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Abstract: In this study, discrete fractional hydrogen atom (DFHA) operators are presented. Hydrogen
atom differential equations have series solution due to having singularity and also obtaining a series
solution for DFHA equations have some difficulties, for this reason, we study to obtain solution
of DFHA equations by means of nabla Laplace transform. In addition to all these, we show
self–adjointness of the DFHA operator and some spectral properties, like orthogonality of distinct
eigenfunctions, reality of eigenvalues. Finally, we find an analytical solution of the problem under
different q (t) potential functions, different fractional orders and different eigenvalues and the results
obtained are illustrated by tables and simulations.
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1. Introduction

Fractional calculus is a popular subject because of having a lot of application areas of theoretical
and applied sciences, like engineering, physics, biology, etc. Discrete fractional calculus is more recent
area than fractional calculus and it was first defined by Diaz–Osler [1], Miller–Ross [2] and Gray–
Zhang [3]. More recently, the theory of discrete fractional calculus have begun to develop rapidly with
Goodrich–Peterson [4], Baleanu et al. [5, 6], Ahrendt et al. [7], Atici–Eloe [8, 9] , Anastassiou [10],
Abdeljawad et al. [11–16], Hein et al. [17] and Cheng et al. [18], Mozyrska [19] and so forth [20–25].

Fractional Sturm–Liouville differential operators have been studied by Bas et al. [26,27], Klimek et
al. [28], Dehghan et al. [29]. Besides that, Sturm–Liouville differential and difference operators were
studied by [30–33]. In this study, we define DFHA operators and prove the self–adjointness of DFHA
operator, some spectral properties of the operator.

More recently, Almeida et al. [34] have studied discrete and continuous fractional Sturm–Liouville
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operators, Bas–Ozarslan [35] have shown the self–adjointness of discrete fractional Sturm–Liouville
operators and proved some spectral properties of the problem.

Sturm–Liouville equation having hydrogen atom potential is defined as follows

d2R
dr2 +

a
r

dR
dr
−
` (` + 1)

r2 R +

(
E +

a
r

)
R = 0 (0 < r < ∞) .

In quantum mechanics, the study of the energy levels of the hydrogen atom leads to this equation.
Where R is the distance from the mass center to the origin, ` is a positive integer, a is real number E is
energy constant and r is the distance between the nucleus and the electron.

The hydrogen atom is a two–particle system and it composes of an electron and a proton. Interior
motion of two particles around the center of mass corresponds to the movement of a single particle
by a reduced mass. The distance between the proton and the electron is identified r and r is given
by the orientation of the vector pointing from the proton to the electron. Hydrogen atom equation is
defined as Schrödinger equation in spherical coordinates and in consequence of some transformations,
this equation is defined as

y′′ +
(
λ −

l (l + 1)
x2 +

2
x
− q (x)

)
y = 0.

Spectral theory of hydrogen atom equation is studied by [39–41]. Besides that, we can observe that
hydrogen atom differential equation has series solution as follows ( [39], p.268)

y(x) = a0xl+1

1 −
k − l − 1
1!(2l + 2)

.
2x
k

+
(k − l − 1)(k − l − 2)

2!(2l + 2)(2l + 3)

(
2x
k

)2

+ . . . (1.1)

+(−1)n (k − l − 1)(k − l − 2) . . . 3.2.1
(k − 1)!(2l + 2)(2l + 3) . . . (2l + n)

(
2x
k

)n}
, k = 1, 2, . . .

Recently, Bohner and Cuchta [36, 37] studied some special integer order discrete functions, like
Laguerre, Hermite, Bessel and especially Cuchta mentioned the difficulty in obtaining series solution
of discrete special functions in his dissertation ( [38], p.100). In this regard, finding series solution of
DFHA equations is an open problem and has some difficulties in the current situation. For this reason,
we study to obtain solutions of DFHA eq.s in a different way with representation of solutions.

In this study, we investigate DFHA equation in Riemann–Liouville and Grünwald–Letnikov sense.
The aim of this study is to contribute to the spectral theory of DFHA operator and behaviors of
eigenfunctions and also to obtain the solution of DFHA equation.

We investigate DFHA equation in three different ways;
i) (nabla left and right) Riemann–Liouville (R–L) sense,

L1x (t) = ∇µa (b∇
µx (t)) +

(
l (l + 1)

t2 −
2
t

+ q (t)
)

x (t) = λx (t) , 0 < µ < 1,

ii) (delta left and right) Grünwald–Letnikov (G–L) sense,

L2x (t) = ∆
µ
−

(
∆
µ
+x (t)

)
+

(
l (l + 1)

t2 −
2
t

+ q (t)
)

x (t) = λx (t) , 0 < µ < 1,

iii) (nabla left) Riemann–Liouville (R–L) sense,

L3x (t) = ∇µa
(
∇µa x (t)

)
+

(
l (l + 1)

t2 −
2
t

+ q (t)
)

x (t) = λx (t) , 0 < µ < 1.
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2. Preliminaries

Definition 2.1. [42] Falling and rising factorial functions are defined as follows respectively

tα =
Γ (t + 1)

Γ (t − α + 1)
, (2.1)

tα =
Γ (t + α)

Γ (t)
, (2.2)

where Γ is the gamma function, α ∈ R.

Remark 2.1. Delta and nabla operators hold the following properties

∆tα = αtα−1, (2.3)
∇tα = αtα−1.

Definition 2.2. [2, 8, 11] Nabla fractional sum operators are given as below,
(i) The left fractional sum of order µ > 0 is defined by

∇−µa x (t) =
1

Γ (µ)

t∑
s=a+1

(t − ρ (s))µ−1 x (s) , t ∈ Na+1, (2.4)

(ii) The right fractional sum of order µ > 0 is defined by

b∇
−µx (t) =

1
Γ (µ)

b−1∑
s=t

(s − ρ (t))µ−1 x (s) , t ∈ b−1N, (2.5)

where ρ (t) = t − 1 is called backward jump operators, Na = {a, a + 1, ...} , bN = {b, b − 1, ...}.

Definition 2.3. [12, 14] Nabla fractional difference operators are as follows,
(i) The left fractional difference of order µ > 0 is defined by

∇µa x (t) = ∇n∇−
(n−µ)

a x (t) =
∇n

Γ (n − µ)

t∑
s=a+1

(t − ρ (s))n−µ−1 x (s) , t ∈ Na+1, (2.6)

(ii) The right fractional difference of order µ > 0 is defined by

b∇
µx (t) = (−1)n

∇n∇−
(n−µ)

a x (t) =
(−1)n ∆n

Γ (n − µ)

b−1∑
s=t

(s − ρ (t))n−µ−1 x (s) , t ∈ b−1N. (2.7)

Fractional differences in (2.6 − 2.7) are called the Riemann–Liouville (R–L) definition of the µ-th
order nabla fractional difference.

Definition 2.4. [1, 18] Fractional difference operators are given as follows
(i) The delta left fractional difference of order µ, 0 < µ ≤ 1, is defined by

∆
µ
−x (t) =

1
hµ

t∑
s=0

(−1)s µ (µ − 1) ... (µ − s + 1)
s!

x (t − s) , t = 1, ...,N. (2.8)
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(ii) The delta right fractional difference of order µ, 0 < µ ≤ 1, is defined by

∆
µ
+x (t) =

1
hµ

N−t∑
s=0

(−1)s µ (µ − 1) ... (µ − s + 1)
s!

x (t + s) , t = 0, ..,N − 1, (2.9)

fractional differences in (2.8 − 2.9) are called the Grünwald–Letnikov (G–L) definition of the µ-th
order delta fractional difference.

Definition 2.5. [14] Integration by parts formula for R–L nabla fractional difference operator is
defined by, u is defined on bN and v is defined on Na,

b−1∑
s=a+1

u (s)∇µav (s) =

b−1∑
s=a+1

v (s)b ∇
µu (s) . (2.10)

Definition 2.6. [34] Integration by parts formula for G–L delta fractional difference operator is
defined by, u, v is defined on {0, 1, ..., n}, then

n∑
s=0

u (s) ∆
µ
−v (s) =

n∑
s=0

v (s) ∆
µ
+u (s) . (2.11)

Definition 2.7. [17] f : Na → R, s ∈ <, Laplace transform is defined as follows,

La { f } (s) =

∞∑
k=1

(1 − s)k−1 f (a + k) ,

where< = C\ {1} and< is called the set of regressive (complex) functions.

Definition 2.8. [17] Let f , g : Na → R, all t ∈ Na+1, convolution of f and g is defined as follows

( f ∗ g) (t) =

t∑
s=a+1

f (t − ρ (s) + a) g (s) ,

where ρ (s) is the backward jump function defined in [42] as

ρ (s) = s − 1.

Theorem 2.1. [17] f , g : Na → R, convolution theorem is expressed as follows,

La { f ∗ g} (s) = La { f } La {g} (s) .

Lemma 2.1. [17] f : Na → R, the following property is valid,

La+1 { f } (s) =
1

1 − s
La { f } (s) −

1
1 − s

f (a + 1) .

Theorem 2.2. [17] f : Na → R, 0 < µ < 1, Laplace transform of nabla fractional difference

La+1
{
∇µa f

}
(s) = sµLa+1 { f } (s) −

1 − sµ

1 − s
f (a + 1) , t ∈ Na+1.
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Definition 2.9. [17] For |p| < 1, α > 0, β ∈ R and t ∈ Na, Mittag–Leffler function is defined by

Ep,α,β (t, a) =

∞∑
k=0

pk (t − a)αk+β

Γ (αk + β + 1)
.

Theorem 2.3. [17] For |p| < 1, α > 0, β ∈ R, |1 − s| < 1 and |s|α > p, Laplace transform of
Mittag–Leffler function is as follows,

La+1

{
Ep,α,β (., a)

}
(s) =

sα−β−1

sα − p
.

3. Main results

3.1. Discrete fractional hydrogen–atom equations

Let us consider equations in three different forms;
i) L1 DFHA operator L1 is defined in (nabla left and right) R–L sense,

L1x (t) = ∇µa (p (t)b ∇
µx (t)) +

(
l (l + 1)

t2 −
2
t

+ q (t)
)

x (t) = λx (t) , 0 < µ < 1, (3.1)

where l is a positive integer or zero, q (t) +
2
t
−

l (l + 1)
t2 are named potential function., λ is the spectral

parameter, t ∈ [a + 1, b − 1] , x (t) ∈ l2 [a + 1, b − 1] , a > 0.
ii) L2 DFHA operator L2 is defined in (delta left and right) G–L sense,

L2x (t) = ∆
µ
−

(
p (t) ∆

µ
+x (t)

)
+

(
l (l + 1)

t2 −
2
t

+ q (t)
)

x (t) = λx (t) , 0 < µ < 1, (3.2)

where p, q, l, λ is as defined above, t ∈ [1, n] , x (t) ∈ l2 [0, n] .
iii) L3 DFHA operator L3 is defined in (nabla left) R–L sense,

L3x (t) = ∇µa
(
∇µa x (t)

)
+

(
l (l + 1)

t2 −
2
t

+ q (t)
)

x (t) = λx (t) , 0 < µ < 1, (3.3)

p, q, l, λ is as defined above, t ∈ [a + 1, b − 1] , a > 0.

Theorem 3.1. DFHA operator L1 is self–adjoint.

Proof.

u (t) L1v (t) = u (t)∇µa (p (t)b ∇
µv (t)) + u (t)

(
l (l + 1)

t2 −
2
t

+ q (t)
)

v (t) , (3.4)

v (t) L1u (t) = v (t)∇µa (p (t)b ∇
µu (t)) + v (t)

(
l (l + 1)

t2 −
2
t

+ q (t)
)

u (t) . (3.5)

Subtracting (16 − 17) from each other

u (t) L1v (t) − v (t) L1u (t) = u (t)∇µa (p (t)b ∇
µv (t)) − v (t)∇µa (p (t)b ∇

µu (t))

AIMS Mathematics Volume 5, Issue 2, 1359–1371.



1364

and applying definite sum operator to both side of the last equality, we have

b−1∑
s=a+1

(u (s) L1v (s) − v (s) L1u (s)) =

b−1∑
s=a+1

u (s)∇µa (p (s)b ∇
µv (s)) −

b−1∑
s=a+1

v (s)∇µa (p (s)b ∇
µu (s)) . (3.6)

Applying the integration by parts formula (2.10) to right hand side of (18) , we have

b−1∑
s=a+1

(u (s) L1v (s) − v (s) L1u (s)) =

b−1∑
s=a+1

p (s)b ∇
µv (s)b ∇

µu (s)

−

b−1∑
s=a+1

p (s)b ∇
µu (s)b ∇

µv (s)

= 0,

〈L1u, v〉 = 〈u, L1v〉 .

The proof completes. �

Theorem 3.2. Eigenfunctions, corresponding to distinct eigenvalues, of the equation (3.2) are
orthogonal.

Proof. Assume that λα and λβ are two different eigenvalues corresponds to eigenfunctions u (n) and
v (n) respectively for the equation (3.1),

∇µa (p (t)b ∇
µu (t)) +

(
l (l + 1)

t2 −
2
t

+ q (t)
)

u (t) − λαu (t) = 0,

∇µa (p (t)b ∇
µv (t)) +

(
l (l + 1)

t2 −
2
t

+ q (t)
)

v (t) − λβv (t) = 0,

Multiplying last two equations to v (n) and u (n) respectively, subtracting from each other and applying
sum operator, since the self–adjointness of the operator L1, we get

(
λα − λβ

) b−1∑
s=a+1

r (s) u (s) v (s) = 0,

since λα , λβ,

b−1∑
s=a+1

r (s) u (s) v (s) = 0,

〈u (t) , v (t)〉 = 0,

and the proof completes. �

Theorem 3.3. All eigenvalues of the equation (3.1) are real.

AIMS Mathematics Volume 5, Issue 2, 1359–1371.



1365

Proof. Assume λ = α + iβ, since the self–adjointness of the operator L1, we have

〈L1u, u〉 = 〈u, L1u〉 ,

〈λu, u〉 = 〈u, λu〉 ,(
λ − λ

)
〈u, u〉 = 0

Since 〈u, u〉r , 0,
λ = λ

and hence β = 0. So, the proof is completed. �

Self–adjointness of L2 DFHA operator G–L sense, reality of eigenvalues and orthogonality of
eigenfunctions of the equation 3.2 can be proven in a similar way to the Theorem 3.1–3.2–3.3 by
means of Definition 2.5.

3.2. Representation of solution for discrete fractional hydrogen atom equation

Theorem 3.4.

L3x (t) = ∇µa
(
∇µa x (t)

)
+

(
l (l + 1)

t2 −
2
t

+ q (t)
)

x (t) = λx (t) , 0 < µ < 1, (3.7)

x (a + 1) = c1, ∇
µ
a x (a + 1) = c2, (3.8)

where p (t) > 0, r (t) > 0, q (t) is defined and real valued, λ is the spectral parameter. The sum
representation of solution of the problem (3.7) − (3.8) is given as follows,

x (t) = c1

((
1 +

l (l + 1)
(a + 1)2 −

2
a + 1

+ q (a + 1)
)

Eλ,2µ,µ−1 (t, a) − λEλ,2µ,2µ−1 (t, a)
)

(3.9)

+c2

(
Eλ,2µ,2µ−1 (t, a) − Eλ,2µ,µ−1 (t, a)

)
−

t∑
s=a+1

Eλ,2µ,2µ−1 (t − ρ (s) + a)
(
l (l + 1)

s2 −
2
s

+ q (s)
)

x (s) .

Proof. Taking Laplace transform of the equation (3.7) by Theorem 2.2 and take(
l (l + 1)

t2 −
2
t

+ q (t)
)

x (t) = g (t) ,

La+1
{
∇µa

(
∇µa x

)}
(s) +La+1 {g} (s) = λLa+1 {x} (s) ,

= sµLa+1
{
∇µa x

}
(s) −

1 − sµ

1 − s
c2 = λLa+1 {x} (s) − La+1 {g} (s) ,

= sµ
(
sµLa+1 {x} (s) −

1 − sµ

1 − s
c1

)
−

1 − sµ

1 − s
c2 = λLa+1 {x} (s) − La+1 {g} (s) ,

= La+1 {x} (s) =
1 − sµ

1 − s
1

s2µ − λ
(sµc1 + c2) −

1
s2µ − λ

La+1 {g} (s) .

Using Lemma 2.1, we have

La {x} (s) = c1

(
sµ − λ
s2µ − λ

)
−

1 − s
s2µ − λ

(
1

1 − s
La {g} (s) −

1
1 − s

g (a + 1)
)

+ c2

(
1 − sµ

s2µ − λ

)
. (3.10)
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Now, taking inverse Laplace transform of the equation (3.10) and applying convolution theorem, then
we have the representation of solution of the problem (3.7) − (3.8) , |λ| < 1, |1 − s| < 1 and |s|α > λ

from Theorem 2.3., i.e.

L−1
a

{
sµ

s2µ − λ

}
= Eλ,2µ,µ−1 (t, a) ,

L−1
a

{
1

s2µ − λ

}
= Eλ,2µ,2µ−1 (t, a) ,

L−1
a

{
1

s2µ − λ
La {q (s) x (s)}

}
=

t∑
s=a+1

Eλ,2µ,2µ−1 (t − ρ (s) + a) q (s) x (s) .

Consequently, we have sum representation of solution for DFHA problem 3.7–3.8

x (t) = c1

((
1 +

l (l + 1)
(a + 1)2 −

2
a + 1

+ q (a + 1)
)

Eλ,2µ,µ−1 (t, a) − λEλ,2µ,2µ−1 (t, a)
)

+c2

(
Eλ,2µ,2µ−1 (t, a) − Eλ,2µ,µ−1 (t, a)

)
−

t∑
s=a+1

Eλ,2µ,2µ−1 (t − ρ (s) + a)
(
l (l + 1)

s2 −
2
s

+ q (s)
)

x (s) .

�

3.3. Applications and visual results

Presume that c1 = 1, c2 = 0, a = 0 in the representation of solution (3.9) and hence we may observe
the behaviors of solutions in following figures (Figures 1–7) and tables (Tables 1–3);

μ=0.35 μ=0.4 μ=0.45

0 5 10 15 20
n0

5

10

15

20

25
x(n)

Figure 1. q (t) = 0, λ = 0.01, l = 1.

q(t)=1 q(t)=t q(t)= t

5 10 15 20
n

-0.15

-0.10

-0.05

0.00

x(n)

Figure 2. λ = 0.01, µ = 0.45, l = 1.
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λ=0.1 λ=0.11 λ=0.12

0 5 10 15 20
n0

20

40

60

80

100

120

x(n)

Figure 3. q (t) = 0, µ = 0.4, l = 1.

μ=0.45 μ=0.42 μ=0.35

-0.6 -0.4 -0.2 0.0 0.2
λ

0.5

1.0

1.5

2.0

2.5

3.0
x(4, λ)

Figure 4. q (t) = 0, l = 1, λ =

0.01, t = 4.

μ=0.85 μ=0.9 μ=0.95 μ=0.99

20 40 60 80 100
t

-1.0

-0.5

0.5

1.0
x[t]

Figure 5. q (t) = 0, λ = −0.01, l =

0.01.

l=0.9 l=0.05 l=0.1

20 40 60 80 100
t

-1.0

-0.5

0.5

1.0
x[t]

Figure 6. q (t) = 0, λ = −0.01, µ =

0.9.

λ=-0.1 λ=-0.01 λ=-0.05

20 40 60 80
t

-1.0

-0.5

0.5

1.0
x[t]

Figure 7. q (t) = 0, µ = 0.9, l = 0.01.
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Table 1. q (t) = 0, λ = 0.01, l = 1.

x (t) µ = 0.3 µ = 0.35 µ = 0.4 µ = 0.45 µ = 0.5

x (1) 1 1 1 1 1
x (2) 0.612 0.714 1.123 0.918 1.020
x (3) 0.700 0.900 1.515 1.370 1.641
x (5) 0.881 1.336 2.402 2.747 3.773
x (7) 1.009 1.740 3.352 4.566 7.031
x (9) 1.099 2.100 4.332 6.749 11.461

x (12) 1.190 2.570 5.745 10.623 20.450
x (15) 1.249 2.975 6.739 15.149 32.472
x (16) 1.264 3.098 7.235 16.793 37.198
x (18) 1.289 3.330 8.233 20.279 47.789
x (20) 1.309 3.544 9.229 24.021 59.967

Table 2. λ = 0.01, µ = 0.45, l = 1.

x (t) q (t) = 1 q (t) = t q (t) =
√

t

x (1) 1 1 1
x (2) 7.37 ∗ 10−17 4.41 ∗ 10−17 5.77 ∗ 10−17

x (3) −0.131 −0.057 −0.088
x (5) −0.123 −0.018 −0.049
x (7) −0.080 −0.006 −0.021
x (9) −0.050 −0.003 −0.011

x (12) −0.028 −0.001 −0.005
x (15) −0.017 −0.0008 −0.003
x (16) −0.015 −0.0006 −0.0006
x (18) −0.012 −0.0005 −0.002
x (20) −0.010 −0.0003 −0.001

Table 3. q (t) = 0, µ = 0.4, l = 1.

x (t) λ = 0.1 λ = 0.11 λ = 0.12

x (1) 1 1 1
x (2) 1 1.025 1.052
x (3) 1.668 1.751 1.841
x (5) 3.876 4.216 4.595
x (7) 7.243 8.107 9.095
x (9) 11.941 13.707 12.130
x (12) 22.045 26.197 25.237
x (15) 36.831 45.198 46.330
x (16) 43.042 53.369 55.687
x (18) 57.766 73.092 78.795
x (20) 76.055 98.154 127.306
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4. Conclusion

We have analyzed DFHA equation in Riemann–Liouville and Grünwald–Letnikov sense. Self–
adjointness of the DFHA operator is presented and also, we have proved some significant spectral
properties for instance, orthogonality of distinct eigenfunctions, reality of eigenvalues. Moreover, we
give sum representation of the solutions for DFHA problem and find the solutions of the problem. We
have carried out simulation analysis with graphics and tables. The aim of this paper is to contribute to
the theory of hydrogen atom fractional difference operator.

We observe the behaviors of solutions by changing the order of the derivative µ in Figure 1 and
Figure 5, by changing the potential function q (t) in Figure 2, we compare solutions under different
λ eigenvalues in Figure 3, and Figure 7, also we observe the solutions by changing µ with a specific
eigenvalue in Figure 4 and by changing l values in Figure 6.

We have shown the solutions by changing the order of the derivative µ in Table 1, by changing the
potential function q (t) and λ eigenvalues in Table 2, Table 3.
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