterion and some working rules in partial b- metric spaces. Diana Dolicanin-Dekic [8], obtained the fixed-point theorems for Ciric type contractions in the partial b-metric spaces.
Nadler [20] extended the contraction rule to the multivalued mappings and find fixed points of such mappings. Rhoades [11], Feng and Liu [10], Altun et al. [3] and Miculescu et al. [15] added more fixed point theorems for multivalued mappings. Recently, Ameer et al. [4] presented some fixed-point results in the Hausdorff partial b-metric spaces. However, many supporting results are yet to prove. In this paper, we prove all the supporting results in the Hausdorff partial b-metric spaces and hence prove some fixed-point theorems which state some conditions for the existence of fixed points of the multivalued almost contractions. The examples and an application are presented to support this theory.
Definition 2.1. [22] Let X≠ϕ and s≥1. A mapping pb:X×X→R+ is referred as a partial b-metric if for all x,y,ˇt∈X, pb satisfies the following conditions:
(ⅰ) pb(x,x)=pb(x,y)=pb(y,y) ⇔ x=y.
(ⅱ) pb(x,y)≤s[pb(x,ˇt)+pb(ˇt,y)]−pb(ˇt,ˇt).
(ⅲ) pb(x,y)=pb(y,x).
(ⅳ) pb(x,x)≤pb(x,y).
The pair (X,pb) is called a partial b-metric space.
Each partial b-metric pb on X induces a T0 topology τ(pb) on X which has as a base the family of open balls {Bpb(x0,ε):x0∈X,ε>0}, where Bpb(x0,ε)={y∈X:pb(x0,y)<pb(x0,x0)+ε} for some x0∈X and ε>0. Also ¯B(x0,r)={y∈X:pb(x0,y)≤pb(x0,x0)+ε} is a closed ball in (X,pb).
It is clear that pb(x,y)=0 implies x=y by (P1) and (P2). But if x=y, then pb(x,y) may not be 0. A basic example of a partial b-metric space is the pair (R+0,pb), where pb(x,y)=(max{x,y})2 for all x,y∈R+0.
Remark 2.2. Every partial b-metric space is a generalization of the partial metric space and the b-metric space. However, converse is not true in general.
Example 2.3. Let X=[0,∞) and k>1. Define pb:X×X→[0,∞) by
pb(x,y)={(x∨y)k+|x−y|k} |
for x,y∈X is a partial b-metric on X with s=2k.
Also note that pb(x,x)=xk≠0. Thus pb is not a b-metric on X.
Now let x,y and ˇt ∈X such that x>ˇt>y.
Then
(x−y)k>(x−ˇt)k+(ˇt−y)k.pb(x,y)=xk+(x−y)kpb(x,ˇt)+pb(ˇt,y)−pb(ˇt,ˇt)=xk+(x−ˇt)k+(ˇt−y)k. |
pb(x,y)>pb(x,ˇt)+pb(ˇt,y)−pb(ˇt,ˇt). |
Hence, pb is not a partial metric on X.
Definition 2.4. [19] Let (X,pb) be a partial b-metric space and {xn} be a sequence in X and x∈X. Then
(ⅰ) {xn} is said to be convergent to x if limn→∞pb(xn,x)=pb(x,x).
(ⅱ) {xn} is said to be Cauchy sequence if limp,q→∞pb(xn,xm) exists and is finite.
Let (X,pb) be a partial b-metric space. The function b:X×X→[0,∞) defined by
b(x,ˊu)=2pb(x,ˊu)−pb(x,x)−pb(ˊu,ˊu),∀x,ˊu∈X, | (2.1) |
satisfies all axioms of the b-metric. The pair (X,b) is a b-metric space. It is called an associated b-metric space.
Another associated b-metric is defined as follows:
Let (X,pb) be a partial b-metric space and the mapping b:X×X→[0,∞) be defined by
b(x,y)={pb(x,y),x≠y0, x=y |
for x,y∈X. Then b is a b-metric associated with pb.
The following theorem states the convergence in both b-metric space and partial b-metric space.
Theorem 2.5. Let (X,pb) be a partial b-metric space. Define b:X×X→[0,∞) by
b(x,y)={pb(x,y),x≠y0, x=y |
for x,y∈X. If limn→∞xn=x in (X,b), then limn→∞xn=x in (X,pb).
Proof. Let xn=x for some n, then limn→∞pb(xn,x)=pb(x,x). This proves that limn→∞xn=x in (X,pb). So we may assume that xn≠x for all n∈N. Then b(xn,x)=pb(xn,x) for all n∈N. Since, limn→∞xn=x in (X,b), we have limn→∞b(xn,x)=0. Therefore, limn→∞b(xn,x)=limn→∞pb(xn,x)=0. Note that 0≤pb(x,x)≤pb(xn,x) for n∈N, then 0≤pb(x,x)≤pb(xn,x)=0. This proves limn→∞pb(xn,x)=0=pb(x,x), that is, limn→∞xn=x in (X,pb).
Converse of the above theorem is not true, in general. The following example explains this fact.
Example 2.6. Let X=[0,1] and pb(x,y)=|x−y|5+c for x,y∈X and c≥1. Then (X,pb) is a partial b-metric space with s=16. Note that for a sequence {1n}∞n=1 in X,
limn→∞pb(1n,0)=limn→∞[|1n−0|5+c]=c=pb(0,0). |
This prove that limn→∞1n=0 in the partial b-metric space (X,pb). However,
limn→∞b(1n,0)=limn→∞[|1n−0|5+c]=c≠0. |
This proves that the sequence {1n}∞n=1 does not converge in the associated b-metric space (X,b).
The following Lemma relates the properties of the sequences in (X,pb) and (X,b).
Lemma 2.7. [16]
(1) A sequence {xn} is a Cauchy sequence in (X,pb) if and only if it is a Cauchy sequence in b-metric space (X,b).
(2) (X,pb) is complete if and only if (X,b) is complete.
(3) A sequence {xn}n∈N converges to a point x∈X in (X,b) if and only if
limn→∞pb(x,xn)=pb(x,x)=limn,m→∞pb(xn,xm). |
The following lemmas state the conditions for a sequence to be Cauchy-sequence in the partial b-metric spaces.
Lemma 2.8. Let (X,pb,s) be a partial b-metric space and the function g:{1,2,3,⋯}→{0,1,2,3,⋯} be defined by g(n)=−[−log2n] for all n∈{1,2,3,⋯}. Then for (x0,x1,⋯,xn)∈Xn+1, the following inequality holds.
pb(x0,xn)<sg(n)n−1∑i=0pb(xi,xi+1). |
Proof. We observed that 2g(n)−1<n≤2g(n) for all n∈{1,2,3,⋯}. Let
p(n):=pb(x0,xn)<sg(n)n−1∑i=0pb(xi,xi+1). |
For p(1) we have pb(x0,xn)≤sg(1)n−1∑i=0pb(xixi+1). Suppose that p(n) holds for n≤2K for some K∈{0,1,2,3,⋯}. For all those n lying in 2K<n≤2K+1, we have g(n)=K+1, g(2K)=K and g(n−2K)≤K. By triangle property of the partial b-metric, we have
pb(x0,xn)≤spb(x0,x2K)+spb(x2K,xn)−pb(x2K,x2K)<spb(x0,x2K)+spb(x2K,xn)<ssg(2K)2K−1∑i=0pb(xi,xi+1)+ssg(n−2K)n−1∑i=2Kpb(xi,xi+1)≤sK+1n−1∑i=0pb(xi ,xi+1)=sg(n)n−1∑i=0pb(xi ,xi+1). |
Thus (by induction), p(n) is true for all n.
The Lemma 2.8 is useful to obtain the following lemma.
Lemma 2.9. Let (X,pb,s) be a partial b-metric space. If there exists λ∈[0,1) and the sequence {xn}⊂X meets the following condition:
pb(xn+1,xn+2)<λpb(xn,xn+1),foralln∈{1,2,3,⋯}. | (2.2) |
Then {xn} is a Cauchy sequence.
Proof. If λ=0, then, (2.2) holds. Let 0<λ<1, and choose a natural number ˊq such that sλ2ˊq<1.
By Lemma 2.8, we have
pb(xn,xm)<sg(m−n)m−1∑i=npb(xi,xi+1),forn<m≤n+2ˊq≤sˊqm−1∑i=nλi−1pb(x1,x2)≤sˊq∞∑i=nλi−1pb(x1,x2)=sˊqλn−11−λpb(x1,x2). |
For m>n+2ˊq, the inequality (2.2) also holds.
Definition 2.10. [20] Let CB(X) be the class of all non-empty, closed and bounded subsets of the metric space (X,d). For A,E∈CB(X), we define
H(A,E)=max{supγ∈Ad(γ,E),supα∈Ed(α,A)}, |
where, d(x,A)=inf{d(x,a):a∈A} is the distance of a point x to the set A. It is known that H is a metric on CB(X), called the Hausdorff metric induced by the metric d.
Definition 2.11. [20] Let (X,d) be the metric space. An element x∈X is labeled as a fixed point of a multivalued mapping ψ:X→2X, if x∈ψ(x).
A multivalued mapping ψ:X→CB(X) is called contraction if there exists λ∈[0,1) such that
H(ψ(x),ψ(y))≤λd(x,y) |
for each x,y∈X. It is known as multivalued contraction.
The concept of Hausdorff metric or Hausdorff distance was first introduced by Hausdorff in his book Grundzuge der Mengenlehre [21]. The second name of Hausdorff distance is Pompeiu–Hausdorff distance. The Hausdorff distance has many applications in the computer field. The use of Hausdorff distance is to find a given template in an arbitrary target image in computer vision. The most important application of the Hausdorff metric in computer graphics is to measure the difference between two different representations of the same 3D object specifically when generating the level of detail for efficient display of complex 3D models.
In this section, we state and prove the supporting properties of the Hausdorff partial b-metric. These properties are comparable to Proposition 2.2 and proposition 2.3 presented in [5].
Let (X,pb) denote the partial b-metric space and CBpb(X) denote the family of all non-empty bounded and closed subsets of X with respect to partial b-metric. Note that the closedness is taken from (X,τpb) and the boundedness is given as follows: A is a bounded subset in (X,pb) if there exists x0∈X and M≥0 such that for all a∈A, we have a∈Bpb(x0,M), that is, pb(x0,a)<pb(x0,x0)+M. The following distance functions are required in the proofs.
(1) Let the mapping fpb:X×CBpb(X)→[0,∞) be defined by
fpb(x,A)=inf{pb(x,ˊu),ˊu∈A}. |
(2) Let the mapping gpb:CBpb(X)×CBpb(X)→[0,∞) be defined by
gpb(A,D)=sup{fpb(ˊu,D):ˊu∈A}andgpb(D,A)=sup{fpb(u,A):u∈D}. |
(3) Let the mapping Υpb:CBpb(X)×CBpb(X)→[0,∞) be defined by
Υpb(A,D)=max{gpb(A,D),gpb(D,A)},for allA,D∈CBpb(X). |
Let A be any non-empty set in (X,pb), then, ˊu∈¯A if and only if fpb(ˊu,A)=pb(ˊu,ˊu) for all ˊu∈A. The set ¯A denotes the closure of A with respect to partial b-metric space (X,pb). Moreover, A is closed in (X,pb) if and only if A=¯A. The following Lemmas have been stated without proofs in [9]. We give their proofs in detail.
Lemma 3.1. Let (X,pb) be a partial b-metric space. For all A,D,ˆH∈CBpb(X) the following equations hold:
(i) gpb(A,A)=sup{pb(ˊu,ˊu):ˊu∈A}.
(ii) gpb(A,A)≤gpb(A,D).
(iii) gpb(A,D)=0 implies that A⊆D.
(iv) gpb(A,D)≤s[gpb(A,ˆH)+gpb(ˆH,D)]−infσ∈ˆHpb(σ,σ).
Proof. (ⅰ). If A∈CBpb(X), then for all ˊu∈A, we have fpb(x,A)=pb(x,ˊu). Therefore
gpb(A,A)=sup{pb(ˊu,A):ˊu∈A}=sup{pb(ˊu,ˊu):ˊu∈A}. |
(ⅱ). Let ˊu∈A. Since, pb(ˊu,ˊu)≤pb(ˊu,b) for all b∈D, therefore we have
pb(ˊu,ˊu)≤fpb(ˊu,D)≤gpb(A,D) |
by (ⅰ), we have
gpb(A,A)=sup{pb(ˊu,ˊu):ˊu∈A}≤gpb(A,D). |
Hence, gpb(A,A)≤gpb(A,D).
(ⅲ). Suppose that ˊu∈A and gpb(A,D)=0, then it implies fpb(ˊu,D)=0 for each ˊu∈A. By (ⅰ) and (ⅱ) it follows that pb(ˊu,ˊu)≤gpb(A,D)=0. That is pb(ˊu,ˊu)=0 for all ˊu∈A, and hence pb(ˊu,ˊu)=fpb(ˊu,D) for all ˊu∈A. Since, D is closed, we have ˊu∈¯D=D and A⊆D.
(ⅳ). Assume that ˊu∈A,ϰ∈D and σ∈ˆH. By triangle property, we have
pb(ˊu,ϰ)≤s[pb(ˊu,σ)+pb(σ,ϰ)]−pb(σ,σ). |
Then
infϰ∈Dpb(ˊu,ϰ)≤s[infϰ∈Dpb(ˊu,σ)+infϰ∈Dpb(σ,ϰ)]−infϰ∈Dpb(σ,σ).fpb(ˊu,D)≤s[pb(ˊu,σ)+fpb(σ,D)]−pb(σ,σ).fpb(ˊu,D)+pb(σ,σ)≤s[pb(ˊu,σ)+fpb(σ,D)]. |
Now
supσ∈ˆHfpb(ˊu,D)+supσ∈ˆHpb(σ,σ)≤s[supσ∈ˆHpb(ˊu,σ)+supσ∈ˆHfpb(σ,D)].fpb(ˊu,D)+pb(σ,σ)≤s[pb(ˊu,σ)+gpb(ˆH,D)]. |
Taking sup with respect to ˊu, we have
gpb(A,D)≤s[gpb(A,ˆH)+gpb(ˆH,D)]−infσ∈ˆHpb(σ,σ). |
Lemma 3.2. Let (X,pb) be a partial b-metric space. Then, for all A,D,ˆH∈CBpb(X), we have
(i) Υpb(A,A)≤Υpb(A,D).
(ii) Υpb(A,D)=Υpb(D,A).
(iii) Υpb(A,D)≤s[Υpb(A,ˆH)+Υpb(ˆH,D)]−infσ∈ˆHpb(σ,σ).
Proof. (ⅰ). By definition Υpb(A,A)=max{gpb(A,A),gpb(A,A)}, so, that Υpb(A,A)=gpb(A,A) and Υpb(A,D)=max{gpb(A,D),gpb(D,A)}. By Lemma 3.1, gpb(A,A)≤gpb(A,D) so that Υpb(A,A)≤Υpb(A,D).
(ⅱ). Obvious.
(iii).Υpb(A,D)=max{gpb(A,D),gpb(D,A)}≤max{s[gpb(A,ˆH)+gpb(ˆH,D)]−infσ∈ˆHpb(σ,σ),s[gpb(ˆH,A)+gpb(D,ˆH)]−infσ∈ˆHpb(σ,σ)}=max{sgpb(A,ˆH)+sgpb(ˆH,D),sgpb(ˆH,A)+sgpb(D,ˆH)}−infσ∈ˆHpb(σ,σ)=max{sgpb(A,ˆH)+sgpb(ˆH,A),sgpb(D,ˆH)+sgpb(ˆH,D) }−infσ∈ˆHpb(σ,σ)=s[max{gpb(A,ˆH),gpb(ˆH,A)}+max{gpb(D,ˆH),gpb(ˆH,D)}]−infσ∈ˆHpb(σ,σ)=s[Υpb(A,ˆH)+Υpb(ˆH,D)]−infσ∈ˆHpb(σ,σ). |
Corollary 3.3. Let (X,pb) be a partial b metric space. For all A,D,∈CBpb(X), the following holds
Υpb(A,D)=0⟺A=D. |
Lemma 3.4. Let (X,pb) be a partial b-metric space and A,D,∈CBpb(X). For all x∈A, there exists y=y(x)∈D and h>1 such that
pb(x,y)≤hΥpb(A,D). |
Proof. Case 1. If A=D, then we have
Υpb(A,D)=Υpb(A,A)=gpb(A,D)=supx∈Dpb(x,x). |
Let x∈A, since h>1, we have
pb(x,x)≤supx∈Dpb(x,x)=Υpb(A,D)≤hΥpb(A,D). |
Case 2. If A≠D, and suppose that there exists x∈A such that pb(x,y)>Υpb(A,D) for all y∈D. This implies that
inf{pb(x,y):y∈D}≥hΥpb(A,D). |
Thus,
fpb(x,D)≥hΥpb(A,D). |
Consider,
Υpb(A,D)≥gpb(A,D)=supx∈Apb(x,D)≥fpb(x,D)≥hΥpb(A,D). |
This implies that h≤1, a contradiction. Hence,
pb(x,y)≤hΥpb(A,D). |
The following is the main result on the multivalued almost contractions.
Theorem 3.5. Let (X,pb) be a complete partial b-metric space. Suppose that Ψ:X→CBpb(X) is an multivalued almost contraction, that is, for all x,y∈X, there exist μ,υ∈(0,1) satisfying 2(μ+υ)<1 and s<υμ+2 such that
Υpb(Ψx,Ψy)≤μpb(x,y)+υfpb(y,Ψx). | (3.1) |
Then Ψ admits a fixed point.
Proof. Let x0∈X and x1∈Ψ(x0). We construct an iterative sequence {xn} such that xn+1∈Ψ(xn) for all n∈N. By using Lemma 3.4 and taking h=12(μ+υ), for x1∈Ψ(x0) there exists x2∈Ψ(x1) such that
pb(x1,x2)≤12(μ+υ)Υpb(Ψ(x0),Ψ(x1))≤12(μ+υ){μpb(x0,x1)+υfpb(x1,Ψ(x0))}≤12(μ+υ){μpb(x0,x1)+υpb(x1,x1)}pb(x1,x2)≤12(μ+υ){μpb(x0,x1)+υpb(x1,x2)}≤12(μ+υ){μpb(x0,x1)+υpb(x1,x2)}=μ2(μ+υ)pb(x0,x1)+υ2(μ+υ)pb(x1,x2). |
Then
[1−υ2(μ+υ)]pb(x1,x2)≤μ2(μ+υ)pb(x0,x1)[2μ+2υ−υ2(μ+υ)]pb(x1,x2)≤μ2(μ+υ)pb(x0,x1)[2μ+υ2(μ+υ)]pb(x1,x2)≤μ2(μ+υ)pb(x0,x1) |
pb(x1,x2)≤(μ2μ+υ)pb(x0,x1). | (3.2) |
By Lemma 3.4, for x2∈Ψ(x1) there exists x3∈Ψ(x2) such that
pb(x2,x3)≤12(μ+υ)Υpb(Ψ(x1),Ψ(x2))≤12(μ+υ){μpb(x1,x2)+υfpb(x2,Ψ(x1))}≤12(μ+υ){μpb(x1,x2)+υpb(x2,x2)}≤12(μ+υ){μpb(x1,x2)+υpb(x2,x3)}=μ2(μ+υ)pb(x1,x2)+υ2(μ+υ)pb(x2,x3). |
Thus,
[1−υ2(μ+υ)]pb(x2,x3)≤μ2(μ+υ)pb(x1,x2)[2μ+2υ−υ2(μ+υ)]pb(x2,x3)≤μ2(μ+υ)pb(x1,x2)[2μ+υ2(μ+υ)]pb(x2,x3)≤μ2(μ+υ)pb(x1,x2) |
pb(x2,x3)≤(μ2μ+υ)pb(x1,x2). | (3.3) |
By (3.2) and (3.3), we have
pb(x2,x3)≤μ2μ+υ(μ2μ+υ)pb(x0,x1). |
Thus
pb(x2,x3)≤(μ2μ+υ)2pb(x0,x1). |
In general, for xn∈Ψ(xn−1) there exists xn+1∈Ψ(xn) such that
pb(xn,xn+1)≤(μ2μ+υ)npb(x0,x1). | (3.4) |
To show that {xn} is a Cauchy sequence, we proceed by using triangle property.
pb(xn,xm)≤s[pb(xn,xn+1)+pb(xn+1,xm)]−pb(xn+1,xn+1)≤s[pb(xn,xn+1)+pb(xn+1,xm)]≤spb(xn,xn+1)+spb(xn+1,xm)≤spb(xn,xn+1)+s[s{pb(xn+1,xn+2)+pb(xn+2,xm)}]−pb(xn+2,xn+2)≤spb(xn,xn+1)+s[s{pb(xn+1,xn+2)+pb(xn+2,xm)}]≤spb(xn,xn+1)+s2pb(xn+1,xn+2)+s2pb(xn+2,xm)≤spb(xn,xn+1)+s2pb(xn+1,xn+2)+s3pb(xn+2,xn+3)+⋯+sm−npb(xm−1,xm)≤s(μ2μ+υ)npb(x0,x1)+s2(μ2μ+υ)n+1pb(x0,x1)+s3(μ2μ+υ)n+2pb(x0,x1)+⋯+sm−n(μ2μ+υ)m−1pb(x0,x1)≤s(μ2μ+υ)n[1+(sμ2μ+υ)+(sμ2μ+υ)2+⋯]pb(x0,x1)=s(μ2μ+υ)n1−(sμ2μ+υ)pb(x0,x1)→0 asn→∞ since 0≤sμ2μ+υ<1. |
That is
\begin{equation*} \underset{{ n, m\rightarrow \infty }}{\lim }p_{b}(x_{m}, x_{n}) = 0. \end{equation*} |
Thus, \{x_{n}\} is a Cauchy sequence in (X, p_{b}) . Since p_{b}(x_{n}, x_{n})\leq p_{b}(x_{m}, x_{n}) for all n\neq m , this implies that
\begin{equation*} \underset{{ n\rightarrow \infty }}{\lim }p_{b}(x_{n}, x_{n}) = 0. \end{equation*} |
By (2.1), \underset{{ n, m\rightarrow \infty }}{\lim }b(x_{m}, x_{n}) = 2 \underset{{ n, m\rightarrow \infty }}{\lim }p_{b}(x_{m}, x_{n}) = 0 . Thus, \{x_{n}\} is a Cauchy sequence in (X, b) . The completeness of (X, p_{b}) implies that of (X, b) , so, there exists x^{\ast }\in X , such that
\begin{equation*} \underset{{ n\rightarrow \infty }}{\lim }b(x_{n}, x^{\ast }) = 0. \end{equation*} |
By Lemma 2.7, we have
\begin{equation} \underset{{ n, m\rightarrow \infty }}{\lim }p_{b}(x_{m}, x_{n}) = \underset{{ n\rightarrow \infty }}{\lim }p_{b}( x_{n}, x^{\ast }) = p_{b}(x^{\ast }, x^{\ast}). \end{equation} | (3.5) |
By (3.1) and (3.5), we get
\begin{eqnarray*} \Upsilon _{p_{b}}(\Psi (x_{n}), \Psi (x^{\ast })) &\leq &\mu p_{b}(x_{n}, x^{\ast })+\upsilon f_{p_{b}}(x^{\ast }, \Psi (x_{n}))\leq \mu p_{b}(x_{n}, x^{\ast })+\upsilon p_{b}(x^{\ast }, x_{n+1}). \end{eqnarray*} |
This implies that \underset{{ n\rightarrow \infty }}{\lim } \Upsilon _{p_{b}}(\Psi (x_{n}), \Psi (x^{\ast })) = 0. Now consider,
\begin{eqnarray*} f_{p_{b}}(x_{n+1}, \Psi (x^{\ast })) &\leq &g_{p_{b}}(\Psi (x_{n}), \Psi (x^{\ast }))\leq \Upsilon _{p_{b}}(\Psi x_{n}, \Psi x^{\ast }). \\ \underset{n\rightarrow \infty }{\lim }p_{b}(x_{n+1}, \Psi (x^{\ast })) &\leq &\underset{n\rightarrow \infty }{\lim }g_{p_{b}}(\Psi (x_{n}), \Psi (x^{\ast }))\leq \underset{n\rightarrow \infty }{\lim }\Upsilon _{p_{b}}(\Psi (x_{n}), \Psi (x^{\ast })). \end{eqnarray*} |
This implies that \underset{n\rightarrow \infty }{\lim }p_{b}(x_{n+1}, \Psi (x^{\ast })) = 0. Also
\begin{eqnarray*} f_{p_{b}}(x^{\ast }, \Psi (x^{\ast })) &\leq &s\left[ p_{b}(x^{\ast }, x_{n+1})+f_{p_{b}}(x_{n+1}, \Psi (x^{\ast }))\right] -p_{b}(x_{n+1}, x_{n+1}) \\ f_{p_{b}}(x^{\ast }, \Psi (x^{\ast })) &\leq &s\left[ p_{b}(x^{\ast }, x_{n+1})+f_{p_{b}}(x_{n+1}, \Psi (x^{\ast }))\right] \\ \underset{n\rightarrow \infty }{\lim }f_{p_{b}}(x^{\ast }, \Psi (x^{\ast })) &\leq &s\left[ \underset{n\rightarrow \infty }{\lim }p_{b}(x^{\ast }, x_{n+1})+\underset{n\rightarrow \infty }{\lim }f_{p_{b}}(x_{n+1}, \Psi (x^{\ast }))\right]. \end{eqnarray*} |
This implies that f_{p_{b}}(x^{\ast }, \Psi (x^{\ast })) = 0 = p_{b}(x^{\ast }, x^{\ast }). Hence,
\begin{equation*} x^{\ast }\in \overline{\Psi (x^{\ast })} = \Psi (x^{\ast }). \end{equation*} |
Corollary 3.6. Let \left(X, P_{b}\right) be a complete partial b -metric space and \Psi:X\rightarrow CB_{P_{b}}\left(X\right) satisfies the following condition:
\begin{equation*} H\left(\Psi(x), \Psi(y) \right) \leq \mu p_{b}\left(x, y\right), \;{ for\; all }\;x, y\in X \;{ and }\; 0\leq \mu < 1. \end{equation*} |
Then \Psi has a fixed point.
Example 3.7. Let X = \{0, 1, 4\} . Define the function p_{b}:X\times X\rightarrow [0, \infty) by
\begin{equation*} p_{b}(x, y) = \left(\max \{x, y\}\right) ^{2}+|x-y|^{2}, \end{equation*} |
for all x, y\in X.
Note that p_{b}(1, 1) = (\max \{1, 1\})^{2}+|1-1|^{2} = 1\neq 0 . This implies that p_{b} is not b-metric on X . In the following, we show that \{0\} and \{0, 1\} are bounded and closed sets in (X, p_{b}). Consider,
\begin{eqnarray*} x\in \overline{\{0\}} &\Leftrightarrow &p_{b}(x, \{0\}) = p_{b}(x, x) \\ &\Leftrightarrow &\left( \max \{x, 0\})^{2}+|x-0|^{2}\right) = \left[ (\max \{x, x\})^{2}+|x-x|^{2}\right] \\ &\Leftrightarrow &x^{2}+x^{2} = x^{2}+0^{2} \\ &\Leftrightarrow &2x^{2} = x^{2} \\ &\Leftrightarrow &x\in \{0\}. \end{eqnarray*} |
Therefore the set \{0\} in respect of the partial b-metric is closed.
Similarly,
\begin{eqnarray*} x\in \overline{\{0, 1\}} &\Leftrightarrow &p_{b}(x, \{0, 1\}) = p_{b}(x, x) \\ &\Leftrightarrow &\inf { \{}(\max \{x, 0\})^{2}+|x-0|^{2}, (\max \{x, 1\})^{2}+|x-1|^{2}{ \} = }(\max \{x, x\})^{2}+|x-x|^{2}) \\ &\Leftrightarrow &\inf { \{}x^{2}+x^{2}, (\max \{x, 1\})^{2}+|x-1|^{2}{ \} = }x^{2} \\ &\Leftrightarrow &\inf { \{}2x^{2}, (\max \{x, 1\})^{2}+|x-1|^{2}{ \} = }x^{2} \\ &\Leftrightarrow &x\in \{0, 1\}. \end{eqnarray*} |
Therefore \{0, 1\} in respect of the partial b-metric is closed.
Now define
\begin{equation*} \Psi :X\rightarrow CB_{p_{b}}(X) \;{\rm{ by }}\;\Psi (0) = \Psi (1) = \{0\}\;{\rm{ and }}\;\Psi (4) = \{0, 1\}. \end{equation*} |
We show that for all x, y\in X the contractive condition (3.1) is satisfied for \mu = \frac{1}{5} and \upsilon = \frac{1}{5}.
Case 1. If x, y\in \{0, 1\}, then,
\begin{equation*} \Upsilon _{p_{b}}(\Psi (0), \Psi (0)) = \Upsilon _{p_{b}}(\Psi (1), \Psi (1)) = \Upsilon _{p_{b}}(\Psi (0), \Psi (1)). \end{equation*} |
\begin{equation} \Upsilon _{p_{b}}(\Psi (0), \Psi (0)) = \Upsilon _{p_{b}}(0, 0) = 0. \end{equation} | (3.6) |
For x = y = 0 , we have
\begin{eqnarray*} \mu p_{b}(x, y)+\upsilon f_{p_{b}}(y, \Psi(x)) &\bf{ = }&\frac{1}{5}p_{b}(0, 0)+\frac{1}{5}\underset{0\in \{0\}}{\inf }f_{_{_{p_{b}}}}(0, \Psi (0)) \\ & = &\frac{1}{5}p_{b}(0, 0)+\frac{1}{5}\underset{0\in \{0\}}{\inf }p_{b}(0, \{0\}) = 0. \end{eqnarray*} |
\begin{equation} \mu p_{b}(x, y)+\upsilon f_{p_{b}}(y, \Psi(x)) = 0. \end{equation} | (3.7) |
By (3.6) and (3.7), \Upsilon _{p_{b}}(\Psi (x), \Psi (y))\leq \mu p_{b}(x, y)+\upsilon f_{p_{b}}(y, \Psi (x)) holds for x, y\in \{0, 1\}.
Case 2. If x\in \{0, 1\} and y = 4
\begin{eqnarray*} \Upsilon _{p_{b}}(\Psi (0), \Psi (4)) & = &\Upsilon _{p_{b}}(\Psi(1), \Psi (4)) \\ & = &\Upsilon _{p_{b}}(\{0\}, \{0, 1\}) = \max \{g_{p_{b}}(\{0\}, \{0, 1\}), g_{p_{b}}(\{0, 1\}, \{0\}). \end{eqnarray*} |
Note that
\begin{equation*} g_{p_{b}}(\{0\}, \{0, 1\}) = \sup \{0\} = 0 \;{\rm{ and }}\; g_{p_{b}}(\{0, 1\}, \{0\}) = \sup \{2, 0\} = 2. \end{equation*} |
Thus,
\begin{equation} \Upsilon _{p_{b}}(\{0\}, \{0, 1\}) = \max \{0, 2\} = 2. \end{equation} | (3.8) |
For x = 0 and y = 4 , we have
\begin{eqnarray*} \mu p_{b}(x, y)+\upsilon f_{p_{b}}(y, \Psi(x)) & = &\frac{1}{5}p_{b}(0, 4)+\frac{1}{5}f_{p_{b}}(4, \Psi (0)) \\ & = &\frac{1}{5}(32)+\frac{1}{5}f_{p_{b}}(4, \{0\}) \\ & = &\frac{32}{5}+\frac{1}{5}\underset{0\in \{0\}}{\inf }p_{b}(4, 0) \\ &{ = }&\frac{32}{5}+\frac{32}{5}{ = }\frac{65}{5}. \end{eqnarray*} |
For x = 1 and \ y = 4 , we have
\begin{eqnarray*} \mu p_{b}(x, y)+\upsilon f_{p_{b}}(y, \Psi(x)) & = &\frac{1}{5}p_{b}(1, 4)+\frac{1}{5}f_{p_{b}} { \ }(4, \Psi (1)) \\ & = &\frac{1}{5}(25)+\frac{1}{5}f_{p_{b}}(4, \{0\}) \\ & = &\frac{25}{5}+\frac{1}{5}\underset{0\in \{0\}}{\inf }p_{b}(4, 0) \\ & = &\frac{25}{5}+\frac{32}{5} = \frac{57}{5}. \end{eqnarray*} |
So, the contractive condition (3.1) holds in this case, that is, we have
\begin{eqnarray*} \Upsilon_{p_{b}}(\{0\}, \{0, 1\}) & = &2\leq \frac{1}{5}p_{b}(0, 4)+\frac{1}{5}f_{p_{b}}(4, \Psi (0)) = \frac{65}{5} \\ \Upsilon _{p_{b}}(\{0\}, \{0, 1\}) & = &2\leq \frac{1}{5}p_{b}(1, 4)+\frac{1}{5}f_{p_{b}}(4, \Psi (1)) = \frac{{ 57}}{5}. \end{eqnarray*} |
Case 3. For x = y = 4
\begin{eqnarray*} \Upsilon _{p_{b}}(\Psi (x), \Psi (y)) & = &\Upsilon_{p_{b}}(\Psi (4), \Psi (4)) \\ g_{p_{b}}(\{0, 1\}, \{0, 1\} & = &\sup \{0, 1\} = 1. \end{eqnarray*} |
And
\begin{eqnarray*} \mu p_{b}(x, y)+\upsilon f_{p_{b}}(y, \Psi (x)) & = &\frac{1}{5}p_{b}(4, 4)+\frac{1}{5}f_{p_{b}}(4, \Psi (4)) \\ & = &\frac{16}{5}+\underset{0\in \{0, 1\}}{\inf }p_{b}(4, \{0, 1\}) = \frac{16}{5}+\frac{25}{5} = \frac{41}{5}. \end{eqnarray*} |
So, in this case (3.1) also holds true.
\begin{equation*} \Upsilon_{p_{b}}(\{0, 1\}, \{0, 1\}) = 1\leq \frac{1}{5}p_{b}(4, 4)+\frac{1}{5}f_{p_{b}}(4, \Psi (4)) = \frac{41}{5}. \end{equation*} |
Hence, this example verifies Theorem 3.5 and x = 0 is a fixed-point of \Psi . Since, the mapping p_b is not a partial metric and a b -metric, so, Theorem 3.5 is only useful in the partial b -metric space.
For the single valued almost contraction, we have the following theorem.
Theorem 3.8. Let (X, p_{b}) be a complete partial b-metric space. Suppose that T:X\rightarrow X is an almost contraction, that is, for all x, y\in X , there exist \mu, \upsilon\in (0, 1) satisfying 2(\mu+\upsilon) < 1 and s < \frac{\upsilon}{\mu}+2 such that
\begin{equation} p_{b}(T x, T y)\leq \mu p_{b}(x, y)+\upsilon p_{b}(y, Tx). \end{equation} | (3.9) |
Then T admits a fixed point.
Proof. In Theorem 3.5, define \Psi(x) = \{T(x)\} for all x\in X . Then,
\Upsilon_{p_{b}}(\Psi x, \Psi y) = p_{b}(T x, T y). |
Hence, proof follows the proof of Theorem 3.5.
In this section, we define another multivalued almost contraction defined on a partial b -metric space (X, p_b) . We will investigate the conditions under which such contractions admit at least one fixed point point.
Definition 4.1. Let (X, p_b) be a partial b -metric space with s\geq 1 . The mapping T \colon X\rightarrow CB_{p_b}(X) is said to be an multivalued almost contraction Ⅱ, if there exist \mu, \upsilon\in (0, 1) satisfying 2(\mu+\upsilon) < 1 such that
\begin{equation} \Upsilon_{p_b}\left(T(x), T(y)\right) \leq \mu M\left(x, y\right) +\upsilon N\left( x, y\right), \;{\rm{ for\ all }}\;x, y\in X, \end{equation} | (4.1) |
where
\begin{equation*} \begin{aligned} M\left( x, y\right) & = \max \left\{ p_b\left( x, y\right), \dfrac{f_{p_{b}}\left(x, Tx\right) f_{p_{b}}\left( y, Ty\right) }{1+p_b\left(x, y\right) }, \dfrac{f_{p_{b}}\left(x, Tx\right) f_{p_{b}}\left( y, Ty\right) }{1+\Upsilon_{p_b}\left(Tx, Ty\right) }\right\}, \\ N\left( x, y\right) & = \min \left\{f_{p_{b}}\left(x, Tx\right), f_{p_{b}}\left( x, Ty\right), f_{p_{b}}\left( y, Tx\right), f_{p_{b}}\left( y, Ty\right) \right\} . \end{aligned} \end{equation*} |
Theorem 4.2. Let (X, p_b) be a complete partial b -metric space with s > 1 . Suppose that T \colon X\rightarrow CB_{p_b}(X) is an multivalued almost contraction II. If s < \frac{\upsilon}{\mu}+2 , then T has a fixed point.
Proof. Let there exists x_0\in X such that x_1\in T(x_0) . We construct an iterative sequence x_n of points in X such a way that, x_{n}\in T(x_{n-1} ) where n = 1, 2, \ldots . We observe that if x_n = x_{n+1} , then x_n is a fixed point of T . Thus, suppose that x_n\neq x_{n+1} for all n\geq 0 . By Lemma 3.4 and taking h = \frac{1}{2(\mu+\upsilon)}, for x_{n+1}\in T(x_{n}) there exists x_{n+2}\in T(x_{n+1}) such that
\begin{equation} p_b\left( x_{n+1}, x_{n+2}\right)\leq \frac{1}{2(\mu+\upsilon)}\Upsilon_{p_b}\left(T(x_{n}, T(x_{n+1})\right) \leq \frac{1}{2(\mu+\upsilon)}[\mu M\left( x_{n}, x_{n+1}\right) +\upsilon N\left(x_{n}, x_{n+1}\right)]. \end{equation} | (4.2) |
Note that
\begin{eqnarray*} M\left(x_{n}, x_{n+1}\right) & = &\max \left\{ \begin{array}{ll} p_b\left( x_{n}, x_{n+1}\right), \dfrac{f_{p_{b}}\left(x_{n}, T(x_{n})\right) f_{p_{b}}\left( x_{n+1}, T(x_{n+1})\right) }{1+p_b\left(x_{n}, x_{n+1}\right) }, \\ \dfrac{f_{p_{b}}\left(x_{n}, T(x_{n})\right) f_{p_{b}}\left(x_{n+1}, T(x_{n+1})\right) } {1+\Upsilon_{p_b}\left(T(x_{n}), T(x_{n+1})\right) }\end{array}\right\}\\ &\leq&\max \left\{p_b\left(x_{n}, x_{n+1}\right), p_b\left(x_{n+1}, x_{n+2}\right) \right\}, \end{eqnarray*} |
and
\begin{eqnarray*} N\left(x_{n}, x_{n+1}\right) & = &\min \left\{\begin{array}{ll} f_{p_{b}}\left( x_{n}, T(x_{n})\right), f_{p_{b}}\left( x_{n}, T(x_{n+1})\right) , f_{p_{b}}\left( x_{n+1}, T(x_{n})\right), \\ f_{p_{b}}\left( x_{n+1}, T(x_{n+1})\right)\end{array} \right\}\\ &\leq &\min \left\{p_b\left(x_{n}, x_{n+1}\right), p_b\left(x_{n}, x_{n+2}\right), p_b\left(x_{n+1}, x_{n+1}\right), p_b\left( x_{n+1}, x_{n+2}\right) \right\}\\ & = &p_b\left(x_{n+1}, x_{n+1}\right). \end{eqnarray*} |
Observe that if M\left(x_{n}, x_{n+1}\right) = p_b\left(x_{n+1}, x_{n+2}\right) , then inequality (4.2) does not hold, therefore, substituting M\left(x_{n}, x_{n+1}\right) = p_b\left(x_{n}, x_{n+1}\right) and N\left(x_{n}, x_{n+1}\right) = p_b\left(x_{n+1}, x_{n+1}\right) in (4.2), we obtain
\begin{eqnarray*} p_b\left(x_{n+1}, x_{n+2}\right)&\leq &\frac{1}{2(\mu+\upsilon)}[\mu p_b\left( x_{n}, x_{n+1}\right)+\upsilon p_b\left(x_{n+1}, x_{n+1}\right)]\\ &\leq &\frac{1}{2(\mu+\upsilon)}[\mu p_b\left(x_{n}, x_{n+1}\right)+\upsilon p_b\left(x_{n+1}, x_{n+2}\right)]. \end{eqnarray*} |
Thus, we have
\begin{equation*} p_b\left( x_{n+1}, x_{n+2}\right)\leq \frac{\mu }{2\mu+\upsilon }p_b\left( x_{n}, x_{n+1}\right), \;{ \rm{ for\ all }}\; n = 0, 1, 2, \cdots. \end{equation*} |
This implies that
\begin{equation*} p_b\left( x_{n+1}, x_{n+2}\right) \leq \left( \frac{\mu }{2\mu+\upsilon }\right) ^{n+1}p_{b}(x_{0}, x_{1}). \end{equation*} |
The remaining part of the proof is omitted. It follows directly from the proof of Theorem 3.5.
Example 4.3. Let A = \{1, 2, 3, \cdots, 40\} and X = A\cup\{\infty\} . Let p_b:X\times X\to\mathbb{R} be given by the rule
p_b(x, y) = \begin{cases} \frac{\mu}{760}, &{\rm{if}}\; x = y , \\ |\frac{1}{x}-\frac{1}{y}|, &{\rm{if\ one\ of}}\; x, y\ {\rm{is\ even\ and\ the\ other\ is\ even\ or }}\; \infty , \\ 5, &{\rm{if\ one\ of}}\; x, y\ {\rm{is\ odd\ and\ the\ other\ is\ odd}}\;({\rm{and}} \; x\ne y ) \;{\rm{or}} \; \infty , \\ 2, &{\rm{otherwise}}. \end{cases} |
Then, (X, p_b) is a partial b -metric space with s = 5/2 . Let the mapping T\colon X\to CB_{p_b}(X) be defined by
\begin{equation*} T(x) = \left \{ \begin{array}{ll} \left\{3, 6\right\} &\;{\rm{ if }}\;x\in \mathbb{N}-\left\{3, 6\right\} \\ \left\{\infty\right\} &\;{\rm{ if }}\;x\in \left\{\infty, 3, 6\right\} \end{array} \right. \end{equation*} |
The mapping T satisfies (4.1). Indeed,
Case 1. If x, y\neq 6 are even numbers. Then \Upsilon_{p_b}\left(T(x), T(y)\right) = \Upsilon_{p_b}\left(\left\{3, 6\right\}, \left\{3, 6\right\}\right) = \frac{\mu}{760} , and for x = 6 , y = \infty , \Upsilon_{p_b}\left(T(x), T(y)\right) = \frac{\mu}{760} , and if x = 6 , y is any other even number, then \Upsilon_{p_b}\left(T(x), T(y)\right) = \Upsilon_{p_b}\left(\{\infty\}, \{3, 6\}\right) = \frac{1}{6}. In all these sub-cases, there exist \mu, \upsilon\in (0, 1) satisfying 2(\mu+\upsilon) < 1 such that the RHS of (4.1) is greater than \Upsilon_{p_b}\left(T(x), T(y)\right).
Case 2. If x, y\neq 3 are odd numbers (and x\ne y ). Then \Upsilon_{p_b}\left(T(x), T(y)\right) = \Upsilon_{p_b}\left(\left\{3, 6\right\}, \left\{3, 6\right\}\right) = \frac{\mu}{760} , and for x = 3 , y = \infty , \Upsilon_{p_b}\left(T(x), T(y)\right) = \frac{\mu}{760} , and if x = 3 , y is any other odd number, then \Upsilon_{p_b}\left(T(x), T(y)\right) = \Upsilon_{p_b}\left(\{\infty\}, \{3, 6\}\right) = \frac{1}{6}. In all these sub-cases, there exist \mu, \upsilon\in (0, 1) satisfying 2(\mu+\upsilon) < 1 such that the RHS of (4.1) is greater than \Upsilon_{p_b}\left(T(x), T(y)\right).
Case 3. If x, y are natural numbers of different parity. Then \Upsilon_{p_b}\left(T(x), T(y)\right) = \frac{\mu}{760} , M\left(x, y\right) = 2 and N\left(x, y\right)\geq \frac{\mu}{760} . We can find \mu, \upsilon\in (0, 1) satisfying 2(\mu+\upsilon) < 1 such that the RHS of (4.1) is greater than \Upsilon_{p_b}\left(T(x), T(y)\right).
Similarly, for all other cases, we have same conclusion. The point x = \infty is a fixed point of T . Since, the mapping p_b is not a partial metric and a b -metric, so, Theorem 4.2 is only useful in the partial b -metric space.
This section contains an existence theorem for the solution to the following boundary value problem (BVP):
\begin{equation} -\frac{d^{2}\acute{y}}{dt^{2}} = g(t, \acute{y}(t)); \forall t\in [0, 1] = J, \, \acute{y}(0) = \acute{y}(1) = 0. \end{equation} | (5.1) |
The associated Green's function \mathcal{G}:J\times J\rightarrow J to (5.1) can be defined as follows:
\begin{equation*} \mathcal{G}\left( t, \;l\right) = \left\{ \begin{array}{c} t\left( 1-l\right) \;{\rm{ if }}\;0\leq t\leq l\leq 1 \\ l\left( 1-t\right) \;{\rm{ if }}\;0\leq l\leq t\leq 1 \end{array} \right\} \end{equation*} |
Let \mathcal{C}(J) represents the set of continuous functions defined on J . Let the mapping b:\mathcal{C}\left(J\right) \times \mathcal{C}\left(J\right) \rightarrow \left[0, \; \infty \right) be defined by
\begin{equation*} b\left(f, h\right) = \left\Vert \left( f-h\right) ^{2}\right\Vert = \sup \left\vert f\left( t\right) -h\left( t\right) \right\vert ^{2}, \forall f, h\in \mathcal{C}(J), \;{ \rm{ and }}\;t\in J. \end{equation*} |
The pair \left(\mathcal{C}(J), b\right) is a complete b -metric space with s = 2 . The associated integral operator \mathcal{S}:\mathcal{C}(J)\rightarrow \mathcal{C}(J) to (5.1) is defined by:
\begin{eqnarray*} \mathcal{S}(f)(t) & = &\int_{0}^{1}\mathcal{G}(t, b)g(b, f(b))db. \end{eqnarray*} |
It is remarked that the fixed point of the operator \mathcal{S} is a solution to (5.1). The following theorem states the condition under which the BVP has a solution.
Theorem 5.1. Let the function g:J \times \mathcal{C}\left(J\right) \rightarrow \mathbb{R} is continuous and satisfies the following condition:
\begin{equation*} \left\vert g(t, f)-g(t, h)\right\vert ^{2}\leq 64\left(\mu\left\vert f(t)-h(t)\right\vert ^{2}+\upsilon\left|h(t)-\mathcal{S}(f)(t)\right|^{2}\right), \end{equation*} |
for all t\in J , f, h\in \mathcal{C}\left(J\right) and \mu, \upsilon\in (0, 1) satisfying 2(\mu+\upsilon) < 1 and s < \frac{\upsilon}{\mu}+2 .Then the BVP (5.1) has a solution.
Proof. This proof will be done by the application of Theorem 3.8. Since, the function g is continuous, so, the operator \mathcal{S}:\mathcal{C}\left(J\right)\rightarrow \mathcal{C}\left(J\right) defined above is continuous. To show that the mapping \mathcal{S} form an almost contraction, we proceed as follow:
\begin{eqnarray*} \left\vert \mathcal{S}(f)(t)-\mathcal{S}(h)(t)\right\vert ^{2}& = &\left\vert \int_{0}^{1}\mathcal{G}\left(t, b\right) \left(g\left( b, f \right) -g\left( b, h \right) \right) db\right\vert ^{2}\\ &\leq& \left( \int_{0}^{1}\mathcal{G}\left( t, b\right) \sqrt{64\left(\mu\left\vert f(t)-h(t)\right\vert ^{2}+\upsilon\left|h(t)-\mathcal{S}(f)(t)\right|^{2}\right)}dt\right) ^{2}. \end{eqnarray*} |
Since, \left(\sup \int_{0}^{1}\mathcal{G}\left(t, b\right) db\right) ^{2} = \frac{1}{64}, for all t\in J, thus, taking supremum on both sides of above inequality, we have
\begin{equation*} p_b\left(\mathcal{S}(f), \mathcal{S}(h)\right) \leq \mu d(f, h)+\upsilon d(h, \mathcal{S}(f))\;\forall \, f, h\in \mathcal{C}(J). \end{equation*} |
Now for any partial b -metric p_{b} on \mathcal{C}(J) , we can have a b -metric b on \mathcal{C}(J) by
\begin{equation*} b(f, h) = \left\{ \begin{array}{c} p_{b}\left( f, h\right) \;{\rm{ if }}\;f\neq h \\ 0\;{\rm{ if }}\;f = h \end{array} \right. \end{equation*} |
The last inequality can be written as:
\begin{equation*} p_{b}\left( \mathcal{S}(f), \mathcal{S}(h)\right) \leq \mu p_{b}(f, h)+\upsilon p_{b}(h, \mathcal{S}(f))\;\forall \;f, h \in \mathcal{C}(J). \end{equation*} |
Hence, by Theorem 3.8, the BVP (5.1) has a solution in \mathcal{C}(J) .
We would like to express our sincere gratitude to the anonymous referee for his/her helpful comments that will help to improve the quality of the manuscript.
The authors declare that they have no competing interests.
[1] | K. Agarwal, S. Qureshi, J. Nema, A fixed point theorem for b-metric space, International Journal of Pure and Applied Mathematical Sciences, 9 (2016), 45–50. |
[2] |
A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mapping in partially ordered b-metric spaces, Math. Slovaca, 64 (2014), 941–960. http://dx.doi.org/10.2478/s12175-014-0250-6 doi: 10.2478/s12175-014-0250-6
![]() |
[3] |
I. Altun, O. Acar, Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces, Topol. Appl., 159 (2012), 2642–2648. http://dx.doi.org/10.1016/j.topol.2012.04.004 doi: 10.1016/j.topol.2012.04.004
![]() |
[4] | E. Ameer, H. Huang, M. Nazam, M. Arshad, Fixed point theorems for multivalued \gamma-FG- contractions with (\alpha_{*}, \beta_{*}) admissible mappings in the partial b-metric spaces and application, U.P.B. Sci. Bull., Series A, 81 (2019), 97–108. |
[5] |
H. Aydi, M. Abbas, C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topol. Appl., 159 (2012), 3234–3242. http://dx.doi.org/10.1016/j.topol.2012.06.012 doi: 10.1016/j.topol.2012.06.012
![]() |
[6] | V. Berinde, On the approximation of fixed points of weak contractive mappings, Carpathian J. Math., 19 (2003), 7–22. |
[7] | S. Czerwik, Contraction mappings in b -metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1993), 5–11. |
[8] |
D. Dolicanin-Dhekic, On some Ćirić type results in partial b-metric spaces, Filomat, 31 (2017), 3473–3481. http://dx.doi.org/10.2298/FIL1711473D doi: 10.2298/FIL1711473D
![]() |
[9] | A. Felhi, Some fixed point results for multivalued contractive mappings in partial b-metric spaces, J. Adv. Math. Stud., 9 (2016), 208–225. |
[10] |
Y. Feng, S. Liu, Fixed point theorems for multivalued contractive mappings and multivalued Caristi type mappings, J. Math. Anal. Appl., 317 (2006), 103–112. http://dx.doi.org/10.1016/j.jmaa.2005.12.004 doi: 10.1016/j.jmaa.2005.12.004
![]() |
[11] |
T. Hicks, B. E. Rhoades, Fixed points and continuity for multivalued mappings, Int. J. Math. Math. Sci., 15 (1992), 893291. http://dx.doi.org/10.1155/S0161171292000024 doi: 10.1155/S0161171292000024
![]() |
[12] |
M. Iqbal, A. Batool, O. Ege, M. de la Sen, Fixed point of almost contraction in b-metric spaces, J. Math., 2020 (2020), 3218134. http://dx.doi.org/10.1155/2020/3218134 doi: 10.1155/2020/3218134
![]() |
[13] |
M. A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal. Theor., 73 (2010), 3123–3129. http://dx.doi.org/10.1016/j.na.2010.06.084 doi: 10.1016/j.na.2010.06.084
![]() |
[14] |
S. G. Matthews, Partial metric topology, Ann. NY Acad. Sci., 728 (1994), 183–197. http://dx.doi.org/10.1111/j.1749-6632.1994.tb44144.x doi: 10.1111/j.1749-6632.1994.tb44144.x
![]() |
[15] |
R. Miculescu, A. Mihail, New fixed point theorems for set-valued contractions in b-metric spaces, J. Fixed Point Theory Appl., 19 (2017), 2153–2163. http://dx.doi.org/10.1007/s11784-016-0400-2 doi: 10.1007/s11784-016-0400-2
![]() |
[16] |
Z. Mustafa, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Some common fixed point results in ordered partial b-metric spaces, J. Inequal. Appl., 2013 (2013), 562. http://dx.doi.org/10.1186/1029-242X-2013-562 doi: 10.1186/1029-242X-2013-562
![]() |
[17] |
M. Nazam, On Jc-contraction and related fixed point problem with applications, Math. Method. Appl. Sci., 43 (2020), 10221–10236. http://dx.doi.org/10.1002/mma.6689 doi: 10.1002/mma.6689
![]() |
[18] |
M. Nazam, O. Acar, Fixed points of (\alpha-\psi)-contractions in Hausdorff partial metric spaces, Math. Method. Appl. Sci., 42 (2019), 5159–5173. http://dx.doi.org/10.1002/mma.5251 doi: 10.1002/mma.5251
![]() |
[19] |
M. Nazam, Z. Hamid, H. Al Sulam, A. Hussain, Common fixed-point theorems in the partial b-metric spaces and an application to the system of boundary value problems, J. Funct. Space, 2021 (2021), 7777754. http://dx.doi.org/10.1155/2021/7777754 doi: 10.1155/2021/7777754
![]() |
[20] | S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475–488. |
[21] | R. T. Rockafellar, R. J. B. Wets, Variational analysis, Berlin, Heidelberg: Springer, 1998. http://dx.doi.org/10.1007/978-3-642-02431-3 |
[22] |
B. Samet, C. Vetro, P. Vetro, Fixed point theorems for (\alpha-\psi)-contractive type mappings, Nonlinear Anal. Theor., 75 (2012), 2154–2165. http://dx.doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014
![]() |
[23] |
S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterr. J. Math., 11 (2014), 703–711. http://dx.doi.org/10.1007/s00009-013-0327-4 doi: 10.1007/s00009-013-0327-4
![]() |
1. | Mustafa Mudhesh, Hasanen A. Hammad, Eskandar Ameer, Muhammad Arshad, Fahd Jarad, Novel results on fixed-point methodologies for hybrid contraction mappings in M_{b} -metric spaces with an application, 2023, 8, 2473-6988, 1530, 10.3934/math.2023077 | |
2. | Hongyan Guan, Chen Lang, Yan Hao, Cristian Chifu, Sehgal-Guseman-Type Fixed Point Theorems in Rectangular b -Metric Spaces and Solvability of Nonlinear Integral Equation, 2023, 2023, 2314-8888, 1, 10.1155/2023/2877019 |