Research article

Two new generalized iteration methods for solving absolute value equations using $ M $-matrix

  • Received: 19 October 2021 Revised: 24 January 2022 Accepted: 06 February 2022 Published: 25 February 2022
  • MSC : 90C30, 65F10

  • In this paper, we present two new generalized Gauss-Seidel iteration methods for solving absolute value equations $ Ax-| x | = b, $ where $ A $ is an $ M $-matrix. Furthermore, we demonstrate their convergence under specific assumptions. Numerical tests indicate the efficiency of the suggested methods with suitable parameters.

    Citation: Rashid Ali, Ilyas Khan, Asad Ali, Abdullah Mohamed. Two new generalized iteration methods for solving absolute value equations using $ M $-matrix[J]. AIMS Mathematics, 2022, 7(5): 8176-8187. doi: 10.3934/math.2022455

    Related Papers:

  • In this paper, we present two new generalized Gauss-Seidel iteration methods for solving absolute value equations $ Ax-| x | = b, $ where $ A $ is an $ M $-matrix. Furthermore, we demonstrate their convergence under specific assumptions. Numerical tests indicate the efficiency of the suggested methods with suitable parameters.



    加载中


    [1] J. Feng, S. Liu, An improved generalized Newton method for absolute value equations, SpringerPlus, 5 (2016), 1042. https://doi.org/10.1186/s40064-016-2720-5 doi: 10.1186/s40064-016-2720-5
    [2] J. Feng, S. Liu, A new two-step iterative method for solving absolute value equations, J. Inequal. Appl., 2019 (2019), 39. https://doi.org/10.1186/s13660-019-1969-y doi: 10.1186/s13660-019-1969-y
    [3] L. Abdallah, M. Haddou, T. Migot, Solving absolute value equation using complementarity and smoothing functions, J. Comput. Appl. Math., 327 (2018), 196–207. https://doi.org/10.1016/j.cam.2017.06.019 doi: 10.1016/j.cam.2017.06.019
    [4] F. Mezzadri, On the solution of general absolute value equations, Appl. Math. Lett., 107 (2020), 106462. https://doi.org/10.1016/j.aml.2020.106462 doi: 10.1016/j.aml.2020.106462
    [5] I. Ullah, R. Ali, H. Nawab, Abdussatar, I. Uddin, T. Muhammad, et al., Theoretical analysis of activation energy effect on prandtl–eyring nanoliquid flow subject to melting condition, J. Non-Equil. Thermody., 47 (2022), 1–12. https://doi.org/10.1515/jnet-2020-0092 doi: 10.1515/jnet-2020-0092
    [6] M. Amin, M. Erfanian, A dynamic model to solve the absolute value equations, J. Comput. Appl. Math., 333 (2018), 28–35. https://doi.org/10.1016/j.cam.2017.09.032 doi: 10.1016/j.cam.2017.09.032
    [7] L. Caccetta, B. Qu, G. L. Zhou, A globally and quadratically convergent method for absolute value equations, Comput. Optim. Appl., 48 (2011), 45–58. https://doi.org/10.1007/s10589-009-9242-9 doi: 10.1007/s10589-009-9242-9
    [8] C. Chen, D. Yu, D. Han, Optimal parameter for the SOR-like iteration method for solving the system of absolute value equations, arXiv. Available from: https://arXiv.org/abs/2001.05781.
    [9] M. Dehghan, A. Shirilord, Matrix multisplitting Picard-iterative method for solving generalized absolute value matrix equation, Appl. Numer. Math., 158 (2020), 425–438. https://doi.org/10.1016/j.apnum.2020.08.001 doi: 10.1016/j.apnum.2020.08.001
    [10] X. Dong, X. H. Shao, H. L. Shen, A new SOR-like method for solving absolute value equations, Appl. Numer. Math., 156 (2020), 410–421. https://doi.org/10.1016/j.apnum.2020.05.013 doi: 10.1016/j.apnum.2020.05.013
    [11] V. Edalatpour, D. Hezari, D. K. Salkuyeh, A generalization of the Gauss-Seidel iteration method for solving absolute value equations, Appl. Math. Comput., 293 (2017), 156–167. https://doi.org/10.1016/j.amc.2016.08.020 doi: 10.1016/j.amc.2016.08.020
    [12] A. J. Fakharzadeh, N. N. Shams, An efficient algorithm for solving absolute value equations, J. Math. Ext., 15 (2021), 1–23. https://doi.org/10.30495/JME.2021.1393 doi: 10.30495/JME.2021.1393
    [13] X. M. Gu, T. Z. Huang, H. B. Li, S. F. Wang, L. Li, Two-CSCS based iteration methods for solving absolute value equations, J. Appl. Math. Comput., 7 (2017), 1336–1356. https://doi.org/10.11948/2017082 doi: 10.11948/2017082
    [14] P. Guo, S. L. Wu, C. X. Li, On the SOR-like iteration method for solving absolute value equations, Appl. Math. Lett., 97 (2019), 107–113. https://doi.org/10.1016/j.aml.2019.03.033 doi: 10.1016/j.aml.2019.03.033
    [15] F. Hashemi, S. Ketabchi, Numerical comparisons of smoothing functions for optimal correction of an infeasible system of absolute value equations, Numer. Algebra Control Optim., 10 (2020), 13–21. https://doi.org/10.3934/naco.2019029 doi: 10.3934/naco.2019029
    [16] I. Uddin, I. Ullah, R. Ali, I. Khan, K. S. Nisar, Numerical analysis of nonlinear mixed convective MHD chemically reacting flow of Prandtl-Eyring nanofluids in the presence of activation energy and Joule heating, J. Therm. Anal. Calorim., 145 (2021), 495–505. https://doi.org/10.1007/s10973-020-09574-2 doi: 10.1007/s10973-020-09574-2
    [17] S. L. Hu, Z. H. Huang, A note on absolute value equations, Optim. Lett., 4 (2010), 417–424. https://doi.org/10.1007/s11590-009-0169-y doi: 10.1007/s11590-009-0169-y
    [18] S. Ketabchi, H. Moosaei, Minimum norm solution to the absolute value equation in the convex case, J. Optim. Theory Appl., 154 (2012), 1080–1087. https://doi.org/10.1007/s10957-012-0044-3 doi: 10.1007/s10957-012-0044-3
    [19] Y. F. Ke, C. F. Ma, SOR-like iteration method for solving absolute value equations, Appl. Math. Comput., 311 (2017), 195–202. https://doi.org/10.1016/j.amc.2017.05.035 doi: 10.1016/j.amc.2017.05.035
    [20] Y. F. Ke, The new iteration algorithm for absolute value equation, Appl. Math. Lett., 99 (2020), 105990. https://doi.org/10.1016/j.aml.2019.07.021 doi: 10.1016/j.aml.2019.07.021
    [21] C. X. Li, A preconditioned AOR iterative method for the absolute value equations, Int. J. Comput. Methods, 14 (2017), 1750016. https://doi.org/10.1142/S0219876217500165 doi: 10.1142/S0219876217500165
    [22] H. Moosaei, S. Ketabchi, M. A. Noor, J. Iqbal, V. Hooshyarbakhsh, Some techniques for solving absolute value equations, Appl. Math. Comput., 268 (2015), 696–705. https://doi.org/10.1016/j.amc.2015.06.072 doi: 10.1016/j.amc.2015.06.072
    [23] O. L. Mangasarian, R. R. Meyer, Absolute value equation, Linear Algebra Appl., 419 (2006), 359–367. https://doi.org/10.1016/j.laa.2006.05.004 doi: 10.1016/j.laa.2006.05.004
    [24] O. L. Mangasarian, Absolute value programming, Comput. Optim. Applic., 36 (2007), 43–53. https://doi.org/10.1007/s10589-006-0395-5 doi: 10.1007/s10589-006-0395-5
    [25] O. L. Mangasarian, Absolute value equation solution via concave minimization, Optim. Lett., 1 (2007), 3–8. https://doi.org/10.1007/s11590-006-0005-6 doi: 10.1007/s11590-006-0005-6
    [26] O. L. Mangasarian, Linear complementarity as absolute value equation solution, Optim. Lett., 8 (2014), 1529–1534. https://doi.org/10.1007/s11590-013-0656-z doi: 10.1007/s11590-013-0656-z
    [27] X. H. Miao, J. T. Yang, B. Saheya, J. S. Chen, A smoothing Newton method for absolute value equation associated with second-order cone, Appl. Numer. Math., 120 (2017), 82–96. https://doi.org/10.1016/j.apnum.2017.04.012 doi: 10.1016/j.apnum.2017.04.012
    [28] C. T. Nguyen, B. Saheya, Y. L. Chang, J. S. Chen, Unified smoothing functions for absolute value equation associated with second-order cone, Appl. Numer. Math., 135 (2019), 206–227. https://doi.org/10.1016/j.apnum.2018.08.019 doi: 10.1016/j.apnum.2018.08.019
    [29] O. A. Prokopyev, On equivalent reformulations for absolute value equations, Comput. Optim. Appl., 44 (2009), 363. https://doi.org/10.1007/s10589-007-9158-1 doi: 10.1007/s10589-007-9158-1
    [30] J. Rohn, A theorem of the alternatives for the equation $ Ax + B | x | = b$, Linear Multilinear Algebra, 52 (2004), 421–426. https://doi.org/10.1080/0308108042000220686 doi: 10.1080/0308108042000220686
    [31] J. Rohn, V. Hooshyarbakhsh, R. Farhadsefat, An iterative method for solving absolute value equations and sufficient conditions for unique solvability, Optim. Lett., 8 (2014), 35–44. https://doi.org/10.1007/s11590-012-0560-y doi: 10.1007/s11590-012-0560-y
    [32] B. Saheya, C. H. Yu, J. S. Chen, Numerical comparisons based on four smoothing functions for absolute value equation, J. Appl. Math. Comput., 56 (2018), 131–149. https://doi.org/10.1007/s12190-016-1065-0 doi: 10.1007/s12190-016-1065-0
    [33] R. S. Varga, Matrix iterative analysis, New Jersey: Prentice-Hall, Englewood Cliffs, 1962.
    [34] S. L. Wu, C. X. Li, A special shift splitting iteration method for absolute value equation, AIMS Math., 5 (2020), 5171–5183. https://doi.org/10.3934/math.2020332 doi: 10.3934/math.2020332
    [35] S. L. Wu, The unique solution of a class of the new generalized absolute value equation, Appl. Math. Lett., 116 (2021), 107029. https://doi.org/10.1016/j.aml.2021.107029 doi: 10.1016/j.aml.2021.107029
    [36] R. Ali, M. R. Khan, A. Abidi, S. Rasheed, A. M. Galal, Application of PEST and PEHF in magneto-Williamson nanofluid depending on the suction/injection, Case Stud. Therm. Eng., 27 (2021). https://doi.org/10.1016/j.csite.2021.101329 doi: 10.1016/j.csite.2021.101329
    [37] C. X. Li, S. L. Wu, Modified SOR-like iteration method for absolute value equations, Math. Probl. Eng., 2020 (2020), 9231639. https://doi.org/10.1155/2020/9231639 doi: 10.1155/2020/9231639
    [38] M. R. Khan, M. X. Li, S. P. Mao, R. Ali, S. Khan, Comparative study on heat transfer and friction drag in the flow of various hybrid nanofluids efiected by aligned magnetic fleld and nonlinear radiation, Sci. Rep., 11 (2021), 3691.
    [39] J. Y. Bello Cruz, O. P. Ferreira, L. F. Prudente, On the global convergence of the inexact semi-smooth Newton method for absolute value equation, Comput. Optim. Appl., 65 (2016), 93–108. https://doi.org/10.1007/s10589-016-9837-x doi: 10.1007/s10589-016-9837-x
    [40] G. Ning, Y. Zhou, An improved differential evolution algorithm for solving absolute value equations, In: J. Xie, Z. Chen, C. Douglas, W. Zhang, Y. Chen, High performance computing and applications, Lecture Notes in Computer Science, Springer, 9576 (2016), 38–47. https://doi.org/10.1007/978-3-319-32557-6
    [41] D. K. Salkuyeh, The Picard-HSS iteration method for absolute value equations, Optim. Lett., 8 (2014), 2191–2202. https://doi.org/10.1007/s11590-014-0727-9 doi: 10.1007/s11590-014-0727-9
    [42] Z. Z. Bai, Modulus-based matrix splitting iteration methods for linear complementarity problems, Numer. Linear Algebra Appl., 17 (2010), 917–933. https://doi.org/10.1002/nla.680 doi: 10.1002/nla.680
    [43] R. Ali, A. Ali, S. Iqbal, Iterative methods for solving absolute value equations, J. Math. Comput. Sci., 26 (2022), 322–329. https://doi.org/10.22436/jmcs.026.04.01 doi: 10.22436/jmcs.026.04.01
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2161) PDF downloads(225) Cited by(16)

Article outline

Figures and Tables

Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog