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Abstract: This article addresses the robust dissipativity and passivity problems for a class of
Markovian switching complex-valued neural networks with probabilistic time-varying delay and
parameter uncertainties. The main objective of this article is to study the proposed problem from a new
perspective, in which the relevant transition rate information is partially unknown and the considered
delay is characterized by a series of random variables obeying bernoulli distribution. Moreover, the
involved parameter uncertainties are considered to be mode-dependent and norm-bounded. Utilizing
the generalized Itô’s formula under the complex version, the stochastic analysis techniques and the
robust analysis approach, the (M,N,W)-dissipativity and passivity are ensured by means of complex
matrix inequalities, which are mode-delay-dependent. Finally, two simulation examples are provided
to verify the effectiveness of the proposed results.
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1. Introduction

Over the past several decades, dynamical performances of complex-valued neural
networks (CVNNs) have drawn a lot of sensitive attention owing to their broad application prospect,
such as signal processing, associative memory, pattern recognition, engineering optimization [1–3]
and the references therein. CVNNs can effectively solve not only the real-valued information
problems but also the complex-valued ones under complex plane condition. In addition to this,
CVNNs have the strong advantage in comparison with the real-valued neural networks (RVNNs),
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which means that CVNNs are much more complicated. However, it will be no longer applicable [4] if
the complex-valued activation actions are chosen be the similar real-valued ones. In addition,
compared with RVNNs, CVNNs can solve a wider range of problems, including the symmetry
detection and exclusion XOR problems [5, 6]. In view of these points, it will be an important thing to
explore dynamical behaviors of CVNNs. In [7], based on generalized {ξ,∞}-norm, the finite time
anti-synchronization issue of the bounded asynchronous delayed master-slave coupled CVNNs has
been addressed. By resorting to the matrix measure approach, the global exponential stability of
delayed CVNNs has been reported in [8]. The global asymptotic stability problem of CVNNs with
mixed delays has been proposed in [9].

Owing to the influence of objective factors (communication time and limited speed), time-varying
delay usually occurs during the process of neuron information transmission, which may lead to some
unexpected performance. Up till now, a mass of delays have been proposed, for instance, leakage
delay, distributed delay, proportional delay, probabilistic time-varying delay, and so on. Meanwhile,
a large amount of researches have been done under different delays. For example, the issue of global
exponential stability of CVNNs with asynchronous time delays has been investigated in [10]. The
global power-rate synchronization of chaotic networks with proportional delay has been tackled via
impulsive control in [11].

Dissipativity was introduced in [12] and generalized in [13]. From an theoretical engineering point
of view, dissipative theory provides a fundamental frame for analysing different control systems.
From the perspective of energy, the passivity, keeping system internally stable as the main property,
has been firstly presented in the analysis of circuit [14]. Meanwhile, in the general control field,
dissipativity/passivity has been utilized as an essential tool. Based on refined Jensen inequalities, the
issue of dissipativity for stochastic delayed memristive networks has been explored in [15]. By
quadratic convex combination method, the issue of global dissipativity/passivity for delayed T-S
fuzzy general neural networks has been tackled in [16]. However, there are only few results about the
dissipativity/passivity issue of CVNNs with probabilistic time-varying delays [17], which is one of
the main motivations why we do our research.

Random parameter uncertainties, usually existing in complex system, can lead to stochastic
perturbations, which is one of factors causing poor performances. Therefore, when investigating
dynamical behaviors of complex systems, both parameter uncertainties and stochastic perturbations
should be considered. Abundant corresponding achievements have been listed [18]. Nevertheless, the
aforementioned literatures only considered the Brownian motion but ignored the switching behaviors.
To better describe that switching phenomena, Markovian switching mechanism has been proposed
and a variety of significative achievements have been achieved [19, 20]. Such as, the issue of global
dissipativity/passivity for discrete-time stochastic Markovian switching Cohen-Grossberg systems has
been studied [21]. In [22], the robust passivity problem of stochastic Markovian switching systems
with multiplicative noise has been investigated. It should be noticed that the transition rates can
directly influence dynamics of the Markovian switching systems during the jumping process. In most
of the aforementioned literatures, it is assumed that the considered Markovian process is precise.
Nevertheless, owing to the existence of environmental noises, delay variation of time delay or packet
dropouts, it exists troublesome to measure and get the accurate transition rate information, which
directly leads to incomplete transition rates. Recently, in order to analyze different type of
uncertainties found in transition rates [23, 24], an extension has been addressed to deal with transition
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rates with uncertainties. For instance, the stability issue of delayed Markovian networks has been
investigated [25], where transition rate information is partly known. The exponential stability issue of
mixed delayed impulsive Markovian jump networks with general incomplete transition rates has been
studied in [26]. Regardless of these recent developments, up till now, when simultaneously consider
all factors, including the stochastic disturbances, Markovian switching with partly known transition
rates, probabilistic time-varying delay and uncertain parameters, there is no relevant results on
dissipativity/passivity problem for complex-valued networks in the complex domain, which becomes
the most important motivation to investigate this research.

In response to the statements given above, the main goal is to study the robust dissipativity and
passivity issues of Markovian switching CVNNs, which involve stochastic disturbance, probabilistic
time-varying delay and partly unknown transition rates. Here, the main novelties are primarily
summarized as follows. (1) Partly unknown transition rates are considered for the first attempt to
address robust passivity and dissipativity problems for stochastic Markovian switching CVNNs with
probabilistic time-varying delay and norm-bounded uncertainties. (2) A stochastic variable in
time-varying delay is introduced to analyse dissipativity and passivity issues for considered delayed
complex-valued neural networks, which satisfies the Bernoulli random binary distribution. (3) By
taking advantage of the robust analysis technique, stochastic analysis approach, Lyapunov stability
theory and the generalised Itô’s formula, sufficient criteria on (M,N,W)-dissipativity/passivity are
obtained with the intuitionistic form of complex matrix inequalities, which are
delay-mode-dependent, (4) Simulation results are given, which could clearly show that the stochastic
factors, i.e., the Markovian process and the Brownian motion, have significant effect on the
dissipativity/passivity performance index.

In this paper, the remainder is outlined as follows. Section 2 shows the considered model description
and some necessary preliminaries. Section 3 derives the robust dissipativity and passivity criteria
for the stochastic delayed Markovian switching CVNNs with probabilistic time-varying delay and
partly known transition rates through utilizing the general Lyapunov functional method in the complex
domain. Section 4 gives two illustrative numerical simulations to verify the viability of the presented
results. In the end, the conclusion is given in Section 5.

Notations: Rn and Cn denote, respectively, n-dimensional real vectors and n-dimensional complex
vectors. Rm×n and Cm×n are m × n real and complex matrices. I denotes the identity matrix with
appropriate dimensions. The (Ω,X, {Xt}t≥0,W) is the complete probability space, in which Xt is
monotonically right continuity, and X0 includes wholeW-null sets. The superscript ‘T ’ stands for the
matrix transposition. The superscript ‘H’ denotes the matrix complex conjugate transpose. ~i denotes
the imaginary unit. ‘∗’ denotes the elements involved by symmetry in a matrix. col(Ai)n

i=1 refers to
(AT

1 , A
T
2 , · · · , A

T
n )T . E{·} means the mathematical expectation.

2. Problem formulation and preliminaries

Consider the following stochastic Markovian switching CVNNs with probabilistic time-varying
delay and uncertain parameters:
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
dx(t) =

[
−

(
C(s(t)) + ∆C(s(t))

)
x(t) +

(
A(s(t)) + ∆A(s(t))

)
f (x(t))

+
(
B(s(t)) + ∆B(s(t))

)
g(x(t − τ(t))) + ~(t)

]
dt

+ h(t, x(t), x(t − τ(t)))dω(t),
y(t) = f (x(t)), t ≥ 0,

(2.1)

where x(t) = col(xι)n
ι=1 ∈ C

n means the state vector of the network at time t, which involves n nodes.
C(s(t)) = diag{cι(s(t))}nι=1 ∈ R

n×n stands for the self-feedback weight matrix with every entry cι(s(t)) >
0, A(s(t)) = (aιm(s(t)))n×n and B(s(t)) = (bιm(s(t)))n×n denote, respectively, the connection weight matrix
and the delayed connection weight matrix and they belong to Cn×n. f (x(t)) = col( fι(xι(t)))n

ι=1 : Cn → Rn

and g(x(t)) = col(gι(xι(t)))n
ι=1 : Cn → Cn stand for, respectively, the neuron activation function without

and with time delay. ~(t) = col(~ι(t)))T ∈ Rn and y(t) = col(yι(t)))T ∈ Rn stand for, respectively, the
external input vector and the output vector. h(t, x(t), x(t−τ(t))) : R×Cn×Cn → Cn×n is the noise density
function. ω(t) stands for the n-dimensional Brownian motion, which is defined on (Ω,X, {Xt}t>0,W).
τ(t) is called as time-varying probabilistic delay, which often satisfies the following equation:

W{τ(t) = τ1(t)} = η, W{τ(t) = τ2(t)} = 1 − η, ∀t > 0, (2.2)

in which τ1(t) ∈ [τ1, τ̃] and τ2(t) ∈ (τ̃, τ2] with τ1 ≤ τ̃ ≤ τ2 being known positive numbers. Moreover,
τ̇1(t) ≤ µ1 and τ̇2(t) ≤ µ2.

The stochastic process {s(t), t ≥ 0}, taking valid values in a set S , {1, 2, . . . ,N}, denotes a
continuous-time Markov process, where the transition rate matrix Π , [$ab]N×N is defined in the form
of probability type as follows:

W{s(t + θ) = b|s(t) = a} =

$abθ + o(θ), a , b,

1 +$abθ + o(θ), a = b,

where θ > 0, when a , b, $ab ≥ 0 refers to the transition rate which jumps mode a at time t to mode b
at time t + θ, limθ→0(o(θ)/θ) = 0, and $aa = −

∑N
b=1,b,a $ab. Obviously, the well-known fact is that

transition rates under the Markov process can directly influence the behavior of the Markovian
switching systems, it is further assumed that some elements of the transition rates are partly available.
Next, for every a ∈ S, let S , Sa

uk ∪ S
a
uc with Sa

uk , {b : $ab is unknwon} and
Sa

uc , {b : $ab is uncertain}. Moreover, if Sa
2 , ∅, S

a
1 can be expressed as

Sa
1 = {Ka

1 ,K
a
2 , . . . ,K

a
m},

in which m is a positive integer belonging to {1, . . . ,N − 2}. In transition rate matrix Π,
Ka

s (s ∈ {1, 2, . . . ,m}) denotes the sth foreknown element in the ath row. For further facilitate analysis,
when s(t) = a, the presented matrices C(s(t)), A(s(t)), B(s(t)), ∆C(s(t)), ∆A(s(t)), and ∆B(s(t)) are,
respectively, simplified as Ca, Aa, Ba, ∆Ca, ∆Aa, and ∆Ba.

The mode-dependent parameter uncertainties ∆Ca ∈ R
n×n, ∆Aa ∈ C

n×n, and ∆Ba ∈ C
n×n are assumed

to satisfy

[∆Ca ∆Aa ∆Ba] = DaW(t)[H1a H2a H3a], (2.3)
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in which Da and H1a are known real constant matrices, H2a and H3a are known complex matrices,W(t)
denotes a real unknown matrix function satisfying

W
T (t)W(t) ≤ I. (2.4)

To simplify further analysis, η(t), a Bernoulli distributed white sequence, is introduced as follows:

η(t) = 1, when τ(t) = τ1(t); η(t) = 0, when τ(t) = τ2(t).

Combined with the above analysis, we rewrite the network (2.1) as

dx(t) =[−(C(s(t)) + ∆C(s(t)))x(t) + (A(s(t)) + ∆A(s(t))) f (x(t)) + η(t)(B(s(t)) + ∆B(s(t)))
× g(x(t − τ1(t)))]dt + (1 − η(t))(B(s(t)) + ∆B(s(t)))g(u(t − τ2(t)))dt + ~(t)dt

+ η(t)h(t, x(t), x(t − τ1(t)))dω(t) + (1 − η(t))h(t, x(t), x(t − τ2(t)))dω(t). (2.5)

Remark 2.1. It is worth noticing that random variable η(t) owns the corresponding statistical
properties withW{η(t) = 1} = E{η(t)} = η̃,W{η(t) = 0} = 1 − E{η(t)} = 1 − η̃, E{(1 − η(t))2} = 1 − η̃,
E{η2(t)} = η̃ and E{η(t)(1 − η(t))} = 0. Moreover, η(t) is independent with ω(t) and s(t).

The initial value of system (2.1) is defined as

x(e) = ζ(e), − τ2 ≤ e ≤ 0, (2.6)

in which ζ(e) = (ζ1(e), . . . , ζn(e))T ∈ Cn belongs to L2
X0

([−τ2, 0],Cn). In addition,
L2
X0

([−τ2, 0],Cn) stands for the all elements of all X0-measurable random variable, which is
C([−τ2, 0],Cn)-valued and sup−τ2≤e≤0 E{‖ζ(e)‖2} < ∞. Moreover, it should be pointed out that ζ(·) is
independent with the Brownian motion ω(·), Markov process s(·) and random variable η(t).

For further discussion, the given nonlinear activation functions satisfy the following conditions
which will be used later.

Assumption 2.1. The considered activation functions fι(·), gι(·) (ι = 1, 2, . . . , n) satisfy the Lipschitz
condition and fι(0) = gι(0) = 0, i.e., there exist positive constants σι, ρι such that

| fι(ε1) − fι(ε2)| ≤ σι|ε1 − ε2|, |gι(ε1) − gι(ε2)| ≤ ρι|ε1 − ε2|, ∀ε1, ε2 ∈ C.

Assumption 2.2. There exist positive semi-definite Hermitian matrices V1 and V2 of appropriate
dimensions satisfying the inequality below:

hH(t, ε, ε̃)h(t, ε, ε̃) ≤ εHV1ε + ε̃HV2ε̃, ∀ε, ε̃ ∈ C
n.

Remark 2.2. It’s worth noting that, the nonlinear functions in Assumption 2.1 are usually looked upon
as the expansion of the real-valued ones with the Lipschitz condition. Moreover, the existing literatures
concerning CVNNs are adopted to decompose the considered CVNNs into two real-valued networks,
which make the achieved matrix dimension will be twice as large and increase the computational
complexity [27, 28]. In view of these points, it is urgent to further consider the dynamic behaviors of
CVNNs in complex domain.
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In this article, the robust dissipativity/passivity criteria will be established for system (2.1) by
utilizing the mode-dependent Lyapunov-Krasovskii functional. Before stating the main results, we
present some useful definitions and lemmas.

For CVNN (2.1), set energy input-output functionH as

H(~, y, t) , 2〈y,N~〉t + 〈~,W~〉t + 〈y,My〉t, ∀t ≥ 0, (2.7)

in which N is a real matrix, M and W are Hermitian matrices, and 〈y,N~〉t stands for
∫ t

0
yH(s)N~(s)ds.

Definition 2.1. when the initial constraint is zero, if there owns a scalar γ > 0 that makes the inequality
below

E{H(~, y, t)} ≥ γ〈~, ~〉t, ∀t ≥ 0.

hold, system (2.1) is strictly (M,N,W)-dissipative in the sense of expectation.

Definition 2.2. when the initial constraint is zero, if there owns a scalar γ > 0 that makes the inequality
below

2E
{ ∫ t

0
yT (s)~(s)ds

}
≥ −γ

∫ t

0
~T (s)~(s)ds, ∀t ≥ 0.

hold, from the input ~(·) to the output y(·), system (2.1) is robustly passive in the sense of expectation.

Definition 2.3. [29, 30] Consider a n-dimensional stochastic Markovian switching complex-valued
differential equation:

dφ(t) = F(t, φ(t), φ(t − τ(t)), s(t))dt + G(t, φ(t), φ(t − τ(t)), s(t))dµ(t), t ≥ 0

where φ(t) = (φ1(t), φ2(t), . . . , φn(t))T ∈ Cn, F,G are general continuous functions. Calculate the
R-derivative of Ψ [31] as

∂Ψ(t, φ, a)
∂φ

∣∣∣∣∣∣
φ̄=const

,

(
∂Ψ(t, φ, a)

∂φ1
,
∂Ψ(t, φ, a)

∂φ2
, . . . ,

∂Ψ(t, φ, a)
∂φn

) ∣∣∣∣∣∣
φ̄=const

,

and the conjugate R derivative of Ψ [31] as

∂Ψ(t, φ, a)
∂φ̄

∣∣∣∣∣∣
φ=const

,

(
∂Ψ(t, φ, a)

∂φ̄1
,
∂Ψ(t, φ, a)

∂φ̄2
, . . . ,

∂Ψ(t, φ, a)
∂φ̄n

) ∣∣∣∣∣∣
φ=const

in which the conjugate vector of φ is φ̄. All functions Ψ(t, φ, a) : R+ ×C
n ×S → R+ are C1,2(R+ ×C

n ×

S,R+), which means twice differentiable in φ and φ̄ and once continuously differentiable in t. Then for
all Ψ(t, φ, a), the complex version of the generalized Itô’s formula could be given as the form below:
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dΨ(t, φ, a)

=

N∑
b=1

$abΨ(t, φ, b)dt +
∂Ψ(t, φ, a)

∂t
dt +

∂Ψ(t, φ, a)
∂φ

dφ +
1
2

n∑
p,q=1

∂2Ψ(t, φ, a)
∂φp∂φq

dφpdφq

+
∂Ψ(t, φ, a)

∂φ̄
dφ̄ +

n∑
p,q=1

∂2Ψ(t, φ, a)
∂φp∂φ̄q

dφpdφ̄q +
1
2

n∑
p,q=1

∂2Ψ(t, φ, a)
∂φ̄p∂φ̄q

dφ̄pdφ̄q

=

[ N∑
b=1

$abΨ(t, φ, b) +
∂Ψ(t, φ, a)

∂t
+
∂Ψ(t, φ, a)

∂φ
F(t, a) + GT(t, a)

∂2Ψ(t, φ, a)
∂φ∂φ̄

Ḡ(t, a)

+
∂Ψ(t, φ, a)

∂φ̄
F̄(t, a) +

1
2

GT(t, a)
∂2Ψ(t, φ, a)

∂φ2 G(t, a) +
1
2

ḠT(t, a)
∂2Ψ(t, φ, a)
∂φ̄∂φ̄

Ḡ(t, a)
]
dt

+

[
∂Ψ(t, φ, a)

∂φ
G(t, a) +

∂Ψ(t, φ, a)
∂φ̄

Ḡ(t, a)
]
dµ(t),

(2.8)

where F(t, a) denotes F(t, φ(t), φ(t − τ(t)), a) and G(t, a) denotes G(t, φ(t), φ(t − τ(t)), a) for simplicity,

∂2Ψ(t, φ, a)
∂φ2 ,

(
∂2Ψ(t, φ, a)
∂φp∂φq

)
n×n

,
∂2Ψ(t, φ, a)
∂φ̄∂φ̄

,

(
∂2Ψ(t, φ, a)
∂φ̄p∂φ̄q

)
n×n

,

∂2Ψ(t, φ, a)
∂φ∂φ̄

,

(
∂2Ψ(t, φ, a)
∂φp∂φ̄q

)
n×n

.

In addition, the operator L on Ψ(t, φ, a) is defined as

LΨ(t, φ, a) ,
N∑

b=1

$abΨ(t, φ, b) +
∂Ψ(t, φ, a)

∂t
+

1
2

GT(t, a)
∂2Ψ(t, φ, a)

∂φ2 G(t, a)

+ GT(t, i)
∂2Ψ(t, φ, a)
∂φ∂φ̄

Ḡ(t, a) +
1
2

ḠT(t, a)
∂2Ψ(t, φ, a)
∂φ̄∂φ̄

Ḡ(t, a),

+
∂Ψ(t, φ, a)

∂φ̄
F̄(t, i) +

∂Ψ(t, φ, a)
∂φ

F(t, a).

(2.9)

Lemma 2.1. [32] For a positive definite Hermitian matrix L ∈ Cn×n, give an integrable function
Θ(·) : [k, c]→ Cn, where scalar k < c , then the following inequality holds:

−

∫ c

k
ΘH(e)LΘ(e)de ≤ −

1
(c − k)

[ ∫ c

k
Θ(e)de

]H

L
[ ∫ c

k
Θ(e)de

]
.

Lemma 2.2. [33] For vectors ϑ, χ ∈ Cn, any matrix Ω ∈ Rn×n satisfying ΩT Ω ≤ I. There exists a
scalar ξ > 0, the presented inequality below is valid.

ϑHΩTχ + χHΩϑ ≤ ξ−1ϑHϑ + ξχHχ.

Lemma 2.3. [34] A given Hermitian matrix

Ξ =

(
Ξ11 Ξ12

Ξ21 Ξ22

)
< 0,

AIMS Mathematics Volume 7, Issue 10, 19458–19480.
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where ΞH
11 = Ξ11, ΞH

12 = Ξ21, and ΞH
22 = Ξ22, is equivalent to any one inequality below.

1) Ξ22 < 0 and Ξ11 − Ξ12Ξ
−1
22 Ξ21 < 0,

2) Ξ11 < 0 and Ξ22 − Ξ21Ξ
−1
11 Ξ12 < 0.

3. Main results

This section is concerned on the robust dissipativity and passivity issues of system (2.1). In the
first place, the dissipativity criteria are derived in the following Theorem 3.1. The general situation of
dissipativity criteria on passivity are subsequently presented as Theorem 3.2.

Theorem 3.1. Under Assumptions 2.1 and 2.2, from the input ~(t), network (2.1) is strictly (M,N,W)-
dissipative in the sense of expectation if there exist positive definite Hermitian matrices Pa, Qι (ι =

1, 2, 3), Rκ (κ = 1, 2) and S κ, Hermitian matrix Ua with appropriate dimensions, diagonal matrices
Λς > 0 (ς = 1, 2, 3, 4, 5, 6), scalars ϑ > 0, λ > 0, δ > 0 and νς > 0 such that the achieved matrix
inequalities below uniformly are valid:

Pa ≤ ϑI, (3.1)
Θ11 Θ12 Θ13

∗ Θ22 Θ23

∗ ∗ Θ33

 < 0, (3.2)

Pb − Ua ≤ 0, b ∈ Sa
uk\{a}, (3.3)

Pb − Ua ≥ 0, b ∈ Sa
uk ∩ {a} , (3.4)

where

Θ23 =


0 0 −N 0 ηδHT

2a
0 0 0 0 0
0 0 0 0 ηδHT

3a
0 0 0 0 0
0 0 0 0 (1 − η)δHT

3a


,

Θ11 = diag{Ω11,Ω22,Ω33,Ω44,Ω55,Ω66},

Θ22 = diag{−ν1Λ1 − M,−ν2Λ2,−ν3Λ3,−ν4Λ4,−ν5Λ5,−ν6Λ6},

Θ33 = diag
{
−

1
τ̃ − τ1

R2,−
1

τ2 − τ̃
S 2, γI −W,−δI,−δI

}
,

Θ12 = [β1 0 0 0 0 0]T , Θ13 = [β2 0 0 0 0 0]T ,

with βT
1 = [PaAa 0 ηPaBa 0 (1 − η)PaBa 0], βT

2 = [0 0 Pa PaDa δHT
1a], and

Ω11 =
∑
b∈Sa

k

$ab(Pb − Ua) − PaCa −CaPa + Q1 + Q2 + Q3 + R1 + (τ̃ − τ1)R2 + S 1

+ (τ2 − τ̃)S 2 + ηϑV1 + (1 − η)ϑV3 + ν1Γ1Λ1,

Ω22 = −Q2 + ν2Γ2Λ2, Ω44 = −Q1 + ν4Γ2Λ4, Ω66 = −Q3 + ν6Γ2Λ6,

Ω33 = −(1 − µ1)R1 + ηϑV2 + ν3Γ2Λ3,
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Ω55 = −(1 − µ2)S 1 + (1 − η)ϑV4 + ν5Γ2Λ5,

Γ1 = diag{σ2
1, σ

2
2, . . . , σ

2
n}, Γ2 = diag{ρ2

1, ρ
2
2, . . . , ρ

2
n}.

Proof. Choose a Lyapunov-Krasovskii functional below for network (2.1) as

ℵ(t) = ℵ1(t) + ℵ2(t) + ℵ3(t) + ℵ4(t), (3.5)

where

ℵ1(t) =xH(t)P(s(t))x(t),

ℵ2(t) =

∫ t

t−τ̃
xH(s)Q1x(s)ds +

∫ t

t−τ1

xH(s)Q2x(s)ds +

∫ t

t−τ2

xH(s)Q3x(s)ds,

ℵ3(t) =

∫ t

t−τ1(t)
xH(s)R1x(s)ds +

∫ −τ1

−τ̃

∫ t

t+θ
xH(s)R2x(s)dsdθ,

ℵ4(t) =

∫ t

t−τ2(t)
xH(s)S 1x(s)ds +

∫ −τ̃

−τ2

∫ t

t+θ
xH(s)S 2x(s)dsdθ,

where P(s(t)), Q1, Q2, Q3, R1, R2, S 1 and S 2 are matrices, which are going to be determined. Along the
trajectory of system (2.1), define infinitesimal generator L, with the generalized complex Itô’s formula
in Definition 2.3, it infers

E
{
Lℵ1(t)

}
=E

{
xH(t)Pa

(
− (Ca + ∆Ca)x(t) + (Aa + ∆Aa) f (x(t)) + η(Ba + ∆Ba)g(x(t − τ1(t)))

+ (1 − η)(Ba + ∆Ba)g(x(t − τ2(t))) + ~(t)
)

+
(
− (Ca + ∆Ca)x(t) + ~(t) + (Aa

+ ∆Aa) f (x(t)) + η(Ba + ∆Ba)g(x(t − τ1(t))) + (1 − η)(Ba + ∆Ba)

× g(x(t − τ2(t)))
)HPax(t) + {η(t)h(t, x(t), x(t − τ1(t)))

+ (1 − η(t))h(t, x(t), x(t − τ2(t)))}HPa{η(t)h(t, x(t), x(t − τ1(t)))

+ (1 − η(t))h(t, x(t), x(t − τ2(t)))} +
N∑

b=1

$abxH(t)Pbx(t)
}
, (3.6a)

E
{
Lℵ2(t)

}
=E

{
xH(t)(Q1 + Q2 + Q3)x(t) − xH(t − τ̃)Q1x(t − τ̃) − xH(t − τ1)Q2x(t − τ1)

− xH(t − τ2)Q3x(t − τ2)
}
, (3.6b)

E
{
Lℵ3(t)

}
=E

{
xH(t)(R1 + (τ̃ − τ1)R2)x(t) − (1 − τ̇1(t))xH(t − τ1(t))R1x(t − τ1(t))

−

∫ t−τ1

t−τ̃
xH(s)R2x(s)ds

}
≤E

{
xH(t)(R1 + (τ̃ − τ1)R2)x(t) − (1 − µ1)xH(t − τ1(t))R1x(t − τ1(t))

−

∫ t−τ1

t−τ̃
xH(s)R2x(s)ds

}
, (3.6c)

E
{
Lℵ4(t)

}
=E

{
xH(t)(S 1 + (τ2 − τ̃)S 2)x(t) − (1 − τ̇2(t))xH(t − τ2(t))S 1x(t − τ2(t))

−

∫ t−τ̃

t−τ2

xH(s)S 2x(s)ds
}
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≤E
{
xH(t)(S 1 + (τ2 − τ̃)S 2)x(t) − (1 − µ2)xH(t − τ2(t))S 1x(t − τ2(t))

−

∫ t−τ̃

t−τ2

xH(s)S 2x(s)ds
}
, (3.6d)

here, to achieve (3.6), conditions τ̇1(t) ≤ µ1 and τ̇2(t) ≤ µ2 have been exploited.
According to the presented form of η(t), it follows from Assumption 2.2 and condition (3.1) that

E
{
{η(t)h(t, x(t), x(t − τ1(t))) + (1 − η(t))h(t, x(t), x(t − τ2(t)))}HPa

× {η(t)h(t, x(t), x(t − τ1(t))) + (1 − η(t))h(t, x(t), x(t − τ2(t)))}
}

≤ ηϑhH(t, x(t), x(t − τ1(t)))h(t, x(t), x(t − τ1(t)))
+ (1 − η)ϑhH(t, x(t), x(t − τ2(t)))h(t, x(t), x(t − τ2(t)))
≤ xH(t)(ηϑV1 + (1 − η)ϑV3)x(t) + xH(t − τ1(t))(ηϑV2)x(t − τ1(t))
+ xH(t − τ2(t))((1 − η)ϑV4)x(t − τ1(t − τ2(t))). (3.7)

Moreover, from Lemma 2.1, one has

−

∫ t−τ1

t−τ̃
xH(s)R2x(s)ds

≤ −
1

τ̃ − τ1

( ∫ t−τ1

t−τ̃
xH(s)ds

)H

R2

( ∫ t−τ1

t−τ̃
xH(s)ds

)
(3.8a)

−

∫ t−τ̃

t−τ2

xH(s)S 2x(s)ds

≤ −
1

τ2 − τ̃

( ∫ t−τ̃

t−τ2

xH(s)ds
)H

S 2

( ∫ t−τ̃

t−τ2

xH(s)ds
)
. (3.8b)

In addition, for every Λς > 0 (ς = 1, 2, 3, 4, 5, 6), which is real diagonal, it follows from Assumption 2.1
that

f T (x(t))Λ1 f (x(t)) ≤ xH(t)Γ1Λ1x(t), (3.9a)
gT (x(t − τ1))Λ2g(x(t − τ1)) ≤ xH(t − τ1)Γ2Λ2x(t − τ1), (3.9b)

gT (x(t − τ1(t)))Λ3g(x(t − τ1(t))) ≤ xH(t − τ1(t))Γ2Λ3x(t − τ1(t)), (3.9c)
gT (x(t − τ̃))Λ4g(x(t − τ̃)) ≤ xH(t − τ̃)Γ2Λ4x(t − τ̃), (3.9d)

gT (x(t − τ2(t)))Λ5g(x(t − τ2(t))) ≤ xH(t − τ2(t))Γ2Λ5x(t − τ2(t)), (3.9e)
gT (x(t − τ2))Λ6g(x(t − τ2)) ≤ xH(t − τ2)Γ2Λ6x(t − τ2), (3.9f)

where Γ1 , diag{σ2
1, σ

2
2, . . . , σ

2
n}, Γ2 , diag{ρ2

1, ρ
2
2, . . . , ρ

2
n}. Therefore, for any scalars νς > 0 (ς =

1, 2, 3, 4, 5, 6), we have

0 ≤ν1[xH(t)Γ1Λ1x(t) − f T (x(t))Λ1 f (x(t))], (3.10a)
0 ≤ν2[xH(t − τ1)Γ2Λ2x(t − τ1) − gT (x(t − τ1))Λ2g(x(t − τ1))], (3.10b)
0 ≤ν3[xH(t − τ1(t))Γ2Λ3x(t − τ1(t)) − gT (x(t − τ1(t)))Λ3g(x(t − τ1(t)))], (3.10c)

AIMS Mathematics Volume 7, Issue 10, 19458–19480.



19468

0 ≤ν4[xH(t − τ̃)Γ2Λ4x(t − τ̃) − gT (x(t − τ̃))Λ4g(x(t − τ̃))], (3.10d)
0 ≤ν5[xH(t − τ2(t))Γ2Λ5x(t − τ2(t)) − gT (x(t − τ2(t)))Λ5g(x(t − τ2(t)))], (3.10e)
0 ≤ν6[xH(t − τ2)Γ2Λ6x(t − τ2) − gT (x(t − τ2))Λ6g(x(t − τ2))]. (3.10f)

According to the property of Π, it can be easily obtained that
∑

b∈S$ab = 0 for all b ∈ S. For every
Hermitian matrix Ua, it infers

xH(t)
( ∑

b∈Sa
1

$ab +
∑
b∈Sa

2

$ab

)
Uau(t) = 0. (3.11)

Combing (3.6a)–(3.11), one gets

E
{
Lℵ(t) + γ~T (t)~(t) − [yT (t)My(t) + ~T (t)W~(t) + 2yT (t)N~(t)]

}
≤ E

{
ξH(t)Υ(t)ξ(t) + xH(t)

∑
b∈Sa

2

$ab(Pb − Ua)x(t)
}
, (3.12)

where ξH(t) , (xH(t), xH(t − τ1), xH(t − τ1(t)), xH(t − τ̃), xH(t − τ2(t)), xH(t − τ2), f T (x(t)), gH(x(t − τ1)),
gH(x(t − τ1(t))), gH(x(t − τ̃)), gH(x(t − τ2(t))), gH(x(t − τ2)), (

∫ t−τ1

t−τ̃
x(s)ds)H, (

∫ t−τ̃

t−τ2
x(s)ds)H, ~T (t)) and

Υ(t) ,


Υ11(t) Υ12(t) Υ13

∗ Θ22 Υ23

∗ ∗ Υ33

 ,
where

Υ11(t)



Ω11(t) 0 0 0 0 0
∗ Ω22 0 0 0 0
∗ ∗ Ω33 0 0 0
∗ ∗ ∗ Ω44 0 0
∗ ∗ ∗ ∗ Ω55 0
∗ ∗ ∗ ∗ ∗ Ω66


, Υ12(t)



Ω17(t) 0 Ω19(t) 0 Ω1,11(t) 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

in which Ω11(t) =
∑

b∈Sa
1
$ab(Pb −Ua) + Pa(−(Ca + ∆Ca)) + (−(Ca + ∆Ca))Pa + Q1 + Q2 + Q3 + R1 + (τ̃−

τ1)R2 + S 1 + (τ2 − τ̃)S 2 + ηϑV1 + (1− η)ϑV3 + ν1Γ1Λ1, Ω17(t) = Pa(Aa + ∆Aa), Ω19(t) = ηPa(Ba + ∆Ba),
Ω1,11(t) = (1−η)Pa(Ba +∆Ba), Υ33 = diag{−1/(τ̃−τ1)R2,−1/(τ2− τ̃)S 2, γI−W}, Υ13 = [β3 0 0 0 0 0]T ,
Υ23 = [β4 0 0 0 0 0]T with βT

3 = [0 0 Pa], βT
4 = [0 0 − N], and Ω22, Ω33, Ω44, Ω55, Ω66, Θ22 are defined

in (3.2).
Obviously, Υ(t) = Υ1 + ∆Υ1(t), in which

Υ1 ,


~Υ11 ~Υ12 Υ13

∗ Θ22 Υ23

∗ ∗ Υ33

 , ∆Υ1(t) ,


∆~Υ11 ∆~Υ12 0
∗ 0 0
∗ ∗ 0

 ,
and Υ1 is equivalent to matrix Υ(t) with only some entries are different, i.e., Ω11(t), Ω17(t), Ω19(t), and
Ω1,11(t) are, respectively, replaced by ~Ω11, ~Ω17, ~Ω19, and ~Ω1,11, in which ~Ω11 =

∑
b∈Sa

1
$ab(Pb − Ua) −
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PaCa−CaPa +Q1 +Q2 +Q3 +R1 + (τ̃−τ1)R2 +S 1 + (τ2− τ̃)S 2 +ηϑV1 + (1−η)ϑV3 +ν1Γ1Λ1, ~Ω17 = PaAa,
~Ω19 = ηPaBa, ~Ω1,11 = (1 − η)PaBa.

Then, it follows from Lemma 2.2 that there must exist a scalar δ > 0 satisfying

∆Υ1(t) = MW(t)N + NH
W

T (t)MH ≤ δ−1
MM

H + δNH
N, (3.13)

whereMH = [DT
a Pa 0 0 0 0 0 0 0 0 0 0 0 0 0 0], N = [−H1a 0 0 0 0 0 ηH2a 0 ηH3a 0 (1− η)H3a 0 0 0 0].

Considering the term xH(t)
∑

b∈Sa
2
$ab(Pb −Ua)x(t), we can divide that into the following two cases:

Case 1: b ∈ Sa
uk\{a}, it is known that $ab ≥ 0. Therefore, condition (3.3) infers $ab(Pb − Ua) ≤ 0;

Case 2: b ∈ Sa
uk ∩ {a}, it is the fact that $aa ≤ 0. Therefore, condition (3.4) infers $ab(Pb −Ua) ≤ 0.

According to the above discussions, one has

xH(t)
∑
j∈Sa

2

$ab(Pb − Ua)x(t) < 0, ∀a ∈ S. (3.14)

Therefore, it follows from Lemma 2.3, if conditions (3.2) and (3.14) hold, inequality ξH(t)Υ(t)ξ(t) +

xH(t)
∑

b∈Sa
2
$ab(Pb − Ua)x(t) < 0 is valid for all a ∈ S.

As a result, based on the above discussion, it is obvious to have

E
{
Lℵ(t) + γ~T (t)~(t)

}
≤ E

{
yT (t)My(t) + 2yT (t)N~(t) + ~T W~(t)

}
, (3.15)

which means that

E
{
H(~, y, t)

}
≥ E

{
γ〈~, ~〉t + ℵ(t) − ℵ(0)

}
. (3.16)

In addition, it is the fact that ℵ(0) = 0 and ℵ(t) > 0, we can conclude E
{
H(~, y, t)

}
≥ γ〈~, ~〉t. It

follows from Definition 2.1 that network (2.1) is strictly (M,N,W)-dissipative in the sense of
expectation. This proof is completed. �

Remark 3.1. The strictly (M,N,W)-dissipative criteria of the proposed Markovian switching
CVNN (2.1) with partly unknown transition rates has been presented in Theorem 3.1. It should be
emphasized that the obtained criteria are depend on the probability η of time-varying delay, which
means the probabilistic time-varying delay has a great impact on the dissipativity/passivity
performance of the considered system. Besides, to reflect the actual situation, this paper also involves
other three factors, including Markovian switching, stochastic disturbance and uncertain parameters,
which makes considered dissipativity analysis much more complex. It is worth noting that the
considered transition rate information is partly unknown, which expands many existing
literatures [35]. Meanwhile, the obtained theoretical results can be easily reduced to the existing
literatures [36, 37]. In addition, the involved factors can characterise the realistic system. Therefore,
when discussing the dissipativity problem, it is necessary to consider them into the considered system.
Dissipativity issue of CVNNs has been addressed in [38], in which only the stochastic disturbances
are considered. Hence, in this article, the obtained dissipativity results could cover those in [38].

Remark 3.2. It is an apparent fact that the presented matrix inequalities (3.1)–(3.4) in Theorem 3.1
are all complex-valued, which cannot be directly solved via Matlab Toolbox. In view of this, we can
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utilize the method firstly proposed in [39] to solve a complex Hermitian matrix P satisfies P < 0 if and
only if (

Re(P) Im(P)
−Im(P) Re(P)

)
< 0,

where Re(P) and Im(P) refer to, respectively, the real and imaginary part of matrix P. In this case, the
obtained complex-valued matrix inequalities can be transformed into real-valued matrix inequalities,
which can be solved by adopting the standard Matlab Toolbox.

After acquiring the analysis in Theorem 3.1, set N = I, M = 0 and W = 2γI, it can directly obtain
the robust passivity criterion of system (2.1), which can be presented in the theorem below.

Theorem 3.2. With the help of Assumptions 2.1 and 2.2, network (2.1) is robustly passive in the
expectation sense if there exist positive definite Hermitian matrices Pi, Qι (ι = 1, 2, 3), Rκ (κ = 1, 2)
and S κ, Hermitian matrix Ua with appropriate dimensions, diagonal matrices
Λς > 0 (ς = 1, 2, 3, 4, 5, 6), constants ϑ > 0, λ > 0, δ > 0 and νς > 0 such that matrix
inequalities (3.1), (3.3) and (3.4) and the inequality below uniformly are valid:

Θ11 Θ12 Θ13

∗ Θ̃22 Θ̃23

∗ ∗ Θ̃33

 < 0 , (3.17)

where

Θ̃23 =


0 0 −I 0 ηδHT

2a
0 0 0 0 0
0 0 0 0 ηδHT

3a
0 0 0 0 0
0 0 0 0 (1 − η)δHT

3a


,

Θ̃22 = diag{−ν1Λ1,−ν2Λ2,−ν3Λ3,−ν4Λ4,−ν5Λ5,−ν6Λ6},

Θ̃33 = diag
{
−

1
τ̃ − τ1

R2,−
1

τ2 − τ̃
S 2,−γI,−δI,−δI

}
,

and the rest symbols can be found in Theorem 3.1.

Proof. Based on the similar derivation of Theorem 3.1, one has

2E
{ ∫ t

0
yT (s)~(s)ds

}
≥ E

{
− γ

∫ t

0
~T (s)~(s)ds + ℵ(t) − ℵ(0)

}
. (3.18)

Moreover, owning to ℵ(0) = 0 and ℵ(t) > 0, one directly gets
2E{

∫ t

0
yT (s)~(s)ds} ≥ −γ

∫ t

0
~T (s)~(s)ds. Combining with the Definition 2.2, one can obtain the

considered system (2.1) is strictly robustly passive in the sense of expectation. This completes the
proof. �

Remark 3.3. What is noteworthy is that in most existing literatures on Markovian switching
networks [40, 41], the considered transition rate information is sometimes known, sometimes
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inaccessible, which leads to two common cases: Sa
uk = ∅, Sa

k = S or Sa
k = ∅, Sa

uk = S. Therefore, it
takes great limitations or restrictions to practical applications. In reality, it is very difficult to be
measure and require the transition rate information due to random factors. Hence, taking into partly
unknown transition rates account, it is urgent to research Markovian switching systems and some
relevant results have been reported [42, 43]. Based on these considerations, analysis of this paper are
more meaningful.

Remark 3.4. It should be pointed out that when dealing with the stochastic CVNNs, the considered
system will be decomposed into real and imaginary parts, which means that the dimensions will be
doubled and the computational complexity will increase [36, 37]. Besides, the adopted method is the
general real Itô’s formula. However, in this paper, compared to [36, 37], the main advantages of
the results are three parts. The first one is that replacing the real-imaginary separation technique,
we discuss the system performance in the complex domain; the second one is that in virtue of the
generalised Itô’s formula in the complex domain and stochastic analysis method, mode-delay-dependnt
criteria are obtained; the third one is that the considered transition rate information is partly unknown,
which further reflect realistic significance.

When N = 1, we can reduce system (2.1) to the stochastic CVNN with probabilistic time-varying
delay as follows:

dx(t) =
[
−

(
C + ∆C(t)

)
x(t) +

(
A + ∆A(t)

)
f (x(t)) +

(
B + ∆B(t)

)
g(x(t − τ(t)))

+ ~(t)
]
dt + h(t, x(t), x(t − τ(t)))dω(t),

y(t) = f (x(t)), t ≥ 0. (3.19)

In addition, it assumes that the parameter uncertainties satisfy

[∆C(t) ∆A(t) ∆B(t)] = DW(t)[H1 H2 H3], (3.20)

in which real matrices D and H1 are foreknown, and complex matrices H2 and H3 are also foreknown.
W(t) is satisfied with inequality constraint (2.4). From Theorems 3.1 and 3.2, the following criteria
will be accessible readily.

Corollary 3.1. Under Assumptions 2.1 and 2.2, from the input ~(t), network (3.19) is strictly (M,N,W)-
dissipative in the sense of expectation if there exist positive definite Hermitian matrices P, Qι (ι =

1, 2, 3), Rκ (κ = 1, 2) and S κ, diagonal matrices Λς > 0 (ς = 1, 2, 3, 4, 5, 6), constants ϑ > 0, λ > 0,
δ > 0 and νς > 0, the complex matrix inequalities below uniformly are valid:

P ≤ ϑI, (3.21)
←−
Θ11

←−
Θ12

←−
Θ13

∗ Θ22
←−
Θ23

∗ ∗ Θ33

 < 0 , (3.22)

where

←−
Θ23 =


0 0 −N 0 ηδHT

2
0 0 0 0 0
0 0 0 0 ηδHT

3
0 0 0 0 0
0 0 0 0 (1 − η)δHT

3


,
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←−
Θ11 = diag{

←−
Ω11,Ω22,Ω33,Ω44,Ω55,Ω66},

←−
Θ12 = [β̃1 0 0 0 0 0]T ,

←−
Θ13 = [β̃2 0 0 0 0 0]T ,

with β̃T
1 = [PA 0 ηPB 0 (1 − η)PB 0], β̃T

2 = [0 0 P PD δHT
1 ], and

←−
Ω11 = −PC −CP + Q1 + Q2 + Q3 + R1 + (τ̃ − τ1)R2 + S 1 + (τ2 − τ̃)S 2

+ ηϑV1 + (1 − η)ϑV3 + ν1Γ1Λ1.

in which other symbols are taken as the ones in Theorem 3.1.

Corollary 3.2. Under Assumptions 2.1 and 2.2, if there exist positive definite Hermitian matrices P,
Qι (ι = 1, 2, 3), Rκ (κ = 1, 2) and S κ, diagonal matrices Λς > 0 (ς = 1, 2, 3, 4, 5, 6), constants ϑ > 0,
λ > 0, δ > 0 and νς > 0 such that inequality (3.20) and the inequality below are valid:

←−
Θ11

←−
Θ12

←−
Θ13

∗ Θ̃22
←−
Θ23

∗ ∗ Θ̃33

 < 0 , (3.23)

in which the rest symbols can be found in Theorem 3.2 and Corollary 3.1, it reveals network (3.19) is
robustly passive in the expectation sense.

Remark 3.5. In Theorems 3.1 and 3.2, Corollaries 3.1 and 3.2, sufficient delay-dependent
dissipativity/passivity criteria are derived for the stochastic CVNN model with probabilistic
time-varying delay. From complex matrix inequalities (3.2), (3.17), (3.22) and (3.23), they can infer
that τ1(t) and τ2(t) need to match τ̇1(t) ≤ µ1 < 1 and τ̇2(t) ≤ µ2 < 1. In other words, these matrix
inequalities mentioned above do not have feasible solutions with µ1 > 1 or µ2 > 1. Such conservatism
is mainly due to the existence of the stochastic disturbances, which has a significant effect on the
construction of the Lyapunov functional leading to the methodological limitations.

4. Numerical examples

This section provides two examples to show the effectiveness and validity of the obtained results.

Example 4.1. Consider a three-mode Markovian switching CVNN (2.1), in which C1 = diag{5.3, 4.2},
C2 = diag{4.5, 4.8}, C3 = diag{6.1, 5.9}, the other parametric coefficients are taken as

A1 =

[
−0.3 + 1.5~i −0.7 − 0.4~i
1.2 + 0.7~i −0.4 + 0.5~i

]
, A2 =

[
1.2 + 0.8~i −1.2 + 0.7~i
0.9 − 0.6~i −0.5 − 0.8~i

]
,

A3 =

[
1.3 + 0.9~i 1.2 − 1.3~i
1.2 − 0.8~i −0.8 − 0.6~i

]
, B1 =

[
1.2 − 0.7~i 0.9 + 1.5~i
0.7 + 0.8~i −0.8 + 0.7~i

]
,

B2 =

[
−1.3 − 0.8~i 0.8 + 1.1~i
0.6 − 0.8~i 0.6 − 0.8~i

]
, B3 =

[
−0.6 + 1.2~i 0.6 − 0.5~i
0.8 − 0.8~i 0.9 − 1.1~i

]
,

and for ι = 1, 2, the activation function f (x(t)) is choose as fι(xι(t)) = (1/4)(|xι + 1| − |xι − 1|). The
activation function g(x(t)) is choose as gι(xι(t)) = (1/2)(|xι + 1| − |xι − 1|). Moreover, the noise
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intensity function is choose as h(t, x(t), x(t − τ1(t))) =

[0.5 sin(v1(t)), 0.4 sin(0.01v2(t − τ1(t)))]T + ~i[0.5 sin(w1(t)), 0.4 sin(0.01w2(t − τ1(t)))]T and
h(t, x(t), x(t − τ2(t))) =

[0.5 sin(v1(t)), 0.3 sin(0.01v2(t − τ2(t)))]T + ~i[0.5 sin(w1(t)), 0.3 sin(0.01w2(t − τ2(t)))]T , where
x(t) = (x1(t), x2(t))H with x1(t) = v1(t) +~iw1(t) and x2(t) = v2(t) +~iw2(t). Therefore, it is easy to obtain
that

Γ1 =

[
0.25 0

0 0.25

]
, Γ2 =

[
1 0
0 1

]
, V2 =

[
0.32 0

0 0.32

]
,

V1 = V3 =

[
0.25 0

0 0.25

]
, V4 =

[
0.18 0

0 0.18

]
.

Moreover, the value of Markovian chain s(t), obeying the exponential distribution with s(0) = 1 (as
shown in Figure 1), is taken in S = {1, 2, 3}. The presented transition rate matrix with partly unknown
elements is given as

Π =


−1.8 ? ?

? ? 0.9
? ? −1.2

 .

0 5 10 15 20

t

1

1.5

2

2.5

3

s(
t)

Figure 1. Variation of the Markov chain s(t).

In addition, τ1(t) = 0.4 + 0.2 sin(t) and τ2(t) = 1 + 0.4 cos(t), it can be calculated that τ1 = 0.2,
τ2 = 1.4, τ̃ = 1, µ1 = 0.2, µ2 = 0.4, respectively. The dissipation parameters are taken as follows:

M =

[
−5.2 0.4 + 0.3~i

0.4 − 0.3~i −6.2

]
, W =

[
66.0 0.5 + 0.4~i

0.5 − 0.4~i 68.0

]
, N =

[
−0.2 0.5
0.3 0.4

]
.

Furthermore, under constrains (2.3) and (2.4), take system parameters as

D1 =

[
0.1 0.1
0.2 0.3

]
, H21 =

[
0.2 + 0.3~i 0.1 + 0.2~i
−0.3 − 0.2~i −0.4 + 0.6~i

]
, H23 =

[
0.4 + 0.6~i −0.3 + 0.2~i
0.3 + 0.4~i 0.4 − 0.4~i

]
,

D2 =

[
0.2 0.1
0.2 0.1

]
, H22 =

[
0.2 + 0.3~i 0.1 + 0.2~i
−0.3 − 0.2~i −0.4 + 0.6~i

]
, H31 =

[
0.4 − 0.2~i 0.2 − 0.3~i
−0.2 − 0.4~i 0.3 − 0.5~i

]
,

AIMS Mathematics Volume 7, Issue 10, 19458–19480.



19474

D3 =

[
0.3 0.2
0.1 0.4

]
, H33 =

[
0.3 + 0.2~i 0.1 + 0.3~i
−0.1 + 0.1~i 0.4 − 0.6~i

]
, H32 =

[
0.5 − 0.4~i −0.1 + 0.2~i
0.2 + 0.5~i 0.2 − 0.7~i

]
,

H11 =

[
−0.1 0.3
0.2 0.4

]
, H12 =

[
0.2 −0.5
−0.3 0.3

]
, H13 =

[
0.4 0.2
−0.4 0.3

]
.

In addition, choose a 2 × 2 matrix asW(t), which is random and satisfies condition (2.4).
Set η = 0.9, it follows from Theorem 3.1 that Inequalities (3.1)–(3.4) have feasible solutions, for

space consideration, only part of them are given with νς = 0.1, γ = 2.0295, ϑ = 22.2611, δ = 5.0120,
Λ1 = diag{481.9889, 430.7401}, Λ2 = diag{15.2188, 17.1055}, and

P1 =

[
15.4202 1.8413 − 1.6281~i

1.8413 + 1.6281~i 19.6244

]
, Q1 =

[
3.1240 −0.2667 + 0.6116~i

−0.2667 − 0.6116~i 3.5508

]
,

P2 =

[
20.1603 1.0637 − 1.1014~i

1.0637 + 1.1014~i 20.1634

]
, Q3 =

[
3.1240 −0.2667 + 0.6116~i

−0.2667 − 0.6116~i 3.5508

]
,

U1 =

[
21.2975 0.8031 − 0.5850~i

0.8031 + 0.5850~i 20.7861

]
, R2 =

[
2.1657 −0.3288 + 0.7540~i

−0.3288 − 0.7540~i 2.4761

]
,

U3 =

[
25.7186 1.2725 − 0.6614~i

1.2725 + 0.6614~i 30.3314

]
, S 2 =

[
3.3132 −0.4009 + 0.9188~i

−0.4009 − 0.9188~i 3.6930

]
.

From Theorem 3.1, in the sense of expectation, it can be immediately obtained that CVNN (2.1) is
strictly (M,N,W)-dissipative.

For simulation aim, initial constraints are listes as four cases below. Specifically, Case 1: x1(t) =

2.2 − 5.2~i, x2(t) = −1.4 + 1.2~i for t ∈ [−1.4, 0]. Case 2: x1(t) = 0.3 − 1.9~i, x2(t) = −4.4 + 4.2~i for
t ∈ [−1.4, 0]. Case 3: x1(t) = −3.4 + 0.6~i, x2(t) = 2.8 − 3.4~i for t ∈ [−1.4, 0]. Case 4: x1(t) =

−1.3 + 3.8~i, x2(t) = 1.4 − 1.2~i for t ∈ [−1.4, 0]. Figure 2 shows the variation of the probabilistic time-
varying delay τ(t). The Bernoulli sequence η(t), representing the probability delay, is given in Figure 3.
Figure 4 shows the time variations of state x(t) (real and imaginary parts) for the Markovian switching
network (2.1) without input ~(t) perturbed by stochastic noises.Moreover. In Theorem 3.1, choose
different η, Table 1 offers the maximum dissipativity performance γ, which reflects that the Brownian
motion and the Markovian switching can lead to great influence on the dissipative performance index
γ.

0 5 10 15 20

t

0.2

0.4

0.6

0.8

1

1.2

1.4

τ
(t
)

Figure 2. Variation of the probabilistic delay τ(t) in Example 4.1.

AIMS Mathematics Volume 7, Issue 10, 19458–19480.



19475

0 5 10 15 20

t

0

0.2

0.4

0.6

0.8

1

T
h
e
B
er
n
o
u
ll
i
se
q
u
en

ce
η
(t
)

Figure 3. The Bernoulli sequence η(t).
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Figure 4. State variations of the real and imaginary parts of x(t) for CVNN (2.1) without
input ~(t).

Table 1. Maximum dissipativity performance γ for different η.

Value of η 0 0.1 0.2 0.4 0.5 0.9 1.0
Theorem 3.1 0.4627 0.7307 0.7522 1.0139 0.8350 2.0295 2.1968
Corollary 3.1 1.0302 1.0302 1.3021 1.1357 1.2671 2.2713 2.6587

Remark 4.1. It should be emphasized that, when the considered probabilistic time-varying delay is
reduced to the general time-varying delay and there is no Markovian switching, it can be verified that
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the achieved results in [38] have no feasible solutions while ours have, which means that the achieved
criteria have are less conservative than those in [38]. On the other hand, in this paper, we take into
account the Markovian switching with partly unknown transition rates and stochastic disturbance. Not
only does this paper propose the more general dissipativity and passivity criteria than the existing
relevant literatures [44, 45], but also the obtained results demonstrate that the Markovian switching
and Brownian motion have a great influence on the dissipative/passivity performance index γ.

Example 4.2. The considered CVNN (2.1) owns same parameters and Markov chain s(t) in
Example 3.1. Set M = 0, N = I, W = 2γI and η = 0.7. By resorting to Corollary 3.1, a set of feasible
solutions of matrix inequalities (3.1), (3.3), (3.4) and (3.17) can be derived as ϑ = 9.0356,
γ = 35.2150, νς = 0.1, δ = 2.0228, Λ1 = diag{168.5290, 145.5380}, Λ2 = diag{7.1525, 8.0283}, and

P1 =

[
6.2618 0.7267 − 0.6136~i

0.7267 + 0.6136~i 7.8991

]
, Q1 =

[
1.4694 −0.1230 + 0.2636~i

−0.1230 − 0.2636~i 1.6718

]
,

P2 =

[
8.1543 0.4110 − 0.4481~i

0.4110 + 0.4481~i 8.1238

]
, Q2 =

[
1.4694 −0.1230 + 0.2636~i

−0.1230 − 0.2636~i 1.6718

]
,

U1 =

[
8.6633 0.2913 − 0.2261~i

0.2913 + 0.2261~i 8.4028

]
, R2 =

[
1.0172 −0.1495 + 0.3202~i

−0.1495 − 0.3202~i 1.1647

]
,

U3 =

[
10.6872 0.5077 − 0.2558~i

0.5077 + 0.2558~i 12.3308

]
, S 2 =

[
1.5103 −0.1688 + 0.3615~i

−0.1688 − 0.3615~i 1.6774

]
.

According to the Corollary 3.1, in the sense of expectation, we can conclude that system (2.1) is
called as robustly passive. Moreover, the maximum passivity performance γ for different probabilistic
constant η is presented in Table 2. Table 2 reflects that the Brownian motion and the Markovian
switching can lead to great effect on the dissipative performance index γ.

Table 2. Maximum dissipativity performance γ for different η.

Value of η 0 0.1 0.2 0.4 0.5 0.9 1.0
Theorem 3.2 105.3514 4393.0000 41.3763 19.9482 87.5144 35.2150 1306.7000
Corollary 3.2 13.4568 12.6961 9.7946 16.5451 14.0339 7.2976 28.9809

5. Conclusions

The robust dissipativity/passivity problem for stochastic Markovian switching CVNNs with
probabilistic time-varying delay is probed in this work. The considered probabilistic delay is
characterized by a series of random variables obeying bernoulli distribution. Moreover, the concerned
parameter uncertainties are not only norm-bounded but also mode-dependent. For the aim of
reflecting more realistic dynamics of the presented model, transition rate information is partly
acquainted. Combined robust analysis tools, stochastic analysis methods with generalized complex
Itô’s formula, some sufficient mode-delay-dependent criteria on the (M,N,W)-dissipativity/passivity
have been derived by means of complex linear matrix inequalities. In the end of paper, two effective
examples are presented to support and clarify the validity and correctness of our proposed research
results.
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