Research article

Robust dissipativity and passivity of stochastic Markovian switching CVNNs with partly unknown transition rates and probabilistic time-varying delay

  • Received: 19 July 2022 Revised: 22 August 2022 Accepted: 24 August 2022 Published: 02 September 2022
  • MSC : 00A69

  • This article addresses the robust dissipativity and passivity problems for a class of Markovian switching complex-valued neural networks with probabilistic time-varying delay and parameter uncertainties. The main objective of this article is to study the proposed problem from a new perspective, in which the relevant transition rate information is partially unknown and the considered delay is characterized by a series of random variables obeying bernoulli distribution. Moreover, the involved parameter uncertainties are considered to be mode-dependent and norm-bounded. Utilizing the generalized It$ \hat{o} $'s formula under the complex version, the stochastic analysis techniques and the robust analysis approach, the $ (M, N, W) $-dissipativity and passivity are ensured by means of complex matrix inequalities, which are mode-delay-dependent. Finally, two simulation examples are provided to verify the effectiveness of the proposed results.

    Citation: Qiang Li, Weiqiang Gong, Linzhong Zhang, Kai Wang. Robust dissipativity and passivity of stochastic Markovian switching CVNNs with partly unknown transition rates and probabilistic time-varying delay[J]. AIMS Mathematics, 2022, 7(10): 19458-19480. doi: 10.3934/math.20221068

    Related Papers:

  • This article addresses the robust dissipativity and passivity problems for a class of Markovian switching complex-valued neural networks with probabilistic time-varying delay and parameter uncertainties. The main objective of this article is to study the proposed problem from a new perspective, in which the relevant transition rate information is partially unknown and the considered delay is characterized by a series of random variables obeying bernoulli distribution. Moreover, the involved parameter uncertainties are considered to be mode-dependent and norm-bounded. Utilizing the generalized It$ \hat{o} $'s formula under the complex version, the stochastic analysis techniques and the robust analysis approach, the $ (M, N, W) $-dissipativity and passivity are ensured by means of complex matrix inequalities, which are mode-delay-dependent. Finally, two simulation examples are provided to verify the effectiveness of the proposed results.



    加载中


    [1] M. Kobayashi, Symmetric complex-valued Hopfield neural networks, IEEE T. Neur. Net. Lear., 28 (2017), 1011–1015. http://doi.org/10.1109/TNNLS.2016.2518672 doi: 10.1109/TNNLS.2016.2518672
    [2] D. L. Lee, Relaxation of the stability condition of the complex-valued neural networks, IEEE T. Neural Networ., 12 (2001), 1260–1262. http://doi.org/10.1109/72.950156 doi: 10.1109/72.950156
    [3] M. K. Muezzinoglu, C. Guzelis, J. M. Zurada, A new design method for the complex-valued multistate Hopfield associative memory, IEEE T. Neural Networ., 14 (2003), 891–899. http://doi.org/10.1109/TNN.2003.813844 doi: 10.1109/TNN.2003.813844
    [4] S. Berhanu, Liouville's theorem and the maximum modulus principle for a system of complex vector fields, Commun. Part. Diff. Eq., 19 (1994), 1805–1827. http://doi.org/10.1080/03605309408821074 doi: 10.1080/03605309408821074
    [5] T. Nitta, Solving the XOR problem and the detection of symmetry using a single complex-valued neuron, Neural Networks, 16 (2013), 1101–1105. http://doi.org/10.1016/S0893-6080(03)00168-0 doi: 10.1016/S0893-6080(03)00168-0
    [6] A. Hirose, Recent progress in applications of complex-valued neural networks, In: International conference on artifical intelligence and soft computing, Berlin: Springer, 2010.
    [7] X. Liu, Z. Li, Finite time anti-synchronization of complex-valued neural networks with bounded asynchronous time-varying delays, Neurocomputing, 387 (2020), 129–138. http://doi.org/10.1016/j.neucom.2020.01.035 doi: 10.1016/j.neucom.2020.01.035
    [8] W. Gong, J. Liang, J. Cao, Matrix measure method for global exponential stability of complex-valued recurrent neural networks with time-varying delays, Neural Networks, 70 (2015), 81–89. http://doi.org/10.1016/j.neunet.2015.07.003 doi: 10.1016/j.neunet.2015.07.003
    [9] R. Samiduraia, R. Sriramana, S. Zhu, Leakage delay-dependent stability analysis for complex-valued neural networks with discrete and distributed time-varying delays, Neurocomputing, 338 (2019), 262–273. http://doi.org/10.1016/j.neucom.2019.02.027 doi: 10.1016/j.neucom.2019.02.027
    [10] X. Liu, T. Chen, Global exponential stability for complex-valued recurrent neural networks with asynchronous time delays, IEEE T. Neur. Net. Lear., 27 (2015), 593–606. http://doi.org/10.1109/TNNLS.2015.2415496 doi: 10.1109/TNNLS.2015.2415496
    [11] K. Guan, Global power-rate synchronization of chaotic neural networks with proportional delay via impulsive control, Neurocomputing, 283 (2018), 256–265. http://doi.org/10.1016/j.neucom.2018.01.027 doi: 10.1016/j.neucom.2018.01.027
    [12] J. C. Willems, Dissipative dynamical systems part Ⅰ: General theory, Arch. Rational Mech. Anal., 45 (1972), 321–351. http://doi.org/10.1007/bf00276493 doi: 10.1007/bf00276493
    [13] D. Hill, P. Moylan, The stability of nonlinear dissipative systems, IEEE T. Automat. Contr, 21 (1976), 708–711. http://doi.org/10.1109/TAC.1976.1101352 doi: 10.1109/TAC.1976.1101352
    [14] V. Belevitch, Classical network theory, Holden Day, 1968.
    [15] S. Ding, Z. Wang, H. Zhang, Dissipativity analysis for stochastic memristive neural networks with time-varying delays: a discrete-time case, IEEE T. Neur. Net. Lear., 29 (2018), 618–630. http://doi.org/10.1109/TNNLS.2016.2631624 doi: 10.1109/TNNLS.2016.2631624
    [16] G. Nagamani, T. Radhika, Dissipativity and passivity analysis of T-S fuzzy neural networks with probabilistic time-varying delays: a quadratic convex combination approach, Nonlinear Dyn., 82 (2015), 1325–1341. http://doi.org/10.1007/s11071-015-2241-8 doi: 10.1007/s11071-015-2241-8
    [17] S. Ramasamy, G. Nagamani, Dissipativity and passivity analysis for discrete-time complex-valued neural networks with leakage delay and probabilistic time-varying delays, Int. J. Adapt. Control, 31 (2017), 876–902. http://doi.org/10.1002/acs.2736 doi: 10.1002/acs.2736
    [18] P. Balasubramaniam, G. Nagamani, S. Ramasamy, Robust dissipativity and passivity analysis for discrete-time stochastic neural networks with time-varying delay, Complexity, 21 (2016), 47–58. http://doi.org/10.1002/cplx.21614 doi: 10.1002/cplx.21614
    [19] Q. Li, J. Liang, W. Gong, State estimation for semi-Markovian switching CVNNs with quantization effects and linear fractional uncertainties, J. Franklin I., 358 (2021), 6326–6347. http://doi.org/10.1016/j.jfranklin.2021.05.035 doi: 10.1016/j.jfranklin.2021.05.035
    [20] Z. Yan, Y. Song, J. H. Park, Quantitative mean square exponential stability and stabilization of stochastic systems with Markovian switching, J. Franklin I., 355 (2018), 3438–3454. http://doi.org/10.1016/j.jfranklin.2018.02.026 doi: 10.1016/j.jfranklin.2018.02.026
    [21] S. Senthilraj, R. Raja, J. Cao, H. M. Fardoun, Dissipativity analysis of stochastic fuzzy neural networks with randomly occurring uncertainties using delay dividing approach, Nonlinear Anal. Model. Control, 24 (2019), 561–581. http://doi.org/10.15388/NA.2019.4.5 doi: 10.15388/NA.2019.4.5
    [22] S. Sathananthan, I. Lyatuu, M. Knap, L. Keel, Robust passivity and synthesis of discrete-time stochastic systems with multiplicative noise under Markovian switching, Commun. Appl. Anal., 17 (2013), 451–469.
    [23] E. Tian, D. Yue, G. Wei, Robust control for Markovian jump systems with partially known transition probabilities and nonlinearities, J. Franklin I., 350 (2013), 2069–2083. http://doi.org/10.1016/j.jfranklin.2013.05.011 doi: 10.1016/j.jfranklin.2013.05.011
    [24] G. Zong, D. Yang, L. Hou, Q. Wang, Robust finite-time $H_{\infty}$ control for Markovian jump systems with partially known transition probabilities, J. Franklin I., 350 (2013), 1562–1578. http://doi.org/10.1016/j.jfranklin.2013.04.003 doi: 10.1016/j.jfranklin.2013.04.003
    [25] R. Zhang, D. Zeng, X. Liu, S. Zhong, J. Cheng, New results on stability analysis for delayed Markovian generalized neural networks with partly unknown transition rates, IEEE T. Neur. Net. Lear., 30 (2019), 3384–3395. http://doi.org/10.1109/TNNLS.2019.2891552 doi: 10.1109/TNNLS.2019.2891552
    [26] Y. Liu, C. Zhang, Y. Kao, C. Hou, Exponential stability of Neutral-type impulsive Markovian jump neural networks with general incomplete transition rates, Neural Process. Lett., 47 (2018), 325–345. http://doi.org/10.1007/s11063-017-9650-2 doi: 10.1007/s11063-017-9650-2
    [27] J. Liang, W. Gong, T. Huang, Multistability of complex-valued neural networks with discontinuous activation functions, Neural Networks, 84 (2016), 125–142. http://doi.org/10.1016/j.neunet.2016.08.008 doi: 10.1016/j.neunet.2016.08.008
    [28] Q. Song, H. Yan, Z. Zhao, Y. Liu, Global exponential stability of complex-valued neural networks with both time-varying delays and impulsive effects, Neural Networks, 79 (2016), 108–116. http://doi.org/10.1016/j.neunet.2016.03.007 doi: 10.1016/j.neunet.2016.03.007
    [29] J. Ubøe, Complex valued multiparameter stochastic integrals, J. Theor. Probab., 8 (1995), 601–624. http://doi.org/10.1007/bf02218046 doi: 10.1007/bf02218046
    [30] P. Wang, Y. Hong, H. Su, Stabilization of stochastic complex-valued coupled delayed systems with Markovian switching via periodically intermittent control, Nonlinear Anal. Hybri., 29 (2018), 395–413. http://doi.org/10.1016/j.nahs.2018.03.006 doi: 10.1016/j.nahs.2018.03.006
    [31] K. Kreutz-Delgado, The complex gradient operator and the $\mathbb{C}\mathbb{R}$-calculus, 2009, arXiv: 0906.4835.
    [32] X. Chen, Q. Song, Global stability of complex-valued neural networks with both leakage time delay and discrete time delay on time scales, Neurocomputing, 121 (2013), 254–264. http://doi.org/10.1016/j.neucom.2013.04.040 doi: 10.1016/j.neucom.2013.04.040
    [33] Q. Li, J. Liang, Dissipativity of the stochastic Markovian switching CVNNs with randomly occurring uncertainties and general uncertain transition rates, Int. J. Syst. Sci., 51 (2020), 1102–1118. http://doi.org/10.1080/00207721.2020.1752418 doi: 10.1080/00207721.2020.1752418
    [34] X. Chen, Q. Song, Y. Liu, Z. Zhao, Global $\mu$-stability of impulsive complex-valued neural networks with leakage delay and mixed delays, Abstr. Appl. Anal., 2014 (2014), 397532. http://doi.org/10.1155/2014/397532 doi: 10.1155/2014/397532
    [35] U. Humphries, G. Rajchakit, R. Sriraman, P. Kaewmesri, P. Chanthorn, C. P. Lim, et al., An extended analysis on robust dissipativity of uncertain stochastic generalized neural networks with Markovian jumping parameters, Symmetry, 12 (2020), 1035. http://doi.org/10.3390/sym12061035 doi: 10.3390/sym12061035
    [36] P. Chanthorn, G. Rajchakit, J. Thipcha, C. Emharuethai, R. Sriraman, C. P. Lim, et al., Robust stability of complex-valued stochastic neural networks with time-varying delays and parameter uncertainties, Mathematics, 8 (2020), 742. http://doi.org/10.3390/math8050742 doi: 10.3390/math8050742
    [37] P. Chanthorn, G. Rajchakit, U. Humphries, P. Kaewmesri, R. Sriraman, C. P. Lim, A delay-dividing approach to robust stability of uncertain stochastic complex-valued Hopfield delayed neural networks, Symmetry, 12 (2020), 683. http://doi.org/10.3390/sym12050683 doi: 10.3390/sym12050683
    [38] M. Liu, X. Wang, Z. Zhang, Z. Wang, Dissipativity analysis of complex-valued stochastic neural networks with time-varying delays, IEEE Access, 7 (2019), 165076–165087. http://doi.org/10.1109/ACCESS.2019.2953244 doi: 10.1109/ACCESS.2019.2953244
    [39] P. Gahinet, A. Nemirovskii, A. J. Laub, M. Chilal, The LMI control toolbox, In: Proceedings of 1994 33rd IEEE conference on decision and control, 1994. http://doi.org/10.1109/CDC.1994.411440
    [40] Q. Li, J. Liang, W. Gong, Stability and synchronization for impulsive Markovian switching CVNNs: matrix measure approach, Commun. Nonlinear Sci., 77 (2019), 126–140. http://doi.org/10.1016/j.cnsns.2019.04.022 doi: 10.1016/j.cnsns.2019.04.022
    [41] J. Zhou, T. Cai, W. Zhou, D. Tong, Master-slave synchronization for coupled neural networks with Markovian switching topologies and stochastic perturbation, Int. J. Robust Nonlin., 28 (2018), 2249–2263. http://doi.org/10.1002/rnc.4013 doi: 10.1002/rnc.4013
    [42] K. Cui, J. Zhu, C. Li, Exponential stabilization of Markov jump systems with mode-dependent mixed time-varying delays and unknown transition rates, Circuits Syst. Signal Process., 38 (2019), 4526–4547. http://doi.org/10.1007/s00034-019-01085-2 doi: 10.1007/s00034-019-01085-2
    [43] R. Xu, Y. Kao, M. Gao, Finite-time synchronization of Markovian jump complex networks with generally uncertain transition rates, T. I. Meas. Control, 39 (2017), 52–60. http://doi.org/10.1177/0142331215600046 doi: 10.1177/0142331215600046
    [44] P. Chanthorn, G. Rajchakit, S. Ramalingam, C. P. Lim, R. Ramachandran, Robust dissipativity analysis of Hopfield-type complex-valued neural networks with time-varying delays and linear fractional uncertainties, Mathematics, 8 (2020), 595. http://doi.org/10.3390/math8040595 doi: 10.3390/math8040595
    [45] G. Rajchakit, R. Sriraman. Robust passivity and stability analysis of uncertain complex-valued impulsive neural networks with time-varying delays, Neural Process. Lett., 53 (2021), 581–606. http://doi.org/10.1007/s11063-020-10401-w doi: 10.1007/s11063-020-10401-w
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1310) PDF downloads(60) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog