Research article Special Issues

Relationships between the discrete Riemann-Liouville and Liouville-Caputo fractional differences and their associated convexity results

  • Received: 30 June 2022 Revised: 01 August 2022 Accepted: 01 August 2022 Published: 09 August 2022
  • MSC : 26A48, 26A51, 33B10, 39A12, 39B62

  • In this study, we have presented two new alternative definitions corresponding to the basic definitions of the discrete delta and nabla fractional difference operators. These definitions and concepts help us in establishing a relationship between Riemann-Liouville and Liouville-Caputo fractional differences of higher orders for both delta and nabla operators. We then propose and analyse some convexity results for the delta and nabla fractional differences of the Riemann-Liouville type. We also derive similar results for the delta and nabla fractional differences of Liouville-Caputo type by using the proposed relationships. Finally, we have presented two examples to confirm the main theorems.

    Citation: Juan L. G. Guirao, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Dumitru Baleanu, Marwan S. Abualrub. Relationships between the discrete Riemann-Liouville and Liouville-Caputo fractional differences and their associated convexity results[J]. AIMS Mathematics, 2022, 7(10): 18127-18141. doi: 10.3934/math.2022997

    Related Papers:

  • In this study, we have presented two new alternative definitions corresponding to the basic definitions of the discrete delta and nabla fractional difference operators. These definitions and concepts help us in establishing a relationship between Riemann-Liouville and Liouville-Caputo fractional differences of higher orders for both delta and nabla operators. We then propose and analyse some convexity results for the delta and nabla fractional differences of the Riemann-Liouville type. We also derive similar results for the delta and nabla fractional differences of Liouville-Caputo type by using the proposed relationships. Finally, we have presented two examples to confirm the main theorems.



    加载中


    [1] F. M. Atıcı, M. Uyanik, Analysis of discrete fractional operators, Appl. Anal. Discrete Math., 9 (2015), 139–149.
    [2] F. M. Atıcı, M. Atıcı, M. Belcher, D. Marshall, A new approach for modeling with discrete fractional equations, Fund. Inform., 151 (2017), 313–324. https://doi.org/10.3233/FI-2017-1494 doi: 10.3233/FI-2017-1494
    [3] F. Atıcı, S. Sengul, Modeling with discrete fractional equations, J. Math. Anal. Appl., 369 (2010), 1–9.
    [4] C. S. Goodrich, On discrete sequential fractional boundary value problems, J. Math. Anal. Appl., 385 (2012), 111–124. https://doi.org/10.1016/j.jmaa.2011.06.022 doi: 10.1016/j.jmaa.2011.06.022
    [5] C. R. Chen, M. Bohner, B. G. Jia, Ulam-Hyers stability of Caputo fractional difference equations, Math. Meth. Appl. Sci., 42 (2019), 7461–7470. https://doi.org/10.1002/mma.5869 doi: 10.1002/mma.5869
    [6] R. Dahal, C. S. Goodrich, Theoretical and numerical analysis of monotonicity results for fractional difference operators, Appl. Math. Lett., 117 (2021), 107104. https://doi.org/10.1016/j.aml.2021.107104 doi: 10.1016/j.aml.2021.107104
    [7] C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability, Proc. Am. Math. Soc., 145 (2017), 3809–3827. https://doi.org/10.1090/proc/12895 doi: 10.1090/proc/12895
    [8] H. M. Srivastava, P. O. Mohammed, C. S. Ryoo, Y. S. Hamed, Existence and uniqueness of a class of uncertain Liouville-Caputo fractional difference equations, J. King Saud Univ.-Sci., 33 (2021), 101497. https://doi.org/10.1016/j.jksus.2021.101497 doi: 10.1016/j.jksus.2021.101497
    [9] Q. Lu, Y. Zhu, Comparison theorems and distributions of solutions to uncertain fractional difference equations, J. Comput. Appl. Math., 376 (2020), 112884. https://doi.org/10.1016/j.cam.2020.112884 doi: 10.1016/j.cam.2020.112884
    [10] F. M. Atıcı, P. W. Eloe, A transform method in discrete fractional calculus, Int. J. Differ. Equ., 2 (2007), 165–176.
    [11] P. O. Mohammed, T. Abdeljawad, Discrete generalized fractional operators defined using $h$-discrete Mittag-Leffler kernels and applications to AB fractional difference systems, Math. Meth. Appl. Sci., 2020. https://doi.org/10.1002/mma.7083
    [12] F. M. Atıcı, M. Atıcı, N. Nguyen, T. Zhoroev, G. Koch, A study on discrete and discrete fractional pharmaco kinetics pharmaco dynamics models for tumor growth and anti-cancer effects, Comput. Math. Biophys., 7 (2019), 10–24. https://doi.org/10.1515/cmb-2019-0002 doi: 10.1515/cmb-2019-0002
    [13] A. Silem, H. Wu, D. J. Zhang, Discrete rogue waves and blow-up from solitons of a nonisospectral semi-discrete nonlinear Schrödinger equation, Appl. Math. Lett., 116 (2021), 107049. https://doi.org/10.1016/j.aml.2021.107049 doi: 10.1016/j.aml.2021.107049
    [14] R. A. C. Ferreira, D. F. M. Torres, Fractional $h$-difference equations arising from the calculus of variations, Appl. Anal. Discrete Math., 5 (2011), 110–121. https://doi.org/10.2298/AADM110131002F doi: 10.2298/AADM110131002F
    [15] G. Wu, D. Baleanu, Discrete chaos in fractional delayed logistic maps, Nonlinear Dyn., 80 (2015), 1697–1703. https://doi.org/10.1007/s11071-014-1250-3 doi: 10.1007/s11071-014-1250-3
    [16] J. W. He, L. Zhang, Y. Zhou, B. Ahmad, Existence of solutions for fractional difference equations via topological degree methods, Adv. Differ. Equ., 2018 (2018), 153. https://doi.org/10.1186/s13662-018-1610-2 doi: 10.1186/s13662-018-1610-2
    [17] C. S. Goodrich, B. Lyons, Positivity and monotonicity results for triple sequential fractional differences via convolution, Analysis, 40 (2020), 89–103. https://doi.org/10.1515/anly-2019-0050 doi: 10.1515/anly-2019-0050
    [18] P. O. Mohammed, T. Abdeljawad, F. K. Hamasalh, On Riemann-Liouville and Caputo fractional forward difference monotonicity analysis, Mathematics, 9 (2021), 1303. https://doi.org/10.3390/math9111303 doi: 10.3390/math9111303
    [19] P. O. Mohammed, T. Abdeljawad, F. K. Hamasalh, On discrete delta Caputo-Fabrizio fractional operators and monotonicity analysis, Fractal Fract., 5 (2021), 116. https://doi.org/10.3390/fractalfract5030116 doi: 10.3390/fractalfract5030116
    [20] T. Abdeljawad, D. Baleanu, Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel, Chaos Solitons Fract., 102 (2017), 106–110. https://doi.org/10.1016/j.chaos.2017.04.006 doi: 10.1016/j.chaos.2017.04.006
    [21] X. Liu, F. Du, D. Anderson, B. Jia, Monotonicity results for nabla fractional h-difference operators, Math. Meth. Appl. Sci., 44 (2020), 1207–1218. https://doi.org/10.1002/mma.6823 doi: 10.1002/mma.6823
    [22] C. S. Goodrich, C. Lizama, Positivity, monotonicity, and convexity for convolution operators, Discrete Cont. Dyn. Syst., 40 (2020), 4961–4983. http://dx.doi.org/10.3934/dcds.2020207 doi: 10.3934/dcds.2020207
    [23] L. Erbe, C. S. Goodrich, B. Jia, A. C. Peterson, Survey of the qualitative properties of fractional difference operators: Monotonicity, convexity, and asymptotic behavior of solutions, Adv. Differ. Equ., 2016 (2016), 43. https://doi.org/10.1186/s13662-016-0760-3 doi: 10.1186/s13662-016-0760-3
    [24] P. O. Mohammed, O. Almutairi, R. P. Agarwal, Y. S. Hamed, On convexity, monotonicity and positivity analysis for discrete fractional operators defined using exponential kernels, Fractal Fract., 6 (2022), 55. https://doi.org/10.3390/fractalfract6020055 doi: 10.3390/fractalfract6020055
    [25] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, Elsevier, 2006.
    [26] H. M. Srivastava, Fractional-order derivatives and integrals: Introductory overview and recent developments, Kyungpook Math. J., 60 (2020), 73–116.
    [27] P. O. Mohammed, H. M. Srivastava, D. Baleanu, E. E. Elattar, Y. S. Hamed, Positivity analysis for the discrete delta fractional differences of the Riemann-Liouville and Liouville-Caputo types, Electron. Research Arch., 30 (2022), 3058–3070. https://doi.org/10.3934/era.2022155 doi: 10.3934/era.2022155
    [28] H. M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations, J. Nonlinear Convex Anal., 22 (2021), 1501–1520.
    [29] H. M. Srivastava, An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions, J. Adv. Eng. Comput., 5 (2021), 135–166. https://doi.org/10.55579/jaec.202153.340 doi: 10.55579/jaec.202153.340
    [30] C. S. Goodrich, A. C. Peterson, Discrete fractional calculus, Springer, 2015. https://doi.org/10.1007/978-3-319-25562-0
    [31] T. Abdeljawad, F. M. Atıcı, On the definitions of nabla fractional operators, Abstr. Appl. Anal., 2012 (2012), 406757. https://doi.org/10.1155/2012/406757 doi: 10.1155/2012/406757
    [32] T. Abdeljawad, Different type kernel $h$-fractional differences and their fractional $h$-sums, Chaos Solit. Fract., 116 (2018), 146–156. https://doi.org/10.1016/j.chaos.2018.09.022 doi: 10.1016/j.chaos.2018.09.022
    [33] T. Abdeljawad, On delta and nabla Caputo fractional differences and dual identities, Discrete Dyn. Nature Soc., 2013 (2013), 406910. https://doi.org/10.1155/2013/406910 doi: 10.1155/2013/406910
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1664) PDF downloads(108) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog