Research article Special Issues

Efficient composition conservative schemes for the Zakharov equations

  • Published: 10 April 2025
  • MSC : 65M70

  • In this paper, we designed efficient conservative numerical schemes for the Zakharov system by leveraging the composition method. The core elements of our approach are as follows. First, the original Zakharov system was transformed into a Hamiltonian system through the use of the variational derivative. Then, the derived system was discretized by integrating the composition method into the Fourier pseudo-spectral method, thus obtaining fully-discrete conservative schemes. These proposed schemes are of the implicit-explicit type and can precisely preserve the discrete mass and Hamiltonian energy. To confirm the theoretical findings and demonstrate the effectiveness and conservation characteristics of our method, we conducted numerous numerical experiments.

    Citation: Yan Zhang, Yuyang Gao, Yayun Fu, Xiaopeng Yue. Efficient composition conservative schemes for the Zakharov equations[J]. AIMS Mathematics, 2025, 10(4): 8235-8251. doi: 10.3934/math.2025379

    Related Papers:

  • In this paper, we designed efficient conservative numerical schemes for the Zakharov system by leveraging the composition method. The core elements of our approach are as follows. First, the original Zakharov system was transformed into a Hamiltonian system through the use of the variational derivative. Then, the derived system was discretized by integrating the composition method into the Fourier pseudo-spectral method, thus obtaining fully-discrete conservative schemes. These proposed schemes are of the implicit-explicit type and can precisely preserve the discrete mass and Hamiltonian energy. To confirm the theoretical findings and demonstrate the effectiveness and conservation characteristics of our method, we conducted numerous numerical experiments.



    加载中


    [1] W. Bao, F. Sun, Efficient and stable numerical methods for the generalized and vector Zakharov system, SIAM J. Sci. Comput., 26 (2005), 1057–1088. https://doi.org/10.1137/030600941 doi: 10.1137/030600941
    [2] W. Cai, H. Li, Y. Wang, Partitioned averaged vector field methods, J. Comput. Phys., 370 (2018), 25–42. https://doi.org/10.1016/j.jcp.2018.05.009 doi: 10.1016/j.jcp.2018.05.009
    [3] Y. Cai, Y. Yuan, Uniform error estimates of the conservative finite difference method for the Zakharov system in the subsonic limit regime, Math. Comp., 87 (2018), 1191–1225. https://doi.org/10.1090/mcom/3269 doi: 10.1090/mcom/3269
    [4] Q. Chang, B. Guo, H. Jiang, Finite difference method for generalized Zakharov equations, Math. Comp., 64 (1995), 537–553.
    [5] J. Cui, Y. Wang, C. Jiang, Arbitrarily high-order structure-preserving schemes for the Gross-Pitaevskii equation with angular momentum rotation, Comput. Phys. Commun., 261 (2021), 107767. https://doi.org/10.1016/j.cpc.2020.107767 doi: 10.1016/j.cpc.2020.107767
    [6] A. S. Davydov, Solitons in molecular systems, Phys. Scr., 20 (1979), 387–394. https://doi.org/10.1088/0031-8949/20/3-4/013 doi: 10.1088/0031-8949/20/3-4/013
    [7] K. Feng, M. Qin, Symplectic geometric algorithms for Hamiltonian systems, Berlin: Springer, 2010. https://doi.org/10.1007/978-3-642-01777-3
    [8] Y. Fu, D. Hu, G. Zhang, Arbitrary high-order exponential integrators conservative schemes for the nonlinear gross-pitaevskii equation, Comput. Math. Appl., 121 (2022), 102–114. https://doi.org/10.1016/j.camwa.2022.07.004 doi: 10.1016/j.camwa.2022.07.004
    [9] R. T. Glassey, Convergence of energy-preserving scheme for the zakharov equations in one space dimension, Math. Comp., 58 (1992), 83–102.
    [10] Y. Gong, Q. Wang, Y. Wang, J. Cai, A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation, J. Comput. Phys., 328 (2017), 354–370. https://doi.org/10.1016/j.jcp.2016.10.022 doi: 10.1016/j.jcp.2016.10.022
    [11] Y. Gong, J. Zhao, Q. Wang, Arbitrarily high-order unconditionally energy stable schemes for thermodynamically consistent gradient flow models, SIAM J. Sci. Comput., 42 (2020), B135–B156. https://doi.org/10.1137/18M1213579 doi: 10.1137/18M1213579
    [12] B. Guo, Z. Gan, L. Kong, J. Zhang, The Zakharov system and its soliton solutions, New York: Science Press, 2016.
    [13] C. Jiang, J. Cui, X. Qian, S. Song, High-order linearly implicit structure-preserving exponential integrators for the nonlinear Schrödinger equation, J. Sci. Comput., 90 (2022), 66. https://doi.org/10.1007/s10915-021-01739-x doi: 10.1007/s10915-021-01739-x
    [14] S. Jin, C. Zheng, A time-splitting spectral method for the generalized Zakharov system in multi-dimensionsm, J. Sci. Comput., 26 (2006), 127–149. https://doi.org/10.1007/s10915-005-4929-2 doi: 10.1007/s10915-005-4929-2
    [15] M. Li, C. Huang, Z. Zhang, Unconditional error analysis of Galerkin FEMs for nonlinear fractional Schrödinger equation, Appl. Anal., 97 (2018), 295–315. https://doi.org/10.1080/00036811.2016.1262947 doi: 10.1080/00036811.2016.1262947
    [16] R. Li, X. Lin, Z. Ma, J. Zhang, Existence and uniqueness of solutions for a type of generalized Zakharov system, J. Appl. Math., 2013 (2013), 193589.
    [17] M. Marklund, Classical and quantum kinetics of the Zakharov system, Phys. Plasmas, 12 (2005), 082110. https://doi.org/10.1063/1.2012147 doi: 10.1063/1.2012147
    [18] V. Masselin, A result of the blow-up rate for the Zakharov system in dimension 3, SIAM J. Math. Anal., 33 (2001), 440–447. https://doi.org/10.1137/S0036141099363687 doi: 10.1137/S0036141099363687
    [19] R. McLachlan, G. Quispel, N. Robidoux, Geometric integration using discrete gradients, Philos. Trans. R. Soc. Lond. A, 357 (1999), 1021–1045. https://doi.org/10.1098/rsta.1999.0363 doi: 10.1098/rsta.1999.0363
    [20] A. Nishiyama, T. Taniguchi, T. Kawahara, Conservative finite difference schemes for the generalized Zakharov–Kuznetsov equations, J. Comput. Appl. Math., 236 (2012), 3084–3098. https://doi.org/10.1016/j.cam.2011.04.010 doi: 10.1016/j.cam.2011.04.010
    [21] N. R. Pereira, Collisions between langmuir solitons, Phys. Fluids, 20 (1977), 750–755. https://doi.org/10.1063/1.861947 doi: 10.1063/1.861947
    [22] G. Quispel, R. McLachlan, A new class of energy-preserving numerical integration methods, J. Phys. A: Math. Theor., 41 (2008), 075205. https://doi.org/10.1088/1751-8113/41/4/045206 doi: 10.1088/1751-8113/41/4/045206
    [23] J. Shen, N. Zhengm Efficient and accurate SAV schemes for the generalized Zakharov systems, Discrete Contin. Dyn. Syst.-B, 26 (2021), 645–666. http://doi.org/10.3934/dcdsb.2020262 doi: 10.3934/dcdsb.2020262
    [24] D. Wang, A. Xiao, W. Yang, Crank–Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative, J. Comput. Phys., 242 (2013), 670–681. https://doi.org/10.1016/j.jcp.2013.02.037 doi: 10.1016/j.jcp.2013.02.037
    [25] Y. Xia, Y. Xu, C. Shu, Local discontinuous Galerkin methods for the generalized Zakharov system, J. Comput. Phys., 229 (2010), 1238–1259. https://doi.org/10.1016/j.jcp.2009.10.029 doi: 10.1016/j.jcp.2009.10.029
    [26] A. Xiao, C. Wang, J. Wang, Conservative linearly-implicit difference scheme for a class of modified Zakharov systems with high-order space fractional quantum correction, Appl. Numer. Math., 146 (2019), 379–399. https://doi.org/10.1016/j.apnum.2019.07.019 doi: 10.1016/j.apnum.2019.07.019
    [27] V. E. Zakharov, Collapse of langmuir waves, Sov. Phys. JETP, 35 (1972), 908–914.
    [28] F. Zhang, V. M. Pérez-García, L. Vázquez, Numerical simulation of nonlinear Schröinger systems: a new conservative scheme, Appl. Math. Comput., 71 (1995), 165–177. https://doi.org/10.1016/0096-3003(94)00152-T doi: 10.1016/0096-3003(94)00152-T
    [29] G. Zhang, C. Jiang, Arbitrary high-order structure-preserving methods for the quantum Zakharov system, Adv. Comput. Math., 49 (2023), 75. https://doi.org/10.1007/s10444-023-10074-8 doi: 10.1007/s10444-023-10074-8
    [30] G. Zhang, C. Jiang, H. Huang, Arbitrarily high-order energy-preserving schemes for the Zakharov-Rubenchik Equations, J. Sci. Comput., 94 (2023), 32. https://doi.org/10.1007/s10915-022-02075-4 doi: 10.1007/s10915-022-02075-4
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(844) PDF downloads(63) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog