Research article

Existence fixed-point theorems in the partial $ b $-metric spaces and an application to the boundary value problem

  • Received: 04 November 2021 Revised: 16 February 2022 Accepted: 17 February 2022 Published: 25 February 2022
  • MSC : 47H09, 47H10, 54H25

  • In this paper, we prove some results on the Hausdorff partial $ b $-metrics. We prove some new Lemmas regarding convergence of the sequences in the Hausdorff partial b-metric spaces. The obtained results generalize and improve many existing fixed-point results. The examples are given for the explanation of theory. The existence of the solution to the boundary value problem is proved via fixed-point approach.

    Citation: Saeed Anwar, Muhammad Nazam, Hamed H Al Sulami, Aftab Hussain, Khalil Javed, Muhammad Arshad. Existence fixed-point theorems in the partial $ b $-metric spaces and an application to the boundary value problem[J]. AIMS Mathematics, 2022, 7(5): 8188-8205. doi: 10.3934/math.2022456

    Related Papers:

  • In this paper, we prove some results on the Hausdorff partial $ b $-metrics. We prove some new Lemmas regarding convergence of the sequences in the Hausdorff partial b-metric spaces. The obtained results generalize and improve many existing fixed-point results. The examples are given for the explanation of theory. The existence of the solution to the boundary value problem is proved via fixed-point approach.



    加载中


    [1] K. Agarwal, S. Qureshi, J. Nema, A fixed point theorem for $b$-metric space, International Journal of Pure and Applied Mathematical Sciences, 9 (2016), 45–50.
    [2] A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mapping in partially ordered $b$-metric spaces, Math. Slovaca, 64 (2014), 941–960. http://dx.doi.org/10.2478/s12175-014-0250-6 doi: 10.2478/s12175-014-0250-6
    [3] I. Altun, O. Acar, Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces, Topol. Appl., 159 (2012), 2642–2648. http://dx.doi.org/10.1016/j.topol.2012.04.004 doi: 10.1016/j.topol.2012.04.004
    [4] E. Ameer, H. Huang, M. Nazam, M. Arshad, Fixed point theorems for multivalued $\gamma-FG-$ contractions with $(\alpha_{*}, \beta_{*})$ admissible mappings in the partial b-metric spaces and application, U.P.B. Sci. Bull., Series A, 81 (2019), 97–108.
    [5] H. Aydi, M. Abbas, C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topol. Appl., 159 (2012), 3234–3242. http://dx.doi.org/10.1016/j.topol.2012.06.012 doi: 10.1016/j.topol.2012.06.012
    [6] V. Berinde, On the approximation of fixed points of weak contractive mappings, Carpathian J. Math., 19 (2003), 7–22.
    [7] S. Czerwik, Contraction mappings in $b$ -metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1993), 5–11.
    [8] D. Dolicanin-Dhekic, On some Ćirić type results in partial b-metric spaces, Filomat, 31 (2017), 3473–3481. http://dx.doi.org/10.2298/FIL1711473D doi: 10.2298/FIL1711473D
    [9] A. Felhi, Some fixed point results for multivalued contractive mappings in partial $b$-metric spaces, J. Adv. Math. Stud., 9 (2016), 208–225.
    [10] Y. Feng, S. Liu, Fixed point theorems for multivalued contractive mappings and multivalued Caristi type mappings, J. Math. Anal. Appl., 317 (2006), 103–112. http://dx.doi.org/10.1016/j.jmaa.2005.12.004 doi: 10.1016/j.jmaa.2005.12.004
    [11] T. Hicks, B. E. Rhoades, Fixed points and continuity for multivalued mappings, Int. J. Math. Math. Sci., 15 (1992), 893291. http://dx.doi.org/10.1155/S0161171292000024 doi: 10.1155/S0161171292000024
    [12] M. Iqbal, A. Batool, O. Ege, M. de la Sen, Fixed point of almost contraction in $b$-metric spaces, J. Math., 2020 (2020), 3218134. http://dx.doi.org/10.1155/2020/3218134 doi: 10.1155/2020/3218134
    [13] M. A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal. Theor., 73 (2010), 3123–3129. http://dx.doi.org/10.1016/j.na.2010.06.084 doi: 10.1016/j.na.2010.06.084
    [14] S. G. Matthews, Partial metric topology, Ann. NY Acad. Sci., 728 (1994), 183–197. http://dx.doi.org/10.1111/j.1749-6632.1994.tb44144.x doi: 10.1111/j.1749-6632.1994.tb44144.x
    [15] R. Miculescu, A. Mihail, New fixed point theorems for set-valued contractions in $b$-metric spaces, J. Fixed Point Theory Appl., 19 (2017), 2153–2163. http://dx.doi.org/10.1007/s11784-016-0400-2 doi: 10.1007/s11784-016-0400-2
    [16] Z. Mustafa, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Some common fixed point results in ordered partial b-metric spaces, J. Inequal. Appl., 2013 (2013), 562. http://dx.doi.org/10.1186/1029-242X-2013-562 doi: 10.1186/1029-242X-2013-562
    [17] M. Nazam, On Jc-contraction and related fixed point problem with applications, Math. Method. Appl. Sci., 43 (2020), 10221–10236. http://dx.doi.org/10.1002/mma.6689 doi: 10.1002/mma.6689
    [18] M. Nazam, O. Acar, Fixed points of $(\alpha-\psi)$-contractions in Hausdorff partial metric spaces, Math. Method. Appl. Sci., 42 (2019), 5159–5173. http://dx.doi.org/10.1002/mma.5251 doi: 10.1002/mma.5251
    [19] M. Nazam, Z. Hamid, H. Al Sulam, A. Hussain, Common fixed-point theorems in the partial b-metric spaces and an application to the system of boundary value problems, J. Funct. Space, 2021 (2021), 7777754. http://dx.doi.org/10.1155/2021/7777754 doi: 10.1155/2021/7777754
    [20] S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475–488.
    [21] R. T. Rockafellar, R. J. B. Wets, Variational analysis, Berlin, Heidelberg: Springer, 1998. http://dx.doi.org/10.1007/978-3-642-02431-3
    [22] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $(\alpha-\psi)$-contractive type mappings, Nonlinear Anal. Theor., 75 (2012), 2154–2165. http://dx.doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014
    [23] S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterr. J. Math., 11 (2014), 703–711. http://dx.doi.org/10.1007/s00009-013-0327-4 doi: 10.1007/s00009-013-0327-4
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1516) PDF downloads(83) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog