Research article

Two new generalized iteration methods for solving absolute value equations using M-matrix

  • Received: 19 October 2021 Revised: 24 January 2022 Accepted: 06 February 2022 Published: 25 February 2022
  • MSC : 90C30, 65F10

  • In this paper, we present two new generalized Gauss-Seidel iteration methods for solving absolute value equations Ax|x|=b, where A is an M-matrix. Furthermore, we demonstrate their convergence under specific assumptions. Numerical tests indicate the efficiency of the suggested methods with suitable parameters.

    Citation: Rashid Ali, Ilyas Khan, Asad Ali, Abdullah Mohamed. Two new generalized iteration methods for solving absolute value equations using M-matrix[J]. AIMS Mathematics, 2022, 7(5): 8176-8187. doi: 10.3934/math.2022455

    Related Papers:

    [1] Wan-Chen Zhao, Xin-Hui Shao . New matrix splitting iteration method for generalized absolute value equations. AIMS Mathematics, 2023, 8(5): 10558-10578. doi: 10.3934/math.2023536
    [2] Yang Cao, Quan Shi, Sen-Lai Zhu . A relaxed generalized Newton iteration method for generalized absolute value equations. AIMS Mathematics, 2021, 6(2): 1258-1275. doi: 10.3934/math.2021078
    [3] Shu-Xin Miao, Xiang-Tuan Xiong, Jin Wen . On Picard-SHSS iteration method for absolute value equation. AIMS Mathematics, 2021, 6(2): 1743-1753. doi: 10.3934/math.2021104
    [4] Miao Guo, Qingbiao Wu . Two effective inexact iteration methods for solving the generalized absolute value equations. AIMS Mathematics, 2022, 7(10): 18675-18689. doi: 10.3934/math.20221027
    [5] ShiLiang Wu, CuiXia Li . A special shift splitting iteration method for absolute value equation. AIMS Mathematics, 2020, 5(5): 5171-5183. doi: 10.3934/math.2020332
    [6] Cui-Xia Li, Long-Quan Yong . Modified BAS iteration method for absolute value equation. AIMS Mathematics, 2022, 7(1): 606-616. doi: 10.3934/math.2022038
    [7] Xin-Hui Shao, Wan-Chen Zhao . Relaxed modified Newton-based iteration method for generalized absolute value equations. AIMS Mathematics, 2023, 8(2): 4714-4725. doi: 10.3934/math.2023233
    [8] Rashid Ali, Fuad A. Awwad, Emad A. A. Ismail . The development of new efficient iterative methods for the solution of absolute value equations. AIMS Mathematics, 2024, 9(8): 22565-22577. doi: 10.3934/math.20241098
    [9] Hailun Wang, Fei Wu, Dongge Lei . A novel numerical approach for solving fractional order differential equations using hybrid functions. AIMS Mathematics, 2021, 6(6): 5596-5611. doi: 10.3934/math.2021331
    [10] Xiaofeng Wang, Ying Cao . A numerically stable high-order Chebyshev-Halley type multipoint iterative method for calculating matrix sign function. AIMS Mathematics, 2023, 8(5): 12456-12471. doi: 10.3934/math.2023625
  • In this paper, we present two new generalized Gauss-Seidel iteration methods for solving absolute value equations Ax|x|=b, where A is an M-matrix. Furthermore, we demonstrate their convergence under specific assumptions. Numerical tests indicate the efficiency of the suggested methods with suitable parameters.



    The standard absolute value equation (AVE) is in the form of

    Ax|x|=b, (1.1)

    where ARn×n is an M-matrix, |x| represents all the elements of the vector xRn by absolute value and bRn. If "|x|" is replaced by "B|x|" in (1.1), then the general AVE is obtained, see [24,30]. The AVE has received considerable attention recently, as it is suitable for a wide variety of optimization problems, e.g., linear programming, linear complementarity problems (LCP) and convex quadratic programming [1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,23,25,26].

    In recent years, a wide variety of procedures have been developed for solving AVE (1.1). For example, Wu and Li [34] presented a special shift splitting technique for determining the AVE (1.1) and performed a convergence analysis. Ke and Ma [19] established the SOR-like process to solve the AVE (1.1). Chen et al. [8] modified the approach of [19] and analyzed the SOR-like approach using optimal parameters. Fakharzadeh and Shams [12] recommended the mixed-type splitting iterative scheme for determining (1.1) and established the convergence properties. Hu with Huang [17] have developed the AVE system as an LCP without any premise and demonstrated the existence and convexity properties. Caccetta et al. [7] studied a smoothing Newton procedure for solving (1.1) and established that the procedure is globally convergent when A1<1. Ning and Zhou [40] evaluated improved adaptive differential evolution for AVEs; in this technique, they use local and global search. Salkuyeh [41] addressed the Picard HSS iteration approach and provided sufficient conditions for its convergence, while Edalatpour et al. [11] offered a generalization of the Gauss-Seidel (GGS) approach for AVE (1.1). Cruz et al. [39] utilized the inexact non-smooth Newton approach and designated global linear convergence of the approach. Moosaei et al. [22] proposed two techniques for determining AVE (1.1), namely, the Newton technique with the Armijo step and the Homotopy perturbation technique. For more details, see [18,20,27,28,29,31,32,33,34,35,36,37,38,43].

    In this article, inspired by the work in [11], based on the GGS iteration method, the new generalized Gauss-Seidel (NGGS) iteration methods are presented to solve the AVE (1.1), and its convergence conditions are discussed in detail. By using some numerical tests, we demonstrate the efficacy of the newly developed methods.

    The rest of the article is designed as follows: Section 2 discusses some preliminary information. Section 3 provides details of the proposed methodologies and its convergence conditions. Section 4 reports some tests to indicate the efficiency of the offered methods. Finally, section 5 draws some conclusions.

    Here, we will provide some notations, the description of an M-matrix, as well as some helpful lemmas for the later research.

    Let A=(aij)Rn×n, we represent the absolute value, tridiagonal and infinity norm of A as |A|=(|aij|), Trd(A) and A, respectively. The matrix ARn×n is called an Z-matrix if aij0 for ij, and an M-matrix if it is a nonsingular Z-matrix and with A10.

    Lemma 2.1. [33] The matrix A=(aij)Rn×n is said to be strictly diagonally dominant when

    nnj=1,ji|aij|<|aii|, i=1,2,,n.

    Furthermore, if A is strictly diagonally dominant, then A is invertible.

    Lemma 2.2. [33] Consider z,xRn. Then |z||x|zx.

    Here, we discuss the two NGGS methods: Method Ⅰ represents the first method, while Method Ⅱ represents the second method.

    By revising the AVE (1.1)

    Ax|x|=b.

    By multiplying λ on both sides, we obtain

    λAxλ|x|=λb. (3.1)

    Let

    A=DALU=(ˉΩ+DAL)(ˉΩ+U) (3.2)

    where, DA, L and U respectively, are the diagonal, the strictly lower and upper-triangular parts of A. Moreover, ˉΩ=Ψ(2Ψ)(ID)1, where 0Ψ2 and I stands for the identity matrix. Using Eqs (3.1) and (3.2), the Method Ⅰ is suggested as:

    (ˉΩ+DAλL)xλ|x|=[(1λ)(ˉΩ+DA)+λ(ˉΩ+U)]x+λb. (3.3)

    Using the scheme, so Eq (3.3) can be written as

    (ˉΩ+DAλL)xi+1λ|xi+1|=[(1λ)(ˉΩ+DA)+λ(ˉΩ+U)]xi+λb. (3.4)

    Where i=0,1,2,..., and 0<λ1. Note that if λ=1 and ˉΩ=0, then the Eq (3.4) is reduces to the GGS method [11].

    In order to demonstrate the convergence of Method Ⅰ, we prove the theorem listed below.

    Theorem 3.1. Assume that the diagonal elements of matrix A are all greater than one, and the DALI matrix is a strict row-wise diagonally dominant matrix. If

    (ˉΩ+DAλL)1[(1λ)(ˉΩ+DA)+λ(ˉΩ+U)]<1λ(ˉΩ+DAλL)1. (3.5)

    Then the sequence {xi} of Method Ⅰ converges to the unique solution x of AVE (1.1).

    Proof. We will show first (ˉΩ+DAλL)1<1. Clearly, if we put L=0, then

    (ˉΩ+DAλL)1=(ˉΩ+DA)1<1.

    If we consider that L0, we get

    0|λL|t<(ˉΩ+DAI)t,

    if we take

    |λL|t<(ˉΩ+DAI)t.

    Taking both side by (ˉΩ+DA)1, we get

    (ˉΩ+DA)1|λL|t<(ˉΩ+DA)1((ˉΩ+DA)I)t,
    |λ(ˉΩ+DA)1L|t<(I(ˉΩ+DA)1)t,
    |λ(ˉΩ+DA)1L|t<t(ˉΩ+DA)1t,
    (ˉΩ+DA)1t<t|λ(ˉΩ+DA)1L|t,
    (ˉΩ+DA)1t<(1|Q|)t, (3.6)

    where Q=λ(ˉΩ+DA)1L and t=(1,1,...,1)T. Also, we have

    0|(IQ)1|=|I+Q+Q2+Q3+...+Qn1|,
    (I+|Q|+|Q|2+|Q|3+...+|Q|n1)=(I|Q|)1. (3.7)

    Thus, from Eqs (3.6) and (3.7), we get

    |(ˉΩ+DAλL)1|t=|(IQ)1(ˉΩ+DA)1|t|(IQ)1||(ˉΩ+DA)1|t,<(I|Q|)1(I|Q|)t=t.

    So, we obtain

    (ˉΩ+DAλL)1<1.

    To show the uniqueness of the solution, let x and z be two not the same solutions of the AVE (1.1). Using Eq (3.4), we get

    x=λ(ˉΩ+DAλL)1|x|+(ˉΩ+DAλL)1[((1λ)(ˉΩ+DA)+λ(ˉΩ+U))x+λb], (3.8)
    z=λ(ˉΩ+DAλL)1|z|+(ˉΩ+DAλL)1[((1λ)(ˉΩ+DA)+λ(ˉΩ+U))z+λb]. (3.9)

    From Eqs (3.8) and (3.9), we get

    xz=λ(ˉΩ+DAλL)1(|x||z|)+(DAλL)1((1λ)(ˉΩ+DA)+λ(ˉΩ+U))(xz).

    Using Lemma 2.2 and Eq (3.5), the above equation can be written as

    xzλ(ˉΩ+DAλL)1|x||z|+(ˉΩ+DAλL)1((1λ)(ˉΩ+DA)+λ(ˉΩ+U))xz,
    <λ(ˉΩ+DAλL)1xz+(1λ(ˉΩ+DAλL)1)xz,
    xzλ(ˉΩ+DAλL)1xz<(1λ(ˉΩ+DAλL)1)xz,
    (1λ(ˉΩ+DAλL)1)xz<(1λ(ˉΩ+DAλL)1)xz,
    xz<xz.

    The above results are contradictory. Finally, x=z.

    In order to verify the convergence, let x is a unique solution of (1.1). So, from Eq (3.8) and

    xi+1=λ(ˉΩ+DAλL)1|xi+1|+(ˉΩ+DAλL)1[((1λ)(ˉΩ+DA)+λ(ˉΩ+U))xi+λb],

    we deduce

    xi+1x=λ(ˉΩ+DAλL)1(|xi+1||x|)+(ˉΩ+DAλL)1[((1λ)(ˉΩ+DA)+λ(ˉΩ+U))(xix)].

    Based on Lemma 2.2 and the infinity norm, we get

    xi+1xλ(ˉΩ+DAλL)1xi+1x(ˉΩ+DAλL)1((1λ)(ˉΩ+DA)+λ(ˉΩ+U))xix,

    and since (ˉΩ+DAλL)1<1 it follows that

    xi+1x(ˉΩ+DAλL)1((1λ)(ˉΩ+DA)+λ(ˉΩ+U))1λ(ˉΩ+DAλL)1xix.

    According to this inequality, the convergence of Method Ⅰ is possible when condition Eq (3.5) is fulfilled.

    Here, we outline Method Ⅱ of the NGGS method. By using Eqs (3.1) and (3.2), we can formulate Method Ⅱ to determine AVE (1.1) as follows:

    (ˉΩ+DAλL)xi+1λ|xi+1|=[(1λ)(ˉΩ+DA)+λ(ˉΩ+U)]xi+1+λb,i=0,1,2,....

    In order to demonstrate the convergence of Method Ⅱ, we prove the theorem listed below.

    Theorem 3.2. Assume that the diagonal elements of matrix A are all greater than one, and the DALI matrix is a strict row-wise diagonally dominant matrix. Then the sequence {xi} of Method Ⅱ converges to the unique solution x of AVE (1.1).

    Proof. The uniqueness result follows from Theorem 3.1. To demonstrate the convergence, suppose

    xi+1x=λ(ˉΩ+DAλL)1|xi+1|+(ˉΩ+DAλL)1[((1λ)(ˉΩ+DA)+λ(ˉΩ+U))xi+1+λb](λ(ˉΩ+DAλL)1|x|+(ˉΩ+DAλL)1[((1λ)(ˉΩ+DA)+λ(ˉΩ+U))x+λb]),
    (ˉΩ+DAλL)(xi+1x)=λ(|xi+1||x|)+((1λ)(ˉΩ+DA)+λ(ˉΩ+U))(xi+1x),
    λ(DALU)xi+1λ|xi+1|=λ(DALU)xλ|x|,
    (DALU)xi+1|xi+1|=(DALU)x|x|. (3.10)

    By using Eqs (3.2) and (3.10), we get

    Axi+1|xi+1|=Ax|x|,
    Axi+1|xi+1|=b.

    Therefore, xi+1 solves the AVE (1.1).

    The purpose of this section is to present a number of numerical tests that demonstrate the effectiveness of new approaches from three perspectives: The iteration steps (Itr), computing time (Time), and norm of absolute residual vectors (RVS). Where, 'RVS' is defined by

    RVS:=Axi|xi|b2b2106.

    All calculations are run on Intel (C) Core (TM) i5-3337U, 4 GB RAM, 1.80 GHz, and MATLAB (2016a). Furthermore, the zero vector is the initial vector for Example 4.1.

    Problem 4.1. Let

    A={4,forj=i,1,for{j=i+1,i=1,2,...,n1,j=i1,i=2,...,n,0,otherwise.

    Calculate b=Ax|x|, where x=((1)i,(i=1,2,..,n))TRn. We describe the suggested methods in comparison with the optimal parameters SOR-like algorithm given in [8] (written as SLM using ω=0.825), the special shift splitting algorithm presented in [34] (written as SSM), and the GGS technique shown in [11]. In Table 1, we examine the results.

    Table 1.  The outcomes of Problem 4.1 with Ψ=0.5 and λ=0.95.
    Methods n 1000 2000 3000 4000
    SLM Itr 18 18 18 18
    Time 3.0156 13.1249 33.9104 65.1345
    RVS 6.12e–07 6.13e–07 6.13e–07 6.14e–07
    SSM Itr 14 14 14 14
    Time 2.8128 9.0954 17.3028 29.1644
    RVS 8.91e–07 8.92e–07 8.93e–07 8.93e–07
    GGS Itr 9 8 8 8
    Time 2.1924 7.5182 15.3273 24.3822
    RVS 4.02e–07 7.78e–07 6.35e–07 5.49e–07
    Method Ⅰ Itr 8 8 8 8
    Time 2.0704 5.2615 9.3395 17.6224
    RVS 9.14e–07 6.46e–07 5.28e–07 4.57e–07
    Method Ⅱ Itr 6 6 6 6
    Time 1.5811 2.9428 3.5738 6.3929
    RVS 9.60e–07 9.61e–07 9.61e–07 9.61e–07

     | Show Table
    DownLoad: CSV

    All methods in Table 1 analyze the solution x for various values of n, respectively. Clearly, Method Ⅰ is more effective than SLM and SSM procedures, and the 'Time' of Method Ⅰ is less than the GGS. Moreover, Method Ⅱ demonstrates high computational performance from the perspective of 'Itr' and 'Time'.

    Problem 4.2. Let A=M+IRn×n and the vector b=Ax|x|Rn, such that

    M=Trd(1.5In,Hn,0.5In)Rn×n,x=(1,2,1,2,...,1,2)TRn,

    where Hn=Trd(1.5,4,0.5)Rv×v and n=v2. Here, use the same initial vector and stopping criteria described in [12]. We compare the presented techniques with the AOR method [21], the mixed-type splitting (MT) iterative scheme [12] and the GGS method [11]. Table 2 provides the numerical data.

    Table 2.  The outcomes of Problem 4.2 with Ψ=0.7 and λ=0.98.
    Methods n 100 400 900 1600 4900
    Itr 97 190 336 706 384
    AOR Time 0.4721 2.8203 3.2174 6.3887 9.2344
    RVS 9.80e-07 9.61e-07 9.73e-07 9.84e-07 9.36e-07
    Itr 88 157 250 386 342
    MT Time 0.4041 1.7953 3.0219 5.7626 8.8965
    RVS 8.91e-07 9.65e-07 9.18e-07 9.56e-07 9.89e-07
    Itr 34 52 67 81 95
    GGS Time 0.2207 0.5346 1.0472 1.7328 2.7612
    RVS 9.53e-07 8.40e-07 8.42e-07 8.35e-07 9.89e-07
    Itr 32 49 63 76 84
    Method Ⅰ Time 0.1971 0.3177 0.9243 1.3922 1.9920
    RVS 9.59e-07 8.20e-07 8.40e-07 8.60e-07 7.42e-07
    Itr 20 31 41 49 62
    Method Ⅱ Time 0.1329 0.1936 0.8341 1.0271 1.3872
    RVS 9.55e-07 8.39e-07 6.22e-07 9.32e-07 8.90e-07

     | Show Table
    DownLoad: CSV

    In Table 2, we present the numeric outcomes of the AOR method, MT method, GGS method, Method Ⅰ and Method Ⅱ, respectively. We can conclude from these outcomes that our proposed methods are more efficient than AOR and MT and GGS techniques.

    Problem 4.3. Let A=M+4IRn×n and the vector b=Ax|x|Rn, such that

    M=Trd(In,Hn,In)Rn×n,xi=((1)i,(i=1,2,..,n))TRn,

    where Hn=Trd(1,4,1)Rv×v, IRv×v is the unit matrix and n=v2. In this problem, we use the same initial vector and stopping criteria described in [12]. We compare the offered procedures with the AOR method [21], the mixed-type splitting (MT) iterative scheme [12], and the technique presented in [14] (expressed by SISA). The computational outcomes are listed in Table 3.

    Table 3.  The outcomes of Problem 4.3 with Ψ=0.7 and λ=0.98.
    Methods n 64 256 1024 4096
    Itr 14 14 15 35
    AOR Time 0.3483 1.9788 2.3871 5.8097
    RVS 5.21e-07 6.29e-07 6.54e-07 8.74e-07
    Itr 14 14 15 25
    MT Time 0.3168 1.0952 1.9647 2.2194
    RVS 4.31e-07 5.46e-07 5.06e-07 9.38e-07
    Itr 12 12 12 12
    SISA Time 0.3299 1.8322 2.027 3.446
    RVS 5.03e–07 7.58e–07 8.77e–07 9.28e–07
    Itr 11 12 12 12
    Method Ⅰ Time 0.1928 0.8374 1.5738 2.0733
    RVS 7.30e-07 6.01e-07 7.93e-07 8.88e-07
    Itr 5 5 5 5
    Method Ⅱ Time 0.1372 0.3871 0.9622 1.7482
    RVS 6.51e-08 6.52e-08 6.23e-08 5.99e-08

     | Show Table
    DownLoad: CSV

    All methods in Table 3 analyze the solution x for various values of n, respectively. Clearly, Method Ⅰ is more effective than AOR and MT procedures, and the 'Time' of Method Ⅰ is less than the SISA method. Moreover, Method Ⅱ demonstrates high computational performance from the perspective of 'Itr' and 'Time'.

    Problem 4.4. Let

    A=Trd(1,8,1)Rn×n,xi=((1)i,(i=1,2,...,n))TRn

    and b=Ax|x|Rn. Using the same initial vector and the stopping criteria described in [14]. We compare the novel approaches with the technique offerd in [14] (expressed by SISA using ω=1.0455), the SOR-like method proposed in [19] (written by SOR) and the modulus-based SOR method presented in [42] (written as MSOR). The outcomes are listed in Table 4.

    Table 4.  The outcomes of Problem 4.4 with Ψ=0.3 and λ=0.95.
    Methods n 1000 2000 3000 4000 5000
    Itr 13 13 14 14 14
    SISA Time 3.9928 8.8680 24.4031 51.3946 73.3394
    RVS 6.04e–07 8.54e–07 2.33e–07 2.69e–07 3.01e-07
    Itr 12 13 13 13 13
    SOR Time 1.5136 3.3817 6.1262 7.1715 9.5261
    RVS 9.45e–08 2.69e–08 3.29e–08 3.80e–08 4.25e–07
    Itr 10 10 10 10 10
    MSOR Time 3.9996 9.2833 29.3747 59.3392 82.3477
    RVS 4.14e–07 5.86e–07 7.18e–07 8.29e–07 9.27e–07
    Itr 9 9 9 9 9
    Method Ⅰ Time 1.2751 2.6184 5.7322 6.8911 7.3618
    RVS 5.11e–07 5.12e–07 5.12e–07 5.12e–07 5.78e–07
    Itr 6 6 6 6 6
    Method Ⅱ Time 0.2283 0.4829 0.9572 1.4829 2.0038
    RVS 3.62e–08 5.12e–08 6.27e–08 7.24e–08 8.01e–08

     | Show Table
    DownLoad: CSV

    It is clear from Table 4 that all the tested methods provide a quick calculation of AVE (1.1). We observe that the 'Itr' and 'Time' of the recommended methods are less than the existing techniques. The results of our study indicate that our suggested methods for AVEs are feasible and highly effective.

    In this work, two NGGS methods (Method Ⅰ and Method Ⅱ) are presented to solve the AVEs. The convergence properties of the strategies are examined. A number of experiments have been conducted in order to establish the effectiveness of the new approaches.

    The GGS technique has been successfully extended by two additional parameters when A is an M-matrix. The cases for more general coefficient matrices are the next issue to be considered.

    The following is an explanation of how our proposed techniques can be implemented. From Ax|x|=b, we have

    x=A1(|x|+b).

    Thus, we can approximate xi+1 as follows,

    xi+1A1(|xi|+b).

    This process is known as the Picard technique [31]. Now, we examine the procedure for Method Ⅰ.

    Algorithm for Method I. (1) Choose the parameters, an starting vector x0Rn and set i=0.

    (2) Compute yi=xi+1A1(|xi|+b),

    (3) Calculate xi+1=λ(ˉΩ+DAλL)1|yi|+(ˉΩ+DAλL)1[((1λ)(ˉΩ+DA)+λ(ˉΩ+U))xi+λb].

    (4) If xi+1=xi, then stop. Else, apply i=i+1 and repeat step 2.

    For Method Ⅱ, follow the same steps.

    The authors declare there is no conflicts of interest.



    [1] J. Feng, S. Liu, An improved generalized Newton method for absolute value equations, SpringerPlus, 5 (2016), 1042. https://doi.org/10.1186/s40064-016-2720-5 doi: 10.1186/s40064-016-2720-5
    [2] J. Feng, S. Liu, A new two-step iterative method for solving absolute value equations, J. Inequal. Appl., 2019 (2019), 39. https://doi.org/10.1186/s13660-019-1969-y doi: 10.1186/s13660-019-1969-y
    [3] L. Abdallah, M. Haddou, T. Migot, Solving absolute value equation using complementarity and smoothing functions, J. Comput. Appl. Math., 327 (2018), 196–207. https://doi.org/10.1016/j.cam.2017.06.019 doi: 10.1016/j.cam.2017.06.019
    [4] F. Mezzadri, On the solution of general absolute value equations, Appl. Math. Lett., 107 (2020), 106462. https://doi.org/10.1016/j.aml.2020.106462 doi: 10.1016/j.aml.2020.106462
    [5] I. Ullah, R. Ali, H. Nawab, Abdussatar, I. Uddin, T. Muhammad, et al., Theoretical analysis of activation energy effect on prandtl–eyring nanoliquid flow subject to melting condition, J. Non-Equil. Thermody., 47 (2022), 1–12. https://doi.org/10.1515/jnet-2020-0092 doi: 10.1515/jnet-2020-0092
    [6] M. Amin, M. Erfanian, A dynamic model to solve the absolute value equations, J. Comput. Appl. Math., 333 (2018), 28–35. https://doi.org/10.1016/j.cam.2017.09.032 doi: 10.1016/j.cam.2017.09.032
    [7] L. Caccetta, B. Qu, G. L. Zhou, A globally and quadratically convergent method for absolute value equations, Comput. Optim. Appl., 48 (2011), 45–58. https://doi.org/10.1007/s10589-009-9242-9 doi: 10.1007/s10589-009-9242-9
    [8] C. Chen, D. Yu, D. Han, Optimal parameter for the SOR-like iteration method for solving the system of absolute value equations, arXiv. Available from: https://arXiv.org/abs/2001.05781.
    [9] M. Dehghan, A. Shirilord, Matrix multisplitting Picard-iterative method for solving generalized absolute value matrix equation, Appl. Numer. Math., 158 (2020), 425–438. https://doi.org/10.1016/j.apnum.2020.08.001 doi: 10.1016/j.apnum.2020.08.001
    [10] X. Dong, X. H. Shao, H. L. Shen, A new SOR-like method for solving absolute value equations, Appl. Numer. Math., 156 (2020), 410–421. https://doi.org/10.1016/j.apnum.2020.05.013 doi: 10.1016/j.apnum.2020.05.013
    [11] V. Edalatpour, D. Hezari, D. K. Salkuyeh, A generalization of the Gauss-Seidel iteration method for solving absolute value equations, Appl. Math. Comput., 293 (2017), 156–167. https://doi.org/10.1016/j.amc.2016.08.020 doi: 10.1016/j.amc.2016.08.020
    [12] A. J. Fakharzadeh, N. N. Shams, An efficient algorithm for solving absolute value equations, J. Math. Ext., 15 (2021), 1–23. https://doi.org/10.30495/JME.2021.1393 doi: 10.30495/JME.2021.1393
    [13] X. M. Gu, T. Z. Huang, H. B. Li, S. F. Wang, L. Li, Two-CSCS based iteration methods for solving absolute value equations, J. Appl. Math. Comput., 7 (2017), 1336–1356. https://doi.org/10.11948/2017082 doi: 10.11948/2017082
    [14] P. Guo, S. L. Wu, C. X. Li, On the SOR-like iteration method for solving absolute value equations, Appl. Math. Lett., 97 (2019), 107–113. https://doi.org/10.1016/j.aml.2019.03.033 doi: 10.1016/j.aml.2019.03.033
    [15] F. Hashemi, S. Ketabchi, Numerical comparisons of smoothing functions for optimal correction of an infeasible system of absolute value equations, Numer. Algebra Control Optim., 10 (2020), 13–21. https://doi.org/10.3934/naco.2019029 doi: 10.3934/naco.2019029
    [16] I. Uddin, I. Ullah, R. Ali, I. Khan, K. S. Nisar, Numerical analysis of nonlinear mixed convective MHD chemically reacting flow of Prandtl-Eyring nanofluids in the presence of activation energy and Joule heating, J. Therm. Anal. Calorim., 145 (2021), 495–505. https://doi.org/10.1007/s10973-020-09574-2 doi: 10.1007/s10973-020-09574-2
    [17] S. L. Hu, Z. H. Huang, A note on absolute value equations, Optim. Lett., 4 (2010), 417–424. https://doi.org/10.1007/s11590-009-0169-y doi: 10.1007/s11590-009-0169-y
    [18] S. Ketabchi, H. Moosaei, Minimum norm solution to the absolute value equation in the convex case, J. Optim. Theory Appl., 154 (2012), 1080–1087. https://doi.org/10.1007/s10957-012-0044-3 doi: 10.1007/s10957-012-0044-3
    [19] Y. F. Ke, C. F. Ma, SOR-like iteration method for solving absolute value equations, Appl. Math. Comput., 311 (2017), 195–202. https://doi.org/10.1016/j.amc.2017.05.035 doi: 10.1016/j.amc.2017.05.035
    [20] Y. F. Ke, The new iteration algorithm for absolute value equation, Appl. Math. Lett., 99 (2020), 105990. https://doi.org/10.1016/j.aml.2019.07.021 doi: 10.1016/j.aml.2019.07.021
    [21] C. X. Li, A preconditioned AOR iterative method for the absolute value equations, Int. J. Comput. Methods, 14 (2017), 1750016. https://doi.org/10.1142/S0219876217500165 doi: 10.1142/S0219876217500165
    [22] H. Moosaei, S. Ketabchi, M. A. Noor, J. Iqbal, V. Hooshyarbakhsh, Some techniques for solving absolute value equations, Appl. Math. Comput., 268 (2015), 696–705. https://doi.org/10.1016/j.amc.2015.06.072 doi: 10.1016/j.amc.2015.06.072
    [23] O. L. Mangasarian, R. R. Meyer, Absolute value equation, Linear Algebra Appl., 419 (2006), 359–367. https://doi.org/10.1016/j.laa.2006.05.004 doi: 10.1016/j.laa.2006.05.004
    [24] O. L. Mangasarian, Absolute value programming, Comput. Optim. Applic., 36 (2007), 43–53. https://doi.org/10.1007/s10589-006-0395-5 doi: 10.1007/s10589-006-0395-5
    [25] O. L. Mangasarian, Absolute value equation solution via concave minimization, Optim. Lett., 1 (2007), 3–8. https://doi.org/10.1007/s11590-006-0005-6 doi: 10.1007/s11590-006-0005-6
    [26] O. L. Mangasarian, Linear complementarity as absolute value equation solution, Optim. Lett., 8 (2014), 1529–1534. https://doi.org/10.1007/s11590-013-0656-z doi: 10.1007/s11590-013-0656-z
    [27] X. H. Miao, J. T. Yang, B. Saheya, J. S. Chen, A smoothing Newton method for absolute value equation associated with second-order cone, Appl. Numer. Math., 120 (2017), 82–96. https://doi.org/10.1016/j.apnum.2017.04.012 doi: 10.1016/j.apnum.2017.04.012
    [28] C. T. Nguyen, B. Saheya, Y. L. Chang, J. S. Chen, Unified smoothing functions for absolute value equation associated with second-order cone, Appl. Numer. Math., 135 (2019), 206–227. https://doi.org/10.1016/j.apnum.2018.08.019 doi: 10.1016/j.apnum.2018.08.019
    [29] O. A. Prokopyev, On equivalent reformulations for absolute value equations, Comput. Optim. Appl., 44 (2009), 363. https://doi.org/10.1007/s10589-007-9158-1 doi: 10.1007/s10589-007-9158-1
    [30] J. Rohn, A theorem of the alternatives for the equation Ax+B|x|=b, Linear Multilinear Algebra, 52 (2004), 421–426. https://doi.org/10.1080/0308108042000220686 doi: 10.1080/0308108042000220686
    [31] J. Rohn, V. Hooshyarbakhsh, R. Farhadsefat, An iterative method for solving absolute value equations and sufficient conditions for unique solvability, Optim. Lett., 8 (2014), 35–44. https://doi.org/10.1007/s11590-012-0560-y doi: 10.1007/s11590-012-0560-y
    [32] B. Saheya, C. H. Yu, J. S. Chen, Numerical comparisons based on four smoothing functions for absolute value equation, J. Appl. Math. Comput., 56 (2018), 131–149. https://doi.org/10.1007/s12190-016-1065-0 doi: 10.1007/s12190-016-1065-0
    [33] R. S. Varga, Matrix iterative analysis, New Jersey: Prentice-Hall, Englewood Cliffs, 1962.
    [34] S. L. Wu, C. X. Li, A special shift splitting iteration method for absolute value equation, AIMS Math., 5 (2020), 5171–5183. https://doi.org/10.3934/math.2020332 doi: 10.3934/math.2020332
    [35] S. L. Wu, The unique solution of a class of the new generalized absolute value equation, Appl. Math. Lett., 116 (2021), 107029. https://doi.org/10.1016/j.aml.2021.107029 doi: 10.1016/j.aml.2021.107029
    [36] R. Ali, M. R. Khan, A. Abidi, S. Rasheed, A. M. Galal, Application of PEST and PEHF in magneto-Williamson nanofluid depending on the suction/injection, Case Stud. Therm. Eng., 27 (2021). https://doi.org/10.1016/j.csite.2021.101329 doi: 10.1016/j.csite.2021.101329
    [37] C. X. Li, S. L. Wu, Modified SOR-like iteration method for absolute value equations, Math. Probl. Eng., 2020 (2020), 9231639. https://doi.org/10.1155/2020/9231639 doi: 10.1155/2020/9231639
    [38] M. R. Khan, M. X. Li, S. P. Mao, R. Ali, S. Khan, Comparative study on heat transfer and friction drag in the flow of various hybrid nanofluids efiected by aligned magnetic fleld and nonlinear radiation, Sci. Rep., 11 (2021), 3691.
    [39] J. Y. Bello Cruz, O. P. Ferreira, L. F. Prudente, On the global convergence of the inexact semi-smooth Newton method for absolute value equation, Comput. Optim. Appl., 65 (2016), 93–108. https://doi.org/10.1007/s10589-016-9837-x doi: 10.1007/s10589-016-9837-x
    [40] G. Ning, Y. Zhou, An improved differential evolution algorithm for solving absolute value equations, In: J. Xie, Z. Chen, C. Douglas, W. Zhang, Y. Chen, High performance computing and applications, Lecture Notes in Computer Science, Springer, 9576 (2016), 38–47. https://doi.org/10.1007/978-3-319-32557-6
    [41] D. K. Salkuyeh, The Picard-HSS iteration method for absolute value equations, Optim. Lett., 8 (2014), 2191–2202. https://doi.org/10.1007/s11590-014-0727-9 doi: 10.1007/s11590-014-0727-9
    [42] Z. Z. Bai, Modulus-based matrix splitting iteration methods for linear complementarity problems, Numer. Linear Algebra Appl., 17 (2010), 917–933. https://doi.org/10.1002/nla.680 doi: 10.1002/nla.680
    [43] R. Ali, A. Ali, S. Iqbal, Iterative methods for solving absolute value equations, J. Math. Comput. Sci., 26 (2022), 322–329. https://doi.org/10.22436/jmcs.026.04.01 doi: 10.22436/jmcs.026.04.01
  • This article has been cited by:

    1. Meshari Alesemi, Naveed Iqbal, Noorolhuda Wyal, Hanan Alolaiyan, Novel Evaluation of Fuzzy Fractional Helmholtz Equations, 2022, 2022, 2314-8888, 1, 10.1155/2022/8165019
    2. Rashid Ali, Akbar Ali, Numerical Solution of the Absolute Value Equation Using Modified Iteration Methods, 2022, 2022, 2577-7408, 1, 10.1155/2022/2828457
    3. Ashfaq Ahmad, Ijaz Ahmad, Rashid Ali, Muhammad Ibrahim, On analysis of fractional order HIV infection model with the adaptive immune response under Caputo operator, 2022, 1598-5865, 10.1007/s12190-022-01804-0
    4. Bharat Kumar, Arup Kumar Das, On general fixed point method based on matrix splitting for solving linear complementarity problem, 2022, 51, 2501-059X, 189, 10.33993/jnaat512-1285
    5. Marzouk Mohamed Aly Abdelhamid, B. G. Mousa, Hassan Waqas, Mohamed Abdelghany Elkotb, Sayed M. Eldin, Iqra Munir, Rashid Ali, Ahmed M. Galal, Artificial Thermal Quenching and Salt Crystallization Weathering Processes for the Assessment of Long-Term Degradation Characteristics of Some Sedimentary Rocks, Egypt, 2022, 12, 2075-163X, 1393, 10.3390/min12111393
    6. Rashid Ali, Asad Ali, Mohammad Mahtab Alam, Abdullah Mohamed, Hemant Kumar Nashine, Numerical Solution of the Absolute Value Equations Using Two Matrix Splitting Fixed Point Iteration Methods, 2022, 2022, 2314-8888, 1, 10.1155/2022/7934796
    7. Alamgir Khan, Javed Iqbal, Ali Akgül, Rashid Ali, Yuting Du, Arafat Hussain, Kottakkaran Sooppy Nisar, V. Vijayakumar, A Newton-type technique for solving absolute value equations, 2023, 64, 11100168, 291, 10.1016/j.aej.2022.08.052
    8. Bharat Kumar, A. Dutta, A. K. Das, More on matrix splitting modulus-based iterative methods for solving linear complementarity problem, 2023, 0030-3887, 10.1007/s12597-023-00634-3
    9. Miao Guo, Qingbiao Wu, Two effective inexact iteration methods for solving the generalized absolute value equations, 2022, 7, 2473-6988, 18675, 10.3934/math.20221027
    10. Xin-Hui Shao, Wan-Chen Zhao, Relaxed modified Newton-based iteration method for generalized absolute value equations, 2023, 8, 2473-6988, 4714, 10.3934/math.2023233
    11. Kamsing Nonlaopon, Farooq Ahmed Shah, Khaleel Ahmed, Ghulam Farid, A generalized iterative scheme with computational results concerning the systems of linear equations, 2023, 8, 2473-6988, 6504, 10.3934/math.2023328
    12. Yuan Liang, Chaoqian Li, Modified Picard-like Method for Solving Absolute Value Equations, 2023, 11, 2227-7390, 848, 10.3390/math11040848
    13. Saleh Alshammari, Naveed Iqbal, Mohammad Yar, Yusuf Gurefe, Analytical Investigation of Nonlinear Fractional Harry Dym and Rosenau-Hyman Equation via a Novel Transform, 2022, 2022, 2314-8888, 1, 10.1155/2022/8736030
    14. Qin Zhong, Gufang Mou, Inequalities on the Fan Product of M-matrices, 2022, 2381, 1742-6588, 012059, 10.1088/1742-6596/2381/1/012059
    15. Jingsheng Lei, Sha Lin, M. Riaz Khan, Siman Xie, Muhammad Sadiq, Rashid Ali, Muhammad Farhan Bashir, Luqman Shahzad, Sayed M. Eldin, Ali H. Amin, Research Trends of Board Characteristics and Firms’ Environmental Performance: Research Directions and Agenda, 2022, 14, 2071-1050, 14296, 10.3390/su142114296
    16. Navid Feroze, Muhammad Noor-ul-Amin, Maryam Sadiq, Md. Moyazzem Hossain, Muhammad Gulzar, On Optimal Progressive Censoring Schemes from Models with U-Shaped Hazard Rate: A Comparison between Conventional and Fuzzy Priors, 2022, 2022, 2314-8888, 1, 10.1155/2022/2336760
    17. Peng Guo, Javed Iqbal, Syed Muhammad Ghufran, Muhammad Arif, Reem K. Alhefthi, Lei Shi, A New Efficient Method for Absolute Value Equations, 2023, 11, 2227-7390, 3356, 10.3390/math11153356
    18. Rashid Ali, Asad Ali, The matrix splitting fixed point iterative algorithms for solving absolute value equations, 2023, 16, 1793-5571, 10.1142/S1793557123501061
    19. New accelerated modulus-based iteration method for solving large and sparse linear complementarity problem, 2024, 53, 2501-059X, 120, 10.33993/jnaat531-1370
    20. Lei Shi, Javed Iqbal, Faiqa Riaz, Muhammad Arif, Gauss Quadrature Method for System of Absolute Value Equations, 2023, 11, 2227-7390, 2069, 10.3390/math11092069
    21. Nisar Gul, Haibo Chen, Javed Iqbal, Rasool Shah, A new two-step iterative technique for efficiently solving absolute value equations, 2024, 41, 0264-4401, 1272, 10.1108/EC-11-2023-0754
    22. Jia Tang, Wenli Zheng, Cairong Chen, Dongmei Yu, Deren Han, On finite termination of the generalized Newton method for solving absolute value equations, 2023, 42, 2238-3603, 10.1007/s40314-023-02318-6
    23. Alamgir Khan, Javed Iqbal, A Two-Step Iterative Method for Absolute Value Equations, 2024, 21, 0219-8762, 10.1142/S021987622450018X
    24. Qin Zhong, Improved upper bound for the minimal eigenvalue of the fan product, 2025, 2964, 1742-6588, 012046, 10.1088/1742-6596/2964/1/012046
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2688) PDF downloads(235) Cited by(24)

Figures and Tables

Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog