The boundary value problem (BVP) for a nonlinear non positone or semi-positone multi-point Caputo-Hadamard fractional differential pantograph problem is addressed in this study.
$ \begin{equation*} \mathfrak{D}_{1}^{\upsilon}x(\mathfrak{t})+\mathrm{f}(\mathfrak{t}, x( \mathfrak{t}), x(1+\lambda\mathfrak{t})) = 0, \ \mathfrak{t}\in(1, \mathfrak{b}) \end{equation*} $
$ \begin{equation*} x(1) = \delta_{1}, \ x(\mathfrak{b}) = \sum\limits_{i = 1}^{m-2}\zeta_{i}x(\mathfrak{\eta } _{i})+\delta_{2}, \ \delta_{i}\in\mathbb{R}, \ i = 1, 2, \end{equation*} $
where $ \lambda\in\left(0, \frac{\mathfrak{b-}1}{\mathfrak{b}}\right) $. The novelty in our approach is to show that there is only one solution to this problem using the Schauder fixed point theorem. Our results expand some recent research in the field. Finally, we include an example to demonstrate our findings.
Citation: Hamid Boulares, Manar A. Alqudah, Thabet Abdeljawad. Existence of solutions for a semipositone fractional boundary value pantograph problem[J]. AIMS Mathematics, 2022, 7(10): 19510-19519. doi: 10.3934/math.20221070
The boundary value problem (BVP) for a nonlinear non positone or semi-positone multi-point Caputo-Hadamard fractional differential pantograph problem is addressed in this study.
$ \begin{equation*} \mathfrak{D}_{1}^{\upsilon}x(\mathfrak{t})+\mathrm{f}(\mathfrak{t}, x( \mathfrak{t}), x(1+\lambda\mathfrak{t})) = 0, \ \mathfrak{t}\in(1, \mathfrak{b}) \end{equation*} $
$ \begin{equation*} x(1) = \delta_{1}, \ x(\mathfrak{b}) = \sum\limits_{i = 1}^{m-2}\zeta_{i}x(\mathfrak{\eta } _{i})+\delta_{2}, \ \delta_{i}\in\mathbb{R}, \ i = 1, 2, \end{equation*} $
where $ \lambda\in\left(0, \frac{\mathfrak{b-}1}{\mathfrak{b}}\right) $. The novelty in our approach is to show that there is only one solution to this problem using the Schauder fixed point theorem. Our results expand some recent research in the field. Finally, we include an example to demonstrate our findings.
[1] | B. Ahmad, Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations, Appl. Math. Lett., 23 (2010), 390–394. https://doi.org/10.1016/j.aml.2009.11.004 doi: 10.1016/j.aml.2009.11.004 |
[2] | Z. Bai, On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Anal., 72 (2010), 916–924. https://doi.org/10.1016/j.na.2009.07.033 doi: 10.1016/j.na.2009.07.033 |
[3] | Z. Bai, H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311 (2005), 495–505. https://doi.org/10.1016/j.jmaa.2005.02.052 doi: 10.1016/j.jmaa.2005.02.052 |
[4] | F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 1–8. https://doi.org/10.1186/1687-1847-2012-142 doi: 10.1186/1687-1847-2012-142 |
[5] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Boston: Elsevier, 2006. |
[6] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993. |
[7] | I. Podlubny, Fractional differential equations, mathematics in science and engineering, New York: Academic Press, 1999. https://doi.org/10.1016/s0076-5392(99)x8001-5 |
[8] | H. Boulares, A. Ardjouni, Y. Laskri, Stability in delay nonlinear fractional differential equations, Rend. Circ. Mat. Palermo II Ser., 65 (2016), 243–253. https://doi.org/10.1007/s12215-016-0230-5 doi: 10.1007/s12215-016-0230-5 |
[9] | H. Boulares, A. Ardjouni, Y. Laskri, Positive solutions for nonlinear fractional differential equations, Positivity, 21 (2017), 1201–1212. https://doi.org/10.1007/s11117-016-0461-x doi: 10.1007/s11117-016-0461-x |
[10] | S. Liang, J. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equation, Nonlinear Anal., 71 (2009), 5545–5550. https://doi.org/10.1016/j.na.2009.04.045 doi: 10.1016/j.na.2009.04.045 |
[11] | S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electron. J. Differ. Equ., 2006 (2006), 1–12. |
[12] | W. Zhong, W. Lin, Nonlocal and multiple-point boundary value problem for fractional differential equations, Comput. Math. Appl., 59 (2010), 1345–1351. https://doi.org/10.1016/j.camwa.2009.06.032 doi: 10.1016/j.camwa.2009.06.032 |
[13] | J. K. Hale, Retarded functional differential equations: Basic theory, In: Theory of functional differential equations, Applied Mathematical Sciences, New York: Springer, 1977. https://doi.org/10.1007/978-1-4612-9892-2_3 |
[14] | K. Mahler, On a special functional equation, J. London Math. Soc., s1-15 (1940), 115–123. https://doi.org/10.1112/JLMS/S1-15.2.115 doi: 10.1112/JLMS/S1-15.2.115 |
[15] | L. Fox, D. F. Mayers, J. R. Ockendon, A. B. Tayler, On a functional differential equation, IMA J. Appl. Math., 8 (1971), 271–307. https://doi.org/10.1093/imamat/8.3.271 doi: 10.1093/imamat/8.3.271 |
[16] | J. R. Ockendon, A. B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. Roy. Soc. Lond. A, 322 (1971), 447–468. https://doi.org/10.1098/rspa.1971.0078 doi: 10.1098/rspa.1971.0078 |
[17] | D. R. Smart, Fixed point theorems, Cambridge University Press, 1980. |
[18] | J. Wang, Y. Zhou, M. Feckan, Nonlinear impulsive problems for fractional differential equations and Ulam stability, Comput. Math. Appl., 64 (2012), 3389–3405. https://doi.org/10.1016/j.camwa.2012.02.021 doi: 10.1016/j.camwa.2012.02.021 |
[19] | F. Li, Y. Zhang, Y. Li, Sign-changing solutions on a kind of fourth-order Neumann boundary value problem, J. Math. Anal. Appl., 344 (2008), 417–428. https://doi.org/10.1016/j.jmaa.2008.02.050 doi: 10.1016/j.jmaa.2008.02.050 |
[20] | Y. Li, F. Li, Sign-changing solutions to second-order integral boundary value problems, Nonlinear Anal., 69 (2008), 1179–1187. https://doi.org/10.1016/j.na.2007.06.024 doi: 10.1016/j.na.2007.06.024 |
[21] | Z. Liu, Y. Ding, C. Liu, C. Zhao, Existence and uniqueness of solutions for singular fractional differential equation boundary value problem with p-Laplacian, Adv. Differ. Equ., 2020 (2020), 1–12. https://doi.org/10.1186/s13662-019-2482-9 doi: 10.1186/s13662-019-2482-9 |
[22] | A. Tychonoff, Ein fixpunktsatz, Math. Ann., 111 (1935), 767–776. https://doi.org/10.1007/BF01472256 doi: 10.1007/BF01472256 |
[23] | X. Xu, Multiple sign-changing solutions for some m-point boundary-value problems, Electron. J. Differ. Equ., 2004 (2004), 1–14. |
[24] | B. Ahmad, Sharp estimates for the unique solution of two-point fractional-order boundary value problems, Appl. Math. Lett., 65 (2017), 77–82. https://doi.org/10.1016/j.aml.2016.10.008 doi: 10.1016/j.aml.2016.10.008 |