We investigate the space-time decay rates of solutions to the 3D Cauchy problem of the compressible Oldroyd-B system with diffusive properties and without viscous dissipation. The main novelties of this paper involve two aspects: On the one hand, we prove that the weighted rate of k-th order spatial derivative (where 0≤k≤3) of the global solution (ρ,u,η,τ) is t−34+k2+γ in the weighted Lebesgue space L2γ. On the other hand, we show that the space-time decay rate of the m-th order spatial derivative (where m∈[0,2]) of the extra stress tensor of the field in L2γ is (1+t)−54−m2+γ, which is faster than that of the velocity. The proofs are based on delicate weighted energy methods and interpolation tricks.
Citation: Yangyang Chen, Yixuan Song. Space-time decay rate of the 3D diffusive and inviscid Oldroyd-B system[J]. AIMS Mathematics, 2024, 9(8): 20271-20303. doi: 10.3934/math.2024987
[1] | Ruihong Ji, Liya Jiang, Wen Luo . Stability of the 3D MHD equations without vertical dissipation near an equilibrium. AIMS Mathematics, 2023, 8(5): 12143-12167. doi: 10.3934/math.2023612 |
[2] | Ru Bai, Tiantian Chen, Sen Liu . Global stability solution of the 2D incompressible anisotropic magneto-micropolar fluid equations. AIMS Mathematics, 2022, 7(12): 20627-20644. doi: 10.3934/math.20221131 |
[3] | Xiufang Zhao . Decay estimates for three-dimensional nematic liquid crystal system. AIMS Mathematics, 2022, 7(9): 16249-16260. doi: 10.3934/math.2022887 |
[4] | Abdelbaki Choucha, Sofian Abuelbacher Adam Saad, Rashid Jan, Salah Boulaaras . Decay rate of the solutions to the Lord Shulman thermoelastic Timoshenko model. AIMS Mathematics, 2023, 8(7): 17246-17258. doi: 10.3934/math.2023881 |
[5] | Mingyu Zhang . On the Cauchy problem of 3D nonhomogeneous micropolar fluids with density-dependent viscosity. AIMS Mathematics, 2024, 9(9): 23313-23330. doi: 10.3934/math.20241133 |
[6] | Xiufang Zhao, Ning Duan . On global well-posedness and decay of 3D Ericksen-Leslie system. AIMS Mathematics, 2021, 6(11): 12660-12679. doi: 10.3934/math.2021730 |
[7] | Prerona Dutta, Barbara Lee Keyfitz . Non-uniform dependence on periodic initial data for the two-component Fornberg-Whitham system in Besov spaces. AIMS Mathematics, 2024, 9(9): 25284-25296. doi: 10.3934/math.20241234 |
[8] | Adel M. Al-Mahdi . The coupling system of Kirchhoff and Euler-Bernoulli plates with logarithmic source terms: Strong damping versus weak damping of variable-exponent type. AIMS Mathematics, 2023, 8(11): 27439-27459. doi: 10.3934/math.20231404 |
[9] | Rong Rong, Hui Liu . The Burgers-KdV limit in one-dimensional plasma with viscous dissipation: A study of dispersion and dissipation effects. AIMS Mathematics, 2024, 9(1): 1248-1272. doi: 10.3934/math.2024062 |
[10] | Jae-Myoung Kim . Time decay rates for the coupled modified Navier-Stokes and Maxwell equations on a half space. AIMS Mathematics, 2021, 6(12): 13423-13431. doi: 10.3934/math.2021777 |
We investigate the space-time decay rates of solutions to the 3D Cauchy problem of the compressible Oldroyd-B system with diffusive properties and without viscous dissipation. The main novelties of this paper involve two aspects: On the one hand, we prove that the weighted rate of k-th order spatial derivative (where 0≤k≤3) of the global solution (ρ,u,η,τ) is t−34+k2+γ in the weighted Lebesgue space L2γ. On the other hand, we show that the space-time decay rate of the m-th order spatial derivative (where m∈[0,2]) of the extra stress tensor of the field in L2γ is (1+t)−54−m2+γ, which is faster than that of the velocity. The proofs are based on delicate weighted energy methods and interpolation tricks.
We investigate the space-time decay rates of strong solutions to the diffusive Oldroyd-B system, which describes the motion of viscoelastic fluids in R3. The system takes the following form in the space-time cylinder QT=R3×(0,T]:
{ρt+div(ρu)=0,(ρu)t+div(ρu⊗u)+∇P(ρ)−μΔu−(μ+ν)∇divu=div(T−(kLη+ιη2)I),ηt+div(ηu)=αΔη,Tt+div(uT)−(∇uT+T∇Tu)=αΔT+kA02ληI−A02λT, | (1.1) |
where (x,t)∈R3×[0,+∞]. Let P=P(ρ)=aρξ, ρ=ρ(x,t)>0, u=u(x,t)∈R3 and T(x,t)=Ti,j(x,t)∈R3 denote the pressure, the density, the velocity field, and the extra stress tensor of the field respectively. In these expressions, the constants a>0, ξ>1, and α>0, where α represents the center-of-mass diffusion coefficient of the system. The viscosity coefficients μ≥0 and ν satisfy 2μ+3ν≥0. The polymer number density
η(x,t)=∫R3ψ(x,t,q)dq, |
where η represents the integral of the probability density function ψ, a microscopic variable used in the modeling of dilute polymer chains. In addition, ι, k, L, and A0 are known positive constants, and their meanings can be found in [3]. T is a positive symmetric matrix in QT, where 1≤i,j≤3.
Let us provide essential explanations regarding the above model. The system (1.1) is a crucial model employed to characterize the motion of viscoelastic fluids. This model takes the form of the micro-macro compressible Navier-Stokes-Fokker-Planck model, delineating the motion of dilute polymer fluids under the Hookbell-Hookean setting. Barrett originally derived this formulation in [3], and additional physical background can be found in [3,7]. It is worth mentioning that the diffusive Oldroyd-B model for viscoelastic rate-type fluids has been extensively studied in [1,20,21]. Additionally, the diffusive Oldroyd-B model can be obtained as a macroscopic closure of the Fokker-Planck-Navier-Stokes systems, as discussed in [4,15].
For the incompressible diffusive Oldroyd-B model, existence and uniqueness results are available in [8,9,10]. Regarding the long-term behavior of solutions, comprehensive discussions can be found in [12,24,26] and references therein. For the compressible diffusive Oldroyd-B model, Fang and Zi established the existence of local strong solutions and introduced a novel blow-up criterion in [11]. The global existence of small classical solutions is explored by Zhu in [31] for the Sobolev space Hs with s≥5, and [29,32] for the critical Besov spaces. As for the long-term behavior of global solutions, we refer to [16,25,29,30].
For the Oldroyd-B system (1.1) without viscous dissipation, Liu, Wang, and Wen [17] established the global-in-time existence and obtained optimal time decay rates for the strong solution. In order to address the loss of regularity for the velocity and achieve smallness of the initial data independent of the viscosity, they introduced a new unknown τi,j=Ti,j−kηIi,j to derive new dissipative estimates of velocity. Following the approach in [17], we reformulate the system (1.1). To see this, we introduce a change of variables by
(ρ,u,η,τ)(x,t)→(ρ′+˜ρ,βu′,η′+˜ρ,τ)(x,t), | (1.2) |
where β is a positive constant. The initial conditions are given by
(ρ′,u′,η′,τ)(x,t)|t=0=(ρ′0,u′0,η′0,τ0)→(0,0,0,0). | (1.3) |
For simplicity, we removed all ′ in the new system. And then the system (1.1) without viscous dissipation (i.e., μ=ν=0) in QT is equivalent to the following system:
{ρt+r1divu=S1,ut+r1∇ρ+r2∇η−r3divτ=S2,ηt+β˜ηdivu−αΔη=S3,τt+A02λτ−αΔτ−βk˜η(∇u+∇Tu)=S4, | (1.4) |
with the initial condition
(ρ,u,η,τ)(x,0)=(ρ0,u0,η0,τ0)(x)→(0,0,0,0), as |x|→∞, | (1.5) |
where
{S1=−βdiv(ρu),S2=−βu⋅∇u+H(ρ)∇ρ+G(ρ)[(k(L−1)+2ι˜η)∇η−divτ]−2ιβ(ρ+˜ρ)η∇η,S3=−βdiv(ηu),S4=−βdiv(uτ)+β(∇uτ+τ∇Tu)+βkη(∇u+∇Tu), | (1.6) |
and
β=√P(˜ρ)˜ρ,r1=√P(˜ρ),r2=k(L−1)+2˜ηξ√P(˜ρ),r3=1√P(˜ρ). |
H(ρ) and G(ρ) are given nonlinear functions of ρ
H(ρ)=1β(P(˜ρ)˜ρ−P(˜ρ+ρ)˜ρ+ρ),G(ρ)=1β(1˜ρ−1ρ+˜ρ). |
Building upon the above conclusions, when the initial perturbation is small in Sobolev space, the global solution of the Cauchy problem (1.4)–(1.5) has been proved in the Sobolev space H3(R3) by Liu et al. in [17]. Moreover, if the initial perturbation is additionally bounded in L1(R3), the solution exhibits the following decay estimates:
||∇k(ρ−˜ρ,u,η−˜η)(t)||L2(R3)≤˜C0(1+t)−34−k2fork=0,1,2,3, | (1.7) |
||∇kτ(t)||L2(R3)≤˜C1(1+t)−54−k2fork=0,1,2, | (1.8) |
||∇3τ(t)||L2(R3)≤˜C2(1+t)−94. | (1.9) |
The space-time decay rate of strong solutions has been receiving increasing attention. Below, we will discuss the progress concerning the space-time decay in the weighted Sobolev space Hγℓ. In [23], Takahashi first established the space-time decay rate of strong solutions to the Navier-Stokes equations. Furthermore, Kukavica et al. extended the weighted decay rate of the strong solution in Lpγ(2≤p≤∞) for n(n≥2) dimensions in [13,14]. For more results concerning the space-time decay rate in Lpγ, we refer to [6,18,19,28] and references therein.
However, to the best of our knowledge, there has been no result on the space-time decay rate of the 3D Cauchy problem of the compressible Oldroyd-B system with diffusive properties and without viscous dissipation up to now. The main motivation of this paper is to provide a definitive answer to this issue. More precisely, based on the time-decay estimates of [17], we demonstrate that the weighted rate of k(0≤k≤3)-th order spatial derivative of the global solution (ρ,u,η,τ) is t−34+k2+γ in the weighted Lebesgue space L2γ. Moreover, we also establish that the space-time decay rate of m(∈[0,2])-th order spatial derivative of the extra stress tensor of the field in L2γ is (1+t)−54−m2+γ, which is notably faster than that of the velocity. The proofs rely on delicate weighted energy methods and interpolation tricks.
Let's introduce the notations typically used in this paper. We use Lp to denote the usual Lebesgue space Lp(R3) with the norm ‖⋅‖Lp, and Hℓ to denote Sobolev spaces Hℓ(R3)=Wℓ,2(R3) with the norm ‖⋅‖Hℓ. For any γ∈R, we denote the weighted Lebesgue space by Lpγ(R3) (where 2≤p<+∞) with respect to the spatial variables:
Lpγ(R3)≜{f(x):R3→R,‖f‖pLpγ(R3)≜∫R3|x|pγ|f(x)|pdx<+∞}. |
And then, for any γ∈R, we can define the weighted Sobolev space Hkγ as follows:
Hkγ(R3):={f(x)∈Lpγ(R3)∣‖f‖2Hkγ:=∑l≤k‖∇lf‖2L2γ<∞}. |
Denote L2(R3):=L20(R3) and Hk(R3):=Hk0(R3). In addition, we denote ‖(a,b)‖X≜‖a‖X+‖b‖X for simplicity, and denote δ by a sufficiently small constant independent of time. The notation a≲b means that a≤Cb for a generic positive constant C>0 depends only on the parameters relevant to the problem. Moreover, we drop the x-dependence of differential operators; hence, ∇f=∇xf=(∂x1f,∂x2f,∂x3f), and ∇k to denote any partial derivative ∂α with multi-index α, where |α|=k.
Before presenting our main results, let's provide a brief summary of time decay estimates for the compressible Oldroyd-B system, both with and without viscous dissipation, as discussed in [17,25]. These findings are summarized in the following two propositions:
Proposition 1.1. (see [25]) We assume that L≥1, ι≥0 in system (1.1). There exists a positive constant δ1, which is small enough, such that if
‖(ρ−ρ∞,u0,η−η∞,T0−T∞)‖2H3(R3)≤δ1, |
where
(ρ,u,η,T)(x,0)=(ρ0,u0,η0,T0)(x)→(ρ∞,0,η∞,T∞),|x|→+∞, | (1.10) |
and T∞ is a matrix with T∞=kη∞I. Additionally, we suppose that ‖(ρ0−ρ∞,u0,η0−η∞,divT0)‖L1 is bounded. Then the diffusive Oldroyd-B system with viscous dissipation (1.1) with the initial data (1.10) admits a unique global strong solution (ρ,u,η,T), which satisfies the following time-decay estimates:
‖∇m(ρ−ρ∞,u,η−η∞,T−T∞(t))‖≤˜C(1+t)−34−m2,m=0,1, |
‖∇m(ρ−ρ∞,u,η−η∞,T−T∞(t))‖≤˜C(1+t)−74,m=2,3. |
for all 0≤t≤T, where ˜C is a positive constant independent of t.
Proposition 1.2. (see [17]) We assume that (ρ0−˜ρ,u0,η0−˜η,τ0)∈H3(R), and (ρ0−˜ρ,u0,η0−˜η,divτ0)∈L1(R3), the parameters L≥1 and ι≥0. There exists a positive constant δ2, which is small enough, such that if
‖(ρ0−˜ρ,u0,η0−˜η,τ0)‖H3(R3)≤δ2, |
the diffusive Oldroyd-B system without viscous dissipation (1.4) with the initial data (1.5) admits a unique global strong solution (ρ,u,η,τ), which satisfies the following time-decay estimates:
||∇k(ρ,u,η)(t)||L2(R3)≤˜C0(1+t)−34−k2,k=0,1,2,3, |
||∇kτ(t)||L2(R3)≤˜C1(1+t)−54−k2,k=0,1,2, |
||∇3τ(t)||L2(R3)≤˜C2(1+t)−94. |
for all 0≤t≤T, where ˜C0, ˜C1 and ˜C2 are positive constants that are independent of t.
With the help of time-decay estimates in [17], our main results are concerned with the following space-time decay rates of the strong solutions in weighted Lebesgue space L2γ.
Theorem 1.3. Let (ρ,u,η,τ) be the strong solution to the Cauchy problem (1.4)–(1.5). In addition, we assume that (ρ0−˜ρ,u0,η0−˜η,divτ0)∈L1(R3)⋂H3γ(R3),γ⩾0. Then, if there exists a small constant δ0>0, such that
‖(ρ0−˜ρ,u0,η0−˜η,τ0)‖H3≤δ0, |
then there exists a large enough T such that
‖∇k(ρ,u,η)(t)‖L2γ≤Ct−34−k2+γ, | (1.11) |
‖∇mτ(t)‖L2γ≤Ct−54−m2+γ, | (1.12) |
‖∇3τ(t)‖L2γ≤Ct−94+γ, | (1.13) |
for all t>T, 0≤k≤3, and 0≤m≤2, where C is a positive constant independent of t.
Remark 1.4. We can derive the space-time decay rates of the smooth solution (ρ,u,η,τ) in weighted Lebesgue space Lpγ by applying Gagliardo-Nirenberg-Sobolev inequality and the weighted interpolation inequality. For any f(s)∈L2(R3)∩˙H2(R3), we have ‖f(s)‖L∞≤‖f(s)‖14L2‖f(s)‖34H2 in R3. Therefore, we obtain the estimate ‖|x|γ∇k(ρ,u,η,τ)(t)‖L∞ from ‖|x|γ∇k(ρ,u,η,τ)(t)‖L2 and ‖|x|γ∇k(ρ,u,η,τ)(t)‖˙H2. More specifically, for the case of γ≥2 and k=0, using the Gagliardo-Nirenberg-Sobolev inequality, we have
‖|x|γ(ρ,u,η,τ)(t)‖L∞≤C‖|x|γ(ρ,u,η,τ)(t)‖14L2‖∇2(|x|γ(ρ,u,η,τ)(t))‖34L2≤C‖(ρ,u,η,τ)(t)‖14L2γ(‖∇2(ρ,u,η,τ)(t)‖L2γ+‖∇(ρ,u,η,τ)(t)‖L2γ−1+‖(ρ,u,η,τ)(t)‖L2γ−2)34≤Ct−32+γ. |
On the other hand, one has the following facts by applying the weighted interpolation inequality, and (1.10)–(1.12)
‖(ρ,u,η,τ)(t)‖Lpγ≤C‖(ρ,u,η,τ)(t)‖2pL2γ‖|x|γ(ρ,u,η,τ)(t)‖1−2pL∞≤Ct−32(1−1p)+γ. |
In a similar way, for the case of γ≥2 and k=1, one has
‖∇(ρ,u,η,τ)(t)‖Lpγ≤C‖∇(ρ,u,η,τ)(t)‖2pL2γ‖|x|γ∇(ρ,u,η,τ)(t)‖1−2pL∞≤Ct(−54+γ)2pt(−114+γ)(1−2p)≤Ct−32(1−1p)−12+γ. |
For the case γ∈[0,2), the corresponding results can be derived from the weighted interpolation inequality. Consequently, by employing the interpolation inequality, we can show that there exists a large enough T such that
‖∇k(ρ,u,η,τ)(t)‖Lpγ≤Ct−32(1−1p)−k2+γ, | (1.14) |
for t>T, 2≤p≤∞, k=0,1, and γ≥0, where C is a positive constant independent of t.
Remark 1.5. In this paper, we analyze the space-time decay rates of ‖(ρ,u,η,τ)(t)‖L2γ for k(∈[0,3])th-order derivative. Additionally, we determine the sharp space-time decay rate for k(∈[0,2])th-order derivative of the variable τ, which revealed the difference between the polymer number density η and the extra stress tensor T.
Now, let us outline the strategies employed in proving Theorem 1.3 and explain the primary challenges encountered in the process. Initially, we introduced
E(t):=‖(ρ,u,η,τ)‖2L2γ, |
and then use the delicately weighted energy estimates and interpolation tricks to obtain
ddtE(t)≤C0t−54E(t)+C1t−34γE(t)2γ−12γ+C2t−32γE(t)γ−1γ. | (1.15) |
In the process of deriving the aforementioned energy inequality, we encounter four trouble terms arising from the dissipative structure of the original system. If these terms didn't exist, we could achieve better space-time decay rates for the solutions. To illustrate this issue, let us consider the zero-th order space-time decay rates of the solutions. In the derivation of zero-th order weighted-energy estimate, we come across these troublesome terms r1∫R3|x|2γρdivudx, r1∫R3|x|2γu∇ρdx, r2∫R3|x|2γu∇ηdx and r2∫R3|x|2γηdivudx. By using integration by parts, we obtain
|r1∫R3∇(|x|2γ)ρudx|+|r2∫R3∇(|x|2γ)ηudx|≲‖ρ‖L2γ‖u‖L2γ−1+‖η‖L2γ‖u‖L2γ−1≲‖(ρ,η)‖L2γ‖u‖L2γ−1, |
and then we get the weighted energy inequality (3.11)
12ddt(‖ρ‖2L2γ+‖u‖2L2γ+r2β˜η‖η‖2L2γ+r32βk˜η‖τ‖2L2γ)+r2αβ˜η‖∇η‖2L2γ+r32βk˜ηA02λ‖τ‖2L2γ+r3α2βk˜η‖∇τ‖2L2γ≲t−54‖(ρ,u,η,τ)‖2L2γ+‖(ρ,η)‖L2γ‖u‖γ−1γL2γ‖u‖1γL2+‖(u,η,τ)‖2γ−2γL2γ‖(u,η,τ)‖2γL2, |
which is exactly (1.15). Therefore, one has
E(t)≤Ct−32+2γ, |
which implies
‖(ρ,u,η,τ)(t)‖L2γ0≤C‖(ρ,u,η,τ)(t)‖1−γ0γL2‖(ρ,u,η,τ)(t)‖γ0γL2γ≤Ct−34+γ0, |
for all t>T, γ0∈[0,γ], and [0,32]⊂[0,γ](γ>32). This implies that the decay rate of the zero–th order of the solution in L2γ is t−34+γ.
However, in the absence of the troublesome terms, we can derive a new weighted energy inequality as follows:
12ddt(‖ρ‖2L2γ+‖u‖2L2γ+r2β˜η‖η‖2L2γ+r32βk˜η‖τ‖2L2γ)+r2αβ˜η‖∇η‖2L2γ+r32βk˜ηA02λ‖τ‖2L2γ+r3α2βk˜η‖∇τ‖2L2γ≲t−54‖(ρ,u,η,τ)‖2L2γ+‖(u,η,τ)‖2γ−2γL2γ‖(u,η,τ)‖2γL2, |
which implies
ddtE(t)≤C0t−54E(t)+C1t−32γE(t)γ−1γ, |
where C0 and C1 are positive constants independent of t. If γ>32, then we can apply Lemma 2.4 with α0=54>1, α1=32γ<1, β1=γ−1γ<1, γ1=1−α11−β1=−32+γ>0 to get
E(t)≤Ct−32+γ, |
which yields
‖(ρ,u,η,τ)(t)‖L2γ0≤C‖(ρ,u,η,τ)(t)‖1−γ0γL2‖(ρ,u,η,τ)(t)‖γ0γL2γ≤Ct−34+γ02, |
for all t>T, γ0∈[0,γ], and [0,32]⊂[0,γ](γ>32). This implies that the decay rate of the zero-th order of the solution in L2γ is t−34+γ2.
By employing a similar method, we have
ddtE(t)≤C0t−54E(t)+C1t−54γE(t)2γ−12γ+C2t−52γE(t)γ−1γ+C3t−72+2γfork=1, |
ddtE(t)≤C0t−54E(t)+C1t−74γE(t)2γ−12γ+C2t−72γE(t)γ−1γ+C3t−92+2γfork=2, |
ddtE(t)≤C0t−54E(t)+C1t−94γE(t)2γ−12γ+C2t−92γE(t)γ−1γ+C3t−112+2γfork=3. |
The main difficulties in deducing the above estimates arise from the absence of dissipation terms of density and velocity when making the delicate weighted energy estimates. Due to the lack of the dissipation in terms ∫R3|x|γ∇4ρdx or ∫R3|x|γ∇4udx on the left-hand (3.39), it seems impossible for us to handle a new trouble term β∫R3|x|2γρ∇3ρ∇4udx. To overcome this difficulty, we fully utilize the equations. Specifically, we employ the fact that divu=ρt+βu∇ρr1+βρ and ρt=−r1divu−βdiv(ρu) from (1.4)1, which allows us to reduce the order of the spatial derivative of velocity. More specifically, through integration by parts, we transfer the derivative of u to another term: β∫R3∇(|x|2γρ∇3ρ)∇3udx. Next, one has
|∫R3∇(|x|2γρ∇3ρ)∇3udx|≲|β∫R3|x|2γρ(ρt+βu∇ρ)∇3ρ∇3(1r1+βρ)dx|+‖∇u‖L∞‖∇3ρ‖2L2γ+‖u‖L∞‖∇3ρ‖L2γ‖∇3ρ‖L2γ−1+‖∇ρ‖L∞‖∇3ρ‖L2γ‖∇3u‖L2γ. |
Subsequently, we derive the weighted energy inequality by applying Cauchy's inequality, Gagliardo-Nirenberg-Sobolev's inequality, intricate weighted energy estimates, and interpolation tricks. For more details, we refer to the proofs from (3.41) to (3.50).
Next, utilizing the Gronwall-type lemma, we prove Lemmas 3.1–3.4. Finally, we establish the Lyapunov-type energy inequality to prove Lemma 3.5:
12ddt‖∇mτ‖2L2γ+C′‖∇mτ‖2L2γ+C″‖∇m+1τ‖2L2γ≲t−52−m+2γ. |
By combining the previously obtained lemmas, we can complete the proof Theorem 1.3.
Before proving Theorem 1.3, let us list several tools that will be frequently used in the article. Firstly, we recall the well-known Sobolev interpolation inequalities.
Lemma 2.1. (see [22]) (Gagliardo-Nirenberg-Sobolev inequality) Let 2≤p≤∞, 0≤s,l≤k and 0≤θ≤1, then
‖∇sf‖Lp≲‖∇kf‖θLr‖∇lf‖1−θLq, |
where θ is given by
s3−1p=(k3−1r)θ+(l3−1q)(1−θ). |
Particularly, when p=3, q=r=2, s=l=0, and k=1, one has
‖f‖L3≲‖f‖H1, | (2.1) |
when p=∞, q=r=2, s=0, l=1, and k=2, we get
‖f‖L∞≲‖∇f‖H1, | (2.2) |
while s=l=0, k=1, θ=1, p=q=r=2, and γ>32, we obtain
‖f‖L6γ≲‖∇f‖L2γ+‖f‖L2γ−1. | (2.3) |
Lemma 2.2. (see [5]) Assume that there exists a function f(s) that satisfies
f(s)∼s, |
and
‖f(k)(s)‖≤C(k), |
for any integer k≥1, one has
‖f(k)(s)‖Lp≤C(k)‖f(k)(s)‖Lp, |
for any integer k≥0 and p≥2, where C(k) is a constant independent of t. Especially, it holds that G(ρ)∼O(1)(ρ) in this paper, and then ‖|x|2γ∇kG(ρ)‖Lp≤C‖|x|2γ∇kρ‖Lp, i.e.,
‖∇kG(ρ)‖L2γ≤C‖∇kρ‖L2γ. |
And by the same token, it holds that ‖∇kH(ρ)‖L2γ≤C‖∇kρ‖L2γ.
Lemma 2.3. For the vector function f∈C∞0(R3) and bounded scalar function g, it holds that
|∫R3(∇|x|2γ)⋅fgdx|≲‖g‖L2γ‖f‖L2γ−1. |
Proof. We compute
|∫R3(∇|x|2γ)⋅fgdx|=|2γ∫R3|x|2γ−2xj∂ixjgfidx|≲‖g‖L2γ‖f‖L2γ−1. |
Thus, we complete the proof of Lemma 2.3.
Lemma 2.4. (see [2]) (Interpolation inequality with weights) If p⩾1, r⩾1, s+nr>0, a+np>0, b+nq>0, and 0⩽θ⩽1, then
‖f‖Lrs≤‖f‖θLpa‖f‖1−θLqb, |
for f∈C∞0(Rn) satisfying
1r=αp+1−αq, |
and
s=aθ+b(1−θ). |
More specifically, while s=p=q=2, θ=γ−1γ, s=γ−1, a=γ, b=0, one has
‖f‖L2γ−1≤‖f‖γ−1γL2γ‖f‖1γL2. | (2.4) |
Lemma 2.5. (see [27]) (Gronwall-type Lemma) Let α0>1, α1<1, α2<1, and β1<1, β2<2. Assume that a continuously differential function F:[1,∞)→[0,∞) satisfies
ddtF(t)≤C0t−α0F(t)+C1t−α1F(t)β1+C2t−α2F(t)β2+C3tγ1−1,t≥1 |
and
F(1)≤K0, |
where C0, C1, C2, C3, K0≥0 and γi=1−αi1−βi>0 for i=1,2. Assume that γ1≥γ2, then there exists a constant ˜C depending on α0, α1, β1, α2, β2, K0, Ci, where i=1,2,3, such that
F(t)≤˜Ctγ1, |
for all t≥1.
We can make use of the precise linear approximations for (ρ,u,η,τ) found in [17] to prove Theorem 1.3.
Lemma 3.1. Under the assumption of Theorem 1.3, there exists a sufficiently large T such that the solution (ρ,u,η,τ) of the system (1.4) with the initial data (1.5) has the following estimate:
‖(ρ,u,η,τ)(t)‖L2γ≤Ct−34+γ, | (3.1) |
for all t>T and γ≥0, where C is a positive constant independent of t.
Proof. Multiplying |x|2γρ, |x|2γu, r2β˜η|x|2γη, r32βk˜η|x|2γτ by (1.4)1–(1.4)4, and then adding them up and integrating on R3, we have
∫R3|x|2γρρtdx+r1∫R3|x|2γρdivudx+∫R3|x|2γuutdx+r1∫R3|x|2γu∇ρdx+r2∫R3|x|2γu∇ηdx−r3∫R3|x|2γudivτdx+r2β˜η∫R3|x|2γηηtdx+r2∫R3|x|2γηdivudx−r2αβ˜η∫R3|x|2γη△ηdx+r32βk˜η∫R3|x|2γττtdx+r32βk˜ηA02λ∫R3|x|2γτ2dx+r3α2βk˜η∫R3|x|2γτ△τdx−r32∫R3|x|2γτ(∇u+∇Tu)dx=∫R3|x|2γρS1dx+∫R3|x|2γuS2dx+r2β˜η∫R3|x|2γηS3dx+r32βk˜η∫R3|x|2γτS4dx. | (3.2) |
Then, using integration by parts to simplify, one has
12ddt(‖ρ‖2L2γ+‖u‖2L2γ+r2β˜η‖η‖2L2γ+r32βk˜η‖τ‖2L2γ)+r2αβ˜η‖∇η‖2L2γ+r32βk˜ηA02λ‖τ‖2L2γ+r3α2βk˜η‖∇τ‖2L2γ=−r1∫R3|x|2γρdivudx−r1∫R3|x|2γu∇ρdx−r2∫R3|x|2γu∇ηdx−r2∫R3|x|2γηdivudx+r3∫R3|x|2γudivτdx+r32∫R3|x|2γτ(∇u+∇Tu)dx−r2αβ˜η∫R3∇(|x|2γ)η∇ηdx−r3α2βk˜η∫R3∇(|x|2γ)τ∇τdx+∫R3|x|2γρS1dx+∫R3|x|2γuS2dx+r2β˜η∫R3|x|2γηS3dx+r32βk˜η∫R3|x|2γτS4dx≜12∑i=1J1,i. | (3.3) |
Initially, by using integration by parts and applying Lemma 2.3 and Young' inequality, we can obtain
6∑i=1J1,i≲|r1∫R3∇(|x|2γ)ρudx|+|r2∫R3∇(|x|2γ)ηudx|+|r3∫R3∇(|x|2γ)uτdx|≲‖ρ‖L2γ‖u‖L2γ−1+‖η‖L2γ‖u‖L2γ−1+‖τ‖L2γ‖u‖L2γ−1≲‖(ρ,η)‖L2γ‖u‖L2γ−1+εr3‖τ‖2L2γ+Cr3(ε)‖u‖2L2γ−1. | (3.4) |
Applying Lemma 2.3 and Young' inequality, we can get
|J1,7|+|J1,8|≲r2αβ˜η‖∇η‖L2γ‖η‖L2γ−1+r3α2βk˜η‖∇τ‖L2γ‖τ‖L2γ−1≲ε(r2αβ˜η)‖∇η‖2L2γ+Cr2αβ˜η(ε)‖η‖2L2γ−1+ε(r3α2βk˜η)‖∇τ‖2L2γ+Cr3α2βk˜η(ε)‖τ‖2L2γ−1. | (3.5) |
Using the definitions of S1, S2, S3, and S4, Lemma 2.1, Cauchy's inequality, and Lemma 2.3, we have
|J1,9|=|β∫R3|x|2γρu∇ρdx|+|β∫R3|x|2γρ2∇udx|≲‖∇ρ‖L∞‖u‖L2γ‖ρ‖L2γ+‖∇u‖L∞‖ρ‖2L2γ≲‖∇2ρ‖H1‖u‖2L2γ+‖∇2ρ‖H1‖ρ‖2L2γ+‖∇2u‖H1‖ρ‖2L2γ≲t−74‖ρ‖2L2γ+t−74‖u‖2L2γ. | (3.6) |
In a similar way, we have
|J1,10|=|β∫R3|x|2γu2∇udx|+|∫R3|x|2γuH(ρ)∇ρdx|+|∫R3|x|2γuG(ρ)∇ηdx|+|∫R3|x|2γuG(ρ)divτdx|+|∫R3|x|2γu(ηρ+˜ρ)∇ηdx|≲β‖∇u‖L∞‖u‖2L2γ+‖∇ρ‖L∞‖H(ρ)‖L2γ‖u‖L2γ+‖G(ρ)‖L∞‖∇η‖L2γ‖u‖L2γ+‖G(ρ)‖L∞‖∇τ‖L2γ‖u‖L2γ+‖ηρ+˜ρ‖L∞‖u‖L2γ‖∇η‖L2γ≲‖∇2u‖H1‖u‖2L2γ+‖∇2ρ‖H1‖H(ρ)‖2L2γ+‖∇2ρ‖H1‖u‖2L2γ+‖∇G(ρ)‖H1‖∇η‖2L2γ+‖∇G(ρ)‖H1‖u‖2L2γ+‖∇G(ρ)‖H1‖∇τ‖2L2γ+‖∇(ηρ+˜ρ)‖H1‖u‖L2γ‖∇η‖2L2γ≲t−54‖u‖2L2γ+t−74‖ρ‖2L2γ+t−54‖∇(η,τ)‖2L2γ, | (3.7) |
and
|J1,11|=|r2˜η∫R3t|x|2γηu∇ηdx|+|r2˜η∫R3|x|2γη2∇udx|≲‖u‖L∞‖η‖L2γ‖∇η‖L2γ+‖∇u‖L∞‖η‖2L2γ≲‖∇u‖H1‖η‖2L2γ+‖∇u‖H1‖∇η‖2L2γ+‖∇2u‖H1‖η‖2L2γ≲t−54‖η‖2L2γ+t−54‖∇η‖2L2γ, | (3.8) |
and
|J1,12|≲‖∇τ‖L∞‖u‖L2γ‖τ‖L2γ+ ‖∇u‖L∞‖τ‖2L2γ+‖∇u‖L∞‖η‖L2γ‖τ‖L2γ≲‖∇2τ‖H1‖u‖L2γ‖τ‖L2γ+‖∇2u‖H1‖τ‖2L2γ+‖∇2u‖H1‖η‖L2γ‖τ‖L2γ≲t−74‖(u,η,τ)‖2L2γ. | (3.9) |
Substituting (3.4) to (3.9) into (3.3), we conclude that there exists a sufficiently large T1 and a sufficiently small ε, such that
12ddt(‖ρ‖2L2γ+‖u‖2L2γ+r1β˜η‖η‖2L2γ+r32βk˜η‖τ‖2L2γ)+r2αβ˜η‖∇η‖2L2γ+r32βk˜ηA02λ‖τ‖2L2γ+r3α2βk˜η‖∇τ‖2L2γ≲t−54‖(ρ,u,η)‖2L2γ+t−74‖τ‖2L2γ+‖(ρ,η)‖L2γ‖u‖L2γ−1+‖(u,η,τ)‖2L2γ−1, | (3.10) |
for all t>T1. Using the interpolation inequality with weights ‖f‖L2γ−1≲‖f‖γ−1γL2γ‖f‖1γL2, we can obtain
12ddt(‖ρ‖2L2γ+‖u‖2L2γ+r2β˜η‖η‖2L2γ+r32βk˜η‖τ‖2L2γ)+r2αβ˜η‖∇η‖2L2γ+r32βk˜ηA02λ‖τ‖2L2γ+r3α2βk˜η‖∇τ‖2L2γ≲t−54‖(ρ,u,η,τ)‖2L2γ+‖(ρ,η)‖L2γ‖u‖γ−1γL2γ‖u‖1γL2+‖(u,η,τ)‖2γ−2γL2γ‖(u,η,τ)‖2γL2≲t−54‖(ρ,u,η,τ)‖2L2γ+t−34γ‖(ρ,η)‖2γ−1γL2γ+t−32γ‖(u,η,τ)‖2γ−2γL2γ. | (3.11) |
Denoting E(t):=‖(ρ,u,η,τ)‖2L2γ, we can obtain
ddtE(t)≤C0t−54E(t)+C1t−34γE(t)2γ−12γ+C2t−32γE(t)γ−1γ, |
where C0, C1, and C2 are positive constants independent of t. If γ>32, then we can apply Lemma 2.5 with α0=54>1, α1=34γ<1, β1=2γ−12γ<1, α2=32γ<1, β2=γ−1γ<1, γ1=1−α11−β1=−32+2γ>0, γ2=1−α21−β2=−32+γ>0, γ1>γ2. Thus, for all t>T, one has
E(t)≤Ct−32+2γ, | (3.12) |
which implies
‖(ρ,u,η,τ)(t)‖L2γ0≤C‖(ρ,u,η,τ)(t)‖1−γ0γL2‖(ρ,u,η,τ)(t)‖γ0γL2γ≤Ct−34+γ0, |
for all t>T, γ0∈[0,γ], and [0,32]⊂[0,γ](γ>32). Thus, the proof of Lemma 3.1 has been completed.
Lemma 3.2. Under the assumption of Theorem 1.3, there exists a sufficiently large T such that the solution (ρ,u,η,τ) of the system (1.4) with the initial data (1.5) has the following estimate:
‖∇(ρ,u,η,τ)(t)‖L2γ≤Ct−54+γ, | (3.13) |
for all t>T and γ≥0, where C is a positive constant independent of t.
Proof. Multiplying |x|2γ∇ρ, |x|2γ∇u, r2β˜η|x|2γ∇η, r32βk˜η|x|2γ∇τ by ∇(1.4)1−∇(1.4)4, and then adding them up and integrating on R3, we have
∫R3|x|2γ∇ρ∇ρtdx+r1∫R3|x|2γ∇ρ∇divudx+∫R3|x|2γ∇u∇utdx+r1∫R3|x|2γ∇u∇2ρdx+r2∫R3|x|2γ∇u∇2ηdx−r3∫R3|x|2γ∇u∇divτdx+r2β˜η∫R3|x|2γ∇η∇ηtdx+r2∫R3|x|2γ∇η∇divudx−r2αβ˜η∫R3|x|2γ∇η∇△ηdx+r32βk˜η∫R3|x|2γ∇τ∇τtdx+r32βk˜ηA02λ∫R3|x|2γ(∇τ)2dx−r3α2βk˜η∫R3|x|2γ∇τ∇△τdx−r32∫R3|x|2γ∇τ∇(∇u+∇Tu)dx=∫R3|x|2γ∇ρ∇S1dx+∫R3|x|2γ∇u∇S2dx+r2β˜η∫R3|x|2γ∇η∇S3dx+r32βk˜η∫R3|x|2γ∇τ∇S4dx. | (3.14) |
Then, using integration by parts to simplify, one has
12ddt(‖∇ρ‖2L2γ+‖∇u‖2L2γ+r2β˜η‖∇η‖2L2γ+r32βk˜η‖∇τ‖2L2γ)+r2αβ˜η‖∇2η‖2L2γ+r32βk˜ηA02λ‖∇τ‖2L2γ+r3α2βk˜η‖∇2τ‖2L2γ=−r1∫R3|x|2γ∇ρ∇divudx−r1∫R3|x|2γ∇u∇2ρdx−r2∫R3|x|2γ∇η∇divudx−r2∫R3|x|2γ∇u∇2ηdx+r3∫R3|x|2γ∇u∇divτdx+r32∫R3|x|2γ∇τ∇(∇u+∇Tu)dx−r2αβ˜η∫R3∇(|x|2γ)∇η∇2ηdx−r3α2βk˜η∫R3∇(|x|2γ)∇τ∇2τdx+∫R3|x|2γ∇ρ∇S1dx+∫R3|x|2γ∇u∇S2dx+r2β˜η∫R3|x|2γ∇η∇S3dx+r32βk˜η∫R3|x|2γ∇τ∇S4dx≜12∑i=1J2,i. | (3.15) |
Initially, by using integration by parts and applying Cauchy' inequality and Lemma 2.3, we can obtain
6∑i=1J2,i≲|r1∫R3∇(|x|2γ)∇ρ∇udx|+|r2∫R3∇(|x|2γ)∇η∇udx|+|r3∫R3∇(|x|2γ)∇τ∇udx|≲‖∇ρ‖L2γ‖∇u‖L2γ−1+‖∇η‖L2γ‖∇u‖L2γ−1+‖∇τ‖L2γ‖∇u‖L2γ−1≲‖∇(ρ,η)‖L2γ‖∇u‖L2γ−1+εr3‖∇τ‖2L2γ+Cr3(ε)‖∇u‖2L2γ−1. | (3.16) |
Applying Lemma 2.3 and Young' inequality, we can get
|J2,7|+|J2,8|≲r2αβ˜η‖∇2η‖L2γ‖∇η‖L2γ−1+r3α2βk˜η‖∇2τ‖L2γ‖∇τ‖L2γ−1≲ε(r2αβ˜η)‖∇2η‖2L2γ+Cr2αβ˜η(ε)‖∇η‖2L2γ−1+ε(r3α2βk˜η)‖∇2τ‖2L2γ+Cr3α2βk˜η(ε)‖∇τ‖2L2γ−1. | (3.17) |
By the definitions of S1, S2, S3, and S4, and Lemma 2.1, Cauchy's inequality, and Lemma 2.3, we have
|J2,9|=|β∫R3|x|2γu∇ρ∇2ρdx|+|β∫R3|x|2γρ∇ρ∇2udx|+|β∫R3|x|2γ∇u∇ρ∇ρdx|≲‖∇2ρ‖L3‖∇ρ‖L2γ‖u‖L6γ+‖∇2u‖L3‖∇ρ‖L2γ‖ρ‖L6γ+‖∇u‖L∞‖∇ρ‖2L2γ≲‖∇2ρ‖H1‖∇ρ‖L2γ‖u‖L2γ−1+‖∇2ρ‖H1‖∇ρ‖L2γ‖∇u‖L2γ+‖∇2u‖H1‖∇ρ‖L2γ‖ρ‖L2γ−1+‖∇2u‖H1‖∇ρ‖2L2γ≲t−54−24t−34+γ−1‖∇ρ‖L2γ+t−74‖∇ρ‖2L2γ+t−74‖∇u‖2L2γ≲t−54‖∇(ρ,u)‖2L2γ+t−72+2γ. | (3.18) |
In a similar way, one has
|J2,10|=|β∫R3|x|2γ(∇u)3dx|+|β∫R3|x|2γu∇u∇2udx|+|∫R3|x|2γ∇u∇H(ρ)∇ρdx|+|∫R3|x|2γ∇uH(ρ)∇2ρdx|+|∫R3|x|2γ∇u∇G(ρ)∇ηdx|+|∫R3|x|2γ∇uG(ρ)∇2ηdx|+|∫R3|x|2γ∇u∇G(ρ)divτdx|+|∫R3|x|2γ∇uG(ρ)∇divτdx|+|∫R3|x|2γ∇u∇(ηρ+˜ρ)∇ηdx|+|∫R3|x|2γ(ηρ+˜ρ)∇u∇2ηdx|, |
therefore
|J2,10|≲β‖∇u‖L∞‖∇u‖2L2γ+β‖∇2u‖L3‖∇u‖L2γ‖u‖L6γ+‖∇H(ρ)‖L∞‖∇ρ‖L2γ‖∇u‖L2γ+‖∇2ρ‖L3‖∇u‖L2γ‖H(ρ)‖L6γ+|k(L−1)+2˜ηι|‖∇G(ρ)‖L∞‖∇η‖L2γ‖∇u‖L2γ+|k(L−1)+2˜ηι|‖G(ρ)‖L∞‖∇2η‖L2γ‖∇u‖L2γ+‖G(ρ)‖L∞‖∇2τ‖L2γ‖∇u‖L2γ+‖∇G(ρ)‖L∞‖∇τ‖L2γ‖∇u‖L2γ+‖∇(ηρ+˜ρ)‖L∞‖∇u‖L2γ‖∇η‖L2γ+‖ηρ+˜ρ‖L∞‖∇2η‖L2γ‖∇u‖L2γ≲‖∇2u‖H1‖∇u‖2L2γ+‖∇2u‖H1‖∇u‖L2γ‖u‖L2γ−1+‖∇2H(ρ)‖H1‖∇ρ‖L2γ‖∇2u‖L2γ+‖∇2ρ‖H1‖∇u‖2L2γ+‖∇2ρ‖H1‖∇u‖L2γ‖ρ‖L2γ−1+‖∇2G(ρ)‖H1‖∇η‖L2γ‖∇u‖L2γ+‖∇G(ρ)‖H1‖∇2η‖L2γ‖∇u‖L2γ+‖∇G(ρ)‖H1‖∇2τ‖L2γ‖∇u‖L2γ+‖∇2G(ρ)‖H1‖∇τ‖L2γ‖∇u‖L2γ+‖∇2(ηρ+˜ρ)‖H1‖∇η‖2L2γ+‖∇2(ηρ+˜ρ)‖H1‖∇u‖2L2γ+‖∇(ηρ+˜ρ)‖H1‖∇2η‖2L2γ+‖∇(ηρ+˜ρ)‖H1‖∇u‖2L2γ≲t−54‖∇(ρ,u,η)‖2L2γ+t−54‖∇2(η,τ)‖2L2γ+t−72+2γ, | (3.19) |
and
|J2,11|=|r2˜η∫R3|x|2γu∇η∇2ηdx|+|r2˜η∫R3|x|2γη∇η∇2udx|+|r2˜η∫R3|x|2γ∇η∇η∇udx|≲‖u‖L∞‖∇η‖L2γ‖∇2η‖L2γ+‖∇2u‖L3‖∇η‖L2γ‖η‖L6γ+‖∇u‖L∞‖∇η‖2L2γ≲‖∇u‖H1‖∇η‖L2γ‖∇2η‖L2γ+‖∇2u‖H1‖∇η‖2L2γ+‖∇2u‖H1‖∇η‖L2γ‖η‖L2γ−1≲t−54‖∇η‖2L2γ+t−54‖∇2η‖2L2γ+t−72+2γ, | (3.20) |
and
|J2,12|≲‖∇2u‖L3‖∇τ‖L2γ‖τ‖L6γ+‖u‖L∞‖∇τ‖L2γ‖∇2τ‖L2γ+‖∇u‖L∞‖∇τ‖2L2γ+‖∇u‖L∞‖∇η‖L2γ‖∇τ‖L2γ+‖∇2u‖L3‖∇τ‖L2γ‖η‖L6γ≲‖∇2u‖H1‖∇τ‖2L2γ+‖∇2u‖H1‖∇τ‖L2γ‖τ‖L2γ−1+‖∇u‖H1‖∇τ‖L2γ‖∇2τ‖L2γ+‖∇2u‖H1‖∇η‖L2γ‖∇τ‖L2γ+‖∇2u‖H1‖∇τ‖L2γ‖∇η‖L2γ+‖∇2u‖H1‖∇τ‖L2γ‖η‖L2γ−1+‖∇2u‖H1‖∇τ‖2L2γ≲t−54‖∇τ‖2L2γ+t−74‖∇η‖2L2γ+t−54‖∇2τ‖2L2γ+t−72+2γ. | (3.21) |
Substituting (3.16) to (3.21) into (3.15), we conclude that there exists a sufficiently large T1 and a sufficiently small ε, such that
12ddt(‖∇ρ‖2L2γ+‖∇u‖2L2γ+r2β˜η‖∇η‖2L2γ+r32βk˜η‖∇τ‖2L2γ)+r2αβ˜η‖∇2η‖2L2γ+r32βk˜ηA02λ‖∇τ‖2L2γ+r3α2βk˜η‖∇2τ‖2L2γ≲t−54‖∇(ρ,u,η,τ)‖2L2γ+‖∇(ρ,η)‖L2γ‖∇u‖L2γ−1+‖∇(u,η,τ)‖2L2γ−1+t−72+2γ, | (3.22) |
for all t>T1. Using the interpolation inequality with weights ‖∇f‖L2γ−1≲‖∇f‖γ−1γL2γ‖∇f‖1γL2, we can obtain
12ddt(‖∇ρ‖2L2γ+‖∇u‖2L2γ+r2β˜η‖∇η‖2L2γ+r32βk˜η‖∇τ‖2L2γ)+r2αβ˜η‖∇2η‖2L2γ+r32βk˜ηA02λ‖∇τ‖2L2γ+r3α2βk˜η‖∇2τ‖2L2γ≲t−54‖∇(ρ,u,η,τ)‖2L2γ+‖∇(ρ,η)‖L2γ‖∇u‖γ−1γL2γ‖∇u‖1γL2+‖∇(u,η,τ)‖2γ−2γL2γ‖∇(u,η,τ)‖2γL2+t−72+2γ≲t−54‖∇(ρ,u,η,τ)‖2L2γ+t−54γ‖∇(ρ,η)‖2γ−1γL2γ+t−52γ‖∇(u,η,τ)‖2γ−2γL2γ+t−72+2γ. | (3.23) |
Denoting E(t):=‖∇(ρ,u,η,τ)‖2L2γ, we arrive at
ddtE(t)≤C0t−54E(t)+C1t−54γE(t)2γ−12γ+C2t−52γE(t)γ−1γ+C3t−72+2γ, |
where C0, C1, C2, and C3 are positive constants independent of t. If γ>52, then we can apply Lemma 2.5 with α0=54>1, α1=54γ<1, β1=2γ−12γ<1, α2=52γ<1, β2=γ−1γ<1, γ1=1−α11−β1=−52+2γ>0, γ2=1−α21−β2=−52+γ>0, γ1>γ2, γ1−1=−72+2γ. Thus, for all t>T, one has
E(t)≤Ct−52+2γ, | (3.24) |
we get the fact
‖∇(ρ,u,η,τ)(t)‖L2γ0≤C‖∇(ρ,u,η,τ)(t)‖1−γ0γL2‖∇(ρ,u,η,τ)(t)‖γ0γL2γ≤Ct−54+γ0, |
for all t>T, γ0∈[0,γ], and [0,52]⊂[0,γ](γ>52). Thus, the proof of Lemma 3.2 has been completed.
Lemma 3.3. Under the assumption of Theorem 1.3, there exists a sufficiently large T such that the solution (ρ,u,η,τ) of the system (1.4) with the initial data (1.5) has the following estimate:
‖∇2(ρ,u,η,τ)(t)‖L2γ≤Ct−74+γ, | (3.25) |
for all t>T and γ≥0, where C is a positive constant independent of t.
Proof. Multiplying |x|2γ∇2ρ, |x|2γ∇2u, r2β˜η|x|2γ∇2η, r32βk˜η|x|2γ∇2τ by ∇2(1.4)1−∇2(1.4)4, and then adding them up and integrating on R3, we have
∫R3|x|2γ∇2ρ∇2ρtdx+r1∫R3|x|2γ∇2ρ∇2divudx+∫R3|x|2γ∇2u∇2utdx+r1∫R3|x|2γ∇2u∇3ρdx+r2∫R3|x|2γ∇2u∇3ηdx−r3∫R3|x|2γ∇2u∇2divτdx+r2β˜η∫R3|x|2γ∇2η∇2ηtdx+r2∫R3|x|2γ∇2η∇2divudx−r2αβ˜η∫R3|x|2γ∇2η∇2△ηdx+r32βk˜η∫R3|x|2γ∇2τ∇2τtdx+r32βk˜ηA02λ∫R3|x|2γ(∇2τ)2dx−r3α2βk˜η∫R3|x|2γ∇2τ∇2△τdx−r32∫R3|x|2γ∇2τ∇2(∇u+∇Tu)dx=∫R3|x|2γ∇2ρ∇2S1dx+∫R3|x|2γ∇2u∇2S2dx+r2β˜η∫R3|x|2γ∇2η∇2S3dx+r32βk˜η∫R3|x|2γ∇2τ∇2S4dx. | (3.26) |
Then, using integration by parts to simplify, one has
12ddt(‖∇2ρ‖2L2γ+‖∇2u‖2L2γ+r2β˜η‖∇2η‖2L2γ+r32βk˜η‖∇2τ‖2L2γ)+r2αβ˜η‖∇3η‖2L2γ+r32βk˜ηA02λ‖∇2τ‖2L2γ+r3α2βk˜η‖∇3τ‖2L2γ=−r1∫R3|x|2γ∇2ρ∇2divudx−r1∫R3|x|2γ∇2u∇3ρdx−r2∫R3|x|2γ∇2η∇2divudx−r2∫R3|x|2γ∇2u∇3ηdx+r3∫R3|x|2γ∇2u∇2divτdx+r32∫R3|x|2γ∇2τ∇2(∇u+∇Tu)dx−r2αβ˜η∫R3∇(|x|2γ)∇2η∇3ηdx−r3α2βk˜η∫R3∇(|x|2γ)∇2τ∇3τdx+∫R3|x|2γ∇2ρ∇2S1dx+∫R3|x|2γ∇2u∇2S2dx+r2β˜η∫R3|x|2γ∇2η∇2S3dx+r32βk˜η∫R3|x|2γ∇2τ∇2S4dx≜12∑i=1J3,i. | (3.27) |
Initially, by using integration by parts and applying Lemma 2.3, we can obtain
6∑i=1J3,i≲|r1∫R3∇(|x|2γ)∇2ρ∇2udx|+|r2∫R3∇(|x|2γ)∇2η∇2udx|+|r3∫R3∇(|x|2γ)∇2τ∇2udx|≲‖∇2ρ‖L2γ‖∇2u‖L2γ−1+‖∇2η‖L2γ‖∇2u‖L2γ−1+‖∇2τ‖L2γ‖∇2u‖L2γ−1≲‖∇2(ρ,η)‖L2γ‖∇2u‖L2γ−1+εr3‖∇2τ‖2L2γ+Cr3(ε)‖∇2u‖2L2γ−1. | (3.28) |
By using Lemma 2.3 and Cauchy's inequality, we obtain
|J3,7|+|J3,8|≲r2αβ˜η‖∇3τ‖L2γ‖∇2τ‖L2γ−1+r3α2βk˜η‖∇3η‖L2γ‖∇2η‖L2γ−1≲ε(r2αβ˜η)‖∇3η‖2L2γ+Cr2αβ˜η(ε)‖∇2η‖2L2γ−1+ε(r3α2βk˜η)‖∇3τ‖2L2γ+Cr3α2βk˜η(ε)‖∇2τ‖2L2γ−1. | (3.29) |
By the definitions of S1, S2, S3, and S4, Lemma 2.1, Cauchy's inequality, and Lemma 2.3, we get
|J3,9|=|β∫R3|x|2γ∇2ρ∇2(ρ∇u)dx|+|β∫R3|x|2γ∇2ρ∇2(u∇ρ)dx|≲‖∇3ρ‖L3‖∇2ρ‖L2γ‖u‖L6γ+‖∇3u‖L3‖∇2ρ‖L2γ‖ρ‖L6γ+‖∇ρ‖L∞‖∇2ρ‖L2γ‖∇2u‖L2γ+‖∇u‖L∞‖∇2ρ‖2L2γ≲‖∇3ρ‖H1‖∇2ρ‖L2γ‖u‖L2γ−1+‖∇3ρ‖H1‖∇2ρ‖L2γ‖∇u‖L2γ+‖∇3u‖H1‖∇2ρ‖L2γ‖ρ‖L2γ−1+‖∇3u‖H1‖∇2ρ‖L2γ‖∇ρ‖L2γ+‖∇2ρ‖H1‖∇2ρ‖L2γ‖∇2u‖L2γ+‖∇2u‖H1‖∇2ρ‖2L2γ≲t−54−44t−34+γ−1‖∇2ρ‖L2γ+t−54−44t−54+γ‖∇2ρ‖2L2γ+t−54‖∇2ρ‖2L2γ+t−74‖∇2u‖2L2γ≲t−54‖∇2ρ‖2L2γ+t−74‖∇2u‖2L2γ+t−92+2γ+t−112+2γ. | (3.30) |
In a similar way, one has
|J3,10|≲β‖∇u‖L∞‖∇2u‖2L2γ+β‖∇3u‖L3‖∇2u‖L2γ‖u‖L6γ+‖∇ρ‖L∞‖∇2u‖L2γ‖∇2H(ρ)‖L2γ+β‖∇3ρ‖L3‖∇2u‖L2γ‖H(ρ)‖L6γ+‖G(ρ)‖L∞‖∇3η‖L2γ‖∇2u‖L2γ+(‖∇η‖L∞+‖∇τ‖L∞)‖∇2G(ρ)‖L2γ‖∇2u‖L2γ+‖G(ρ)‖L∞‖∇2u‖L2γ‖∇3τ‖L2γ+‖∇2(ηρ+˜ρ)‖L3‖∇2u‖L2γ‖∇η‖L6γ+‖ηρ+˜ρ‖L∞‖∇2u‖L2γ‖∇3η‖L2γ≲‖∇2u‖H1‖∇2u‖2L2γ+‖∇3u‖H1‖∇2u‖L2γ‖∇u‖L2γ+‖∇3u‖H1‖∇2u‖L2γ‖u‖L2γ−1+‖∇2ρ‖H1‖∇2H(ρ)‖L2γ‖∇2u‖L2γ+‖∇3ρ‖H1‖∇2u‖L2γ‖∇H(ρ)‖L2γ+‖∇3ρ‖H1‖∇2u‖L2γ‖H(ρ)‖L2γ−1+‖∇2η‖H1‖∇2u‖2L2γ‖∇2G(ρ)‖2L2γ+‖∇G(ρ)‖H1‖∇3η‖2L2γ‖∇2u‖2L2γ+‖∇G(ρ)‖H1‖∇2u‖2L2γ‖∇3τ‖2L2γ+(‖∇2η‖H1+‖∇2τ‖H1)‖∇2G(ρ)‖L2γ‖∇2u‖L2γ+‖∇2(ηρ+˜ρ)‖H1‖∇2u‖L2γ‖∇2η‖L2γ+‖∇2(ηρ+˜ρ)‖H1‖∇2u‖L2γ‖∇η‖L2γ−1+‖∇(ηρ+˜ρ)‖H1‖∇2u‖2L2γ+‖∇(ηρ+˜ρ)‖H1‖∇3η‖2L2γ≲t−54‖∇2(ρ,u,η,τ)‖2L2γ+t−54‖∇3(η,τ)‖2L2γ+t−92+2γ+t−112+2γ, | (3.31) |
and
|J3,11|=|r2˜η∫R3|x|2γ∇2η∇2(η∇u)dx|+|r2˜η∫R3|x|2γ∇2η∇2(u∇η)dx|≲‖u‖L∞‖∇2η‖L2γ‖∇3η‖L2γ+‖∇3u‖L3‖∇2η‖L2γ‖η‖L6γ+‖∇u‖L∞‖∇2η‖2L2γ+‖∇η‖L∞‖∇2u‖L2γ‖∇2η‖L2γ≲‖∇u‖H1‖∇2η‖L2γ‖∇3η‖2L2γ+‖∇3u‖H1‖∇2η‖L2γ(‖∇η‖L2γ+‖η‖L2γ−1)+‖∇2u‖H1‖∇2η‖2L2γ+‖∇2η‖H1‖∇2u‖L2γ‖∇2η‖L2γ≲t−54‖∇2η‖2L2γ+t−54‖∇3η‖2L2γ+t−74‖∇2u‖2L2γ+t−92+2γ+t−112+2γ, | (3.32) |
and
|J3,12|≲‖∇3u‖L3‖∇2τ‖L2γ‖τ‖L6γ+‖u‖L∞‖∇2τ‖L2γ‖∇3τ‖L2γ+‖∇u‖L∞‖∇2τ‖2L2γ+‖∇τ‖L∞‖∇2τ‖L2γ‖∇2u‖L2γ+‖∇3u‖L3‖∇2τ‖L2γ‖η‖L6γ+‖∇u‖L∞‖∇2τ‖L2γ‖∇2η‖L2γ≲‖∇3u‖H1‖∇2τ‖L2γ(‖∇τ‖L2γ+‖τ‖L2γ−1)+‖∇u‖H1‖∇2τ‖L2γ‖∇3τ‖L2γ+‖∇2u‖H1‖∇2τ‖2L2γ+‖∇2τ‖H1‖∇2τ‖2L2γ+‖∇2τ‖H1‖∇2u‖2L2γ+‖∇3u‖H1‖∇2τ‖L2γ(‖∇η‖L2γ+‖η‖L2γ−1)+‖∇2u‖H1‖∇2τ‖L2γ‖∇2η‖L2γ≲t−54‖∇2(u,η,τ)‖2L2γ+t−54‖∇3τ‖2L2γ+t−92+2γ+t−112+2γ. | (3.33) |
Substituting (3.28) into (3.33) into (3.27), we conclude that there exists a sufficiently large T1 and a sufficiently small ε, such that
12ddt(‖∇2ρ‖2L2γ+‖∇2u‖2L2γ+r2β˜η‖∇2η‖2L2γ+r32βk˜η‖∇2τ‖2L2γ)+r2αβ˜η‖∇3η‖2L2γ+r32βk˜ηA02λ‖∇2τ‖2L2γ+r3α2βk˜η‖∇3τ‖2L2γ≲t−54‖∇2(ρ,u,η,τ)‖2L2γ+‖∇2(ρ,η)‖L2γ‖∇2u‖L2γ−1+‖∇2(u,η,τ)‖2L2γ−1+t−92+2γ, | (3.34) |
for all t>T1. Using the interpolation inequality with weights ‖∇2f‖L2γ−1≲‖∇2f‖γ−1γL2γ‖∇2f‖1γL2, we can obtain
12ddt(‖∇2ρ‖2L2γ+‖∇2u‖2L2γ+r2β˜η‖∇2η‖2L2γ+r32βk˜η‖∇2τ‖2L2γ)+r2αβ˜η‖∇3η‖2L2γ+r32βk˜ηA02λ‖∇2τ‖2L2γ+r3α2βk˜η‖∇3τ‖2L2γ≲t−54‖∇2(ρ,u,η,τ)‖2L2γ+‖∇2(ρ,η)‖L2γ‖∇2u‖γ−1γL2γ‖∇2u‖1γL2+‖∇2(u,η,τ)‖2γ−2γL2γ‖∇2(u,η,τ)‖2γL2+t−92+2γ≲t−54‖∇2(ρ,u,η,τ)‖2L2γ+t−74γ‖∇2(ρ,η)‖2γ−1γL2γ+t−72γ‖∇2(u,η,τ)‖2γ−2γL2γ+t−92+2γ. | (3.35) |
Denoting E(t):=‖∇2(ρ,u,η,τ)‖2L2γ, we arrive at
ddtE(t)≤C0t−54E(t)+C1t−74γE(t)2γ−12γ+C2t−72γE(t)γ−1γ+C3t−92+2γ, |
where C0, C1, C2, and C3 are positive constants independent of t. If γ>72, then we can apply Lemma 2.5 with α0=54>1, α1=74γ<1, β1=2γ−12γ<1, α2=72γ<1, β2=γ−1γ<1, γ1=1−α11−β1=−72+2γ>0, γ2=1−α21−β2=−72+γ>0, γ1>γ2, γ1−1=−92+2γ. Thus, for all t>T,
E(t)≤Ct−72+2γ, | (3.36) |
we get the fact
‖∇2(ρ,u,η,τ)(t)‖L2γ0≤C‖∇2(ρ,u,η,τ)(t)‖1−γ0γL2‖∇2(ρ,u,η,τ)(t)‖γ0γL2γ≤Ct−74+γ0, |
for all t>T, γ0∈[0,γ], and [0,72]⊂[0,γ](γ>72). Thus, the proof of Lemma 3.3 has been completed.
Lemma 3.4. Under the assumption of Theorem 1.3, there exists a sufficiently large T such that the solution (ρ,u,η,τ) of the system (1.4) with the initial data (1.5) has the following estimate:
‖∇3(ρ,u,η,τ)(t)‖L2γ≤Ct−94+γ, | (3.37) |
for all t>T and γ≥0, where C is a positive constant independent of t.
Proof. Multiplying |x|2γ∇3ρ, |x|2γ∇3u, r2β˜η|x|2γ∇3η, r32βk˜η|x|2γ∇3τ by ∇3(1.4)1−∇3(1.4)4, and then adding them up and integrating on R3, we have
∫R3|x|2γ∇3ρ∇3ρtdx+r1∫R3|x|2γ∇3ρ∇3divudx+∫R3|x|2γ∇3u∇3utdx+r1∫R3|x|2γ∇3u∇4ρdx+r2∫R3|x|2γ∇3u∇4ηdx−r3∫R3|x|2γ∇3u∇3divτdx+r2β˜η∫R3|x|2γ∇3η∇3ηtdx+r2∫R3|x|2γ∇3η∇3divudx−r2αβ˜η∫R3|x|2γ∇3η∇3△ηdx+r32βk˜η∫R3|x|2γ∇3τ∇3τtdx+r32βk˜ηA02λ∫R3|x|2γ(∇3τ)2dx−r3α2βk˜η∫R3|x|2γ∇3τ∇3△τdx−r32∫R3|x|2γ∇3τ∇3(∇u+∇Tu)dx=∫R3|x|2γ∇3ρ∇3S1dx+∫R3|x|2γ∇3u∇3S2dx+r2β˜η∫R3|x|2γ∇3η∇3S3dx+r32βk˜η∫R3|x|2γ∇3τ∇3S4dx. | (3.38) |
Then, using integration by parts to simplify, one has
12ddt(‖∇3ρ‖2L2γ+‖∇3u‖2L2γ+r2β˜η‖∇3η‖2L2γ+r32βk˜η‖∇3τ‖2L2γ)+r2αβ˜η‖∇4η‖2L2γ+r32βk˜ηA02λ‖∇3τ‖2L2γ+r3α2βk˜η‖∇4τ‖2L2γ=−r1∫R3|x|2γ∇3ρ∇3divudx−r1∫R3|x|2γ∇3u∇4ρdx−r2∫R3|x|2γ∇3η∇3divudx−r2∫R3|x|2γ∇3u∇4ηdx+r3∫R3|x|2γ∇3u∇3divτdx+r32∫R3|x|2γ∇3τ∇3(∇u+∇Tu)dx−r2αβ˜η∫R3∇(|x|2γ)∇3η∇4ηdx−r3α2βk˜η∫R3∇(|x|2γ)∇3τ∇4τdx+∫R3|x|2γ∇3ρ∇3S1dx+∫R3|x|2γ∇3u∇3S2dx+r2β˜η∫R3|x|2γ∇3η∇3S3dx+r32βk˜η∫R3|x|2γ∇3τ∇3S4dx≜12∑i=1J4,i. | (3.39) |
Initially, by applying integration by parts and using Lemma 2.3, we can obtain
6∑i=1J4,i≲|r1∫R3∇(|x|2γ)∇3ρ∇3udx|+|r2∫R3∇(|x|2γ)∇3η∇3udx|+|r3∫R3∇(|x|2γ)∇3τ∇3udx|≲‖∇3ρ‖L2γ‖∇3u‖L2γ−1+‖∇3η‖L2γ‖∇3u‖L2γ−1+‖∇3τ‖L2γ‖∇3u‖L2γ−1≲‖∇3(ρ,η)‖L2γ‖∇3u‖L2γ−1+εr3‖∇3τ‖2L2γ+Cr3(ε)‖∇3u‖2L2γ−1. | (3.40) |
By using integration by parts, Lemma 2.3, and Cauchy's inequality
|J4,7|+|J4,8|≲r2αβ˜η‖∇4τ‖L2γ‖∇3τ‖L2γ−1+r3α2βk˜η‖∇4η‖L2γ‖∇3η‖L2γ−1≲ε(r2αβ˜η)‖∇4η‖2L2γ+Cr2αβ˜η(ε)‖∇3η‖2L2γ−1+ε(r3α2βk˜η)‖∇4τ‖2L2γ+Cr3α2βk˜η(ε)‖∇3τ‖2L2γ−1. | (3.41) |
By the definitions of S1, S2, S3, and S4, Lemma 2.1, Cauchy's inequality and Lemma 2.3, we get
|J4,9|=|β∫R3|x|2γ∇3ρ∇3(u∇ρ)dx|+|β∫R3|x|2γ∇3ρ∇3(ρ∇u)dx|≲|β∫R3|x|2γu∇3ρ∇4ρdx|+|β∫R3|x|2γρ∇3ρ∇4udx|+|β∫R3|x|2γ∇u(∇3ρ)2dx|+|β∫R3|x|2γ∇ρ∇3ρ∇3udx|≲|β∫R3∇(|x|2γu)(∇3ρ)2dx|+|β∫R3|x|2γρ∇3ρ∇4udx|+|β∫R3|x|2γ∇u(∇3ρ)2dx|+|β∫R3|x|2γ∇ρ∇3ρ∇3udx|≲|β∫R3|x|2γρ∇3ρ∇4udx|+‖∇u‖L∞‖∇3ρ‖2L2γ+‖u‖L∞‖∇3ρ‖L2γ‖∇3ρ‖L2γ−1+‖∇ρ‖L∞‖∇3ρ‖L2γ‖∇3u‖L2γ≲|β∫R3|x|2γρ∇3ρ∇4udx|+t−54‖∇3ρ‖2L2γ+t−74‖∇3u‖2L2γ+‖∇3ρ‖2L2γ−1. | (3.42) |
Next, we make full use of the dissipative structure of the system (1.4) to deal with the trouble term
N1≜|β∫R3|x|2γρ∇3ρ∇4udx|. |
More precisely, based on the fact that divu=ρt+βu∇ρr1+βρ, we can reduce the order of the spatial derivative of velocity. First, we rewrite the trouble N1 as follows:
N1=|β∫R3|x|2γρ∇3ρ∇3(ρt+βu∇ρr1+βρ)dx|=|β∫R3|x|2γρ(ρt+βu∇ρ)∇3ρ∇3(1r1+βρ)dx|+3|β∫R3|x|2γρ∇3ρ∇(ρt+βu∇ρ)∇2(1r1+βρ)dx|+3|β∫R3|x|2γρ∇3ρ∇2(ρt+βu∇ρ)∇(1r1+βρ)dx|+|β∫R3|x|2γ1r1+βρρ∇3ρt∇3ρdx|+β2|∫R3|x|2γ1r1+βρρu∇4ρ∇3ρdx|+3β2|∫R3|x|2γ1r1+βρρ∇u∇3ρ∇3ρdx|+3β2|∫R3|x|2γ1r1+βρρ∇2u∇2ρ∇3ρdx|+β2|∫R3|x|2γ1r1+βρρ∇3u∇ρ∇3ρdx|≜8∑i=1N1,i. | (3.43) |
Noticing that \rho_t = -r_1 \operatorname{div}u -\beta\operatorname{div}(\rho u) from (1.4)_1 , we have
\begin{align} |N_{1, 1}| = & \left|\beta \int_{\mathbb{R}^3}|x|^{2\gamma} \rho (\rho_t + \beta u \nabla \rho )\nabla^3\rho \nabla^3\left(\frac{1}{ r_1+\beta \rho }\right) \mathrm{\; d} x \right| \\ \leq & \left| \int_{\mathbb{R}^3} |x|^{2\gamma} \rho \nabla^3 \rho (\beta u \operatorname{div} \rho + \beta \rho \operatorname{div}u + \beta u \nabla \rho + r_1 \operatorname{div}u) \nabla^3 \left(\frac{1}{ r_1+\beta \rho } \right) \mathrm{\; d} x \right| \\ \lesssim & \| \nabla^3(\frac{1}{ r_1+\beta \rho }) \|_{L^{2}} \| \nabla^3 \rho\|_{L_{\gamma}^{2}} \| |x|^{\gamma} \rho\|_{L^{\infty}}( \|u\|_{L^{\infty}} \|\operatorname{div} \rho\|_{L^{\infty}} + \|\operatorname{div}u\|_{L^{\infty}} \|\rho\|_{L^{\infty}}) \\& +\| \nabla^3(\frac{1}{ r_1+\beta \rho }) \|_{L^{2}} \| \nabla^3 \rho\|_{L_{\gamma}^{2}} \| |x|^{\gamma} \rho\|_{L^{\infty}} ( \| u\|_{L^{\infty}} \|\nabla \rho\|_{L^{\infty}} + r_1 \|\operatorname{div}u\|_{L^{\infty}}) \\ \lesssim & \| \nabla^3\rho \|_{H^{1}} \| \nabla^3 \rho\|_{L_{\gamma}^{2}} \| |x|^{\gamma} \rho\|_{L^{\infty}}( \|\nabla u\|_{H^1} \|\nabla \operatorname{div} \rho\|_{H^1} + \|\nabla \operatorname{div}u\|_{H^1} \|\nabla \rho\|_{H^1}) \\& +\| \nabla^3 \rho \|_{H^{1}} \| \nabla^3 \rho\|_{L_{\gamma}^{2}} \| |x|^{\gamma} \rho\|_{L^{\infty}} (\| \nabla u\|_{H^1} \|\nabla^2 \rho\|_{H^1} + r_1 \|\nabla \operatorname{div} u\|_{H^1}) \\ \lesssim & t^{-\frac{5}{4}}\| \nabla^3 \rho\|_{L_{\gamma}^{2}} ^2 +t^{-\frac{11}{2}+2\gamma}, \end{align} | (3.44) |
where we have used the fact that (\frac{1}{ r_1+\beta \rho }) \sim \mathcal{O}(1)(\rho) . By using the Gagliardo-Nirenberg-Sobolev inequality and Cauchy's inequality, we have
\begin{equation} \begin{split} \| |x|^{\gamma} \rho \|_{L^{\infty}} \lesssim & \| \nabla(|x|^{\gamma} \rho)\|_{L^{2}}^{\frac{1}{2}} \| \nabla^2(|x|^{\gamma} \rho)\|_{L^{2}}^{\frac{1}{2}} \\ \lesssim & (\|\nabla^2(|x|^{\gamma} \rho)\|_{L^{2}} +\|\nabla(|x|^{\gamma} \rho)\|_{L^{2}}) \\ \lesssim & \| \rho\|_{L_{\gamma-2}^{2}} + \| \rho\|_{L_{\gamma-1}^{2}} + \| \nabla \rho\|_{L_{\gamma-1}^{2}} + \| \nabla \rho\|_{L_{\gamma}^{2}} +\| \nabla^2 \rho\|_{L_{\gamma}^{2}} \\ \lesssim & t^{-\frac{5}{4}+\gamma}. \end{split} \end{equation} | (3.45) |
In a similar way, one has
\begin{equation} \begin{split} |N_{1, 2}| \leq & \left| \int_{\mathbb{R}^3}|x|^{2\gamma} \rho \nabla^3 \rho \nabla (r_1 \operatorname{div}u -\beta\operatorname{div}(\rho u) + \beta u \nabla \rho )\nabla^2 \left( \frac{1}{ r_1+\beta \rho } \right) \mathrm{\; d} x \right| \\ \lesssim & \| \nabla^2(\frac{1}{ r_1+\beta \rho }) \|_{L^{2}} \| \nabla^3 \rho\|_{L_{\gamma}^{2}} \| |x|^{\gamma} \rho\|_{L^{\infty}}( \|\nabla^2 u\|_{L^{\infty}} \|\rho\|_{L^{\infty}} + \|u\|_{L^{\infty}} \|\nabla^2 \rho\|_{L^{\infty}}) \\& +\| \nabla^2(\frac{1}{ r_1+\beta \rho }) \|_{L^{2}} \| \nabla^3 \rho\|_{L_{\gamma}^{2}} \| |x|^{\gamma} \rho\|_{L^{\infty}} ( \| \nabla u\|_{L^{\infty}} \|\nabla \rho\|_{L^{\infty}} + r_1 \|\nabla \operatorname{div}u\|_{L^{\infty}}) \\ \lesssim & t^{-\frac{5}{4}}\| \nabla^3 \rho\|_{L_{\gamma}^{2}} ^2 +t^{-\frac{11}{2}+2\gamma}, \end{split} \end{equation} | (3.46) |
and
\begin{equation} \begin{split} |N_{1, 3}| \leq & \left| \int_{\mathbb{R}^3}|x|^{2\gamma} \rho \nabla^3 \rho \nabla^2 (r_1 \operatorname{div}u -\beta\operatorname{div}(\rho u) + \beta u \nabla \rho )\nabla(\frac{1}{ r_1+\beta \rho }) \mathrm{\; d} x \right| \\ \lesssim & \| \nabla(\frac{1}{ r_1+\beta \rho }) \|_{L^{3}} \| \nabla^3 \rho\|_{L_{\gamma}^{2}} \| \nabla^2 \rho\|_{L_{\gamma}^{6}} \| \rho\|_{L^{\infty}} \|\operatorname{div} u\|_{L^{\infty}} \\& +\| \nabla(\frac{1}{ r_1+\beta \rho }) \|_{L^{\infty}} \| \nabla^3 \rho\|_{L_{\gamma}^{2}} \| \nabla^3 u\|_{L_{\gamma}^{2}} \| \rho\|_{L^{\infty}} \|\rho\|_{L^{\infty}} \\& + \| \nabla(\frac{1}{ r_1+\beta \rho }) \|_{L^{3}} \| \nabla^3 \rho\|_{L_{\gamma}^{2}} \| \nabla^2 u\|_{L_{\gamma}^{6}} \| \rho\|_{L^{\infty}} \|\operatorname{div} \rho\|_{L^{\infty}} \\& +\| \nabla(\frac{1}{ r_1+\beta \rho }) \|_{L^{\infty}} \| \nabla^3 \rho\|_{L_{\gamma}^{2}} ^2 \| \rho\|_{L^{\infty}} \|u\|_{L^{\infty}} \\& + r_1\| \rho\|_{L^{\infty}} \| \nabla(\frac{1}{ r_1+\beta \rho }) \|_{L^{\infty}} \| \nabla^3 \rho\|_{L_{\gamma}^{2}} \| \nabla^2\operatorname{div} u\|_{L_{\gamma}^{2}} \\ \lesssim & t^{-\frac{5}{4}}\| \nabla^3(u, \rho)\|_{L_{\gamma}^{2}} ^2 +t^{-\frac{11}{2}+2\gamma}. \end{split} \end{equation} | (3.47) |
By applying integration by parts, we arrive at
\begin{equation} \begin{split} |N_{1, 4}|+|N_{1, 5}| \lesssim & \frac{\beta}{2} \frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^3}|x|^{2\gamma}\frac{1}{ r_1+\beta \rho } \rho \nabla^3\rho \nabla^3 \rho \mathrm{\; d} x - \frac{\beta}{2} \int_{\mathbb{R}^3} (|x|^{2\gamma} \frac{\rho}{ r_1+\beta \rho })_t | \nabla^3 \rho |^2\mathrm{\; d} x \\& -\frac{\beta^2}{2}\int_{\mathbb{R}^3}\nabla(|x|^{2\gamma}\frac{\rho u }{ r_1+\beta \rho}) | \nabla^3 \rho |^2\mathrm{\; d} x \\ \lesssim & \frac{\beta}{2} \frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^3} |x|^{2\gamma} \frac{\rho}{ r_1+\beta \rho } |\nabla^3\rho|^2 \mathrm{\; d} x + \frac{\beta}{2} \left| \int_{\mathbb{R}^3} |x|^{2\gamma}( \frac{\rho}{ \beta \rho })_t |\nabla^3 \rho |^2\mathrm{\; d} x \right| \\& + \frac{\beta}{2} \left| \int_{\mathbb{R}^3} \nabla(|x|^{2\gamma}) \frac{\rho}{ r_1+\beta\rho } |\nabla^3 \rho |^2\mathrm{\; d} x \right| + \left|\frac{\beta^2}{2}\int_{\mathbb{R}^3} \nabla(|x|^{2\gamma} \frac{\rho u}{ r_1+\beta \rho } ) | \nabla^3 \rho |^2\mathrm{\; d} x \right|\\ \lesssim & \frac{\beta}{2} \frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^3} |x|^{2\gamma} \frac{\rho}{ r_1+\beta \rho } |\nabla^3\rho|^2 \mathrm{\; d} x + \varepsilon \| \nabla^3 \rho\|_{L_{\gamma}^{2}}^2 + \| \nabla^3 \rho\|_{L_{\gamma-1}^{2}}^2. \end{split} \end{equation} | (3.48) |
Similar to (3.44), we have
\begin{equation} \begin{split} & |N_{1, 6}|+|N_{1, 7}| +|N_{1, 8}| \\ \lesssim & 3\beta^2 \| \frac{1}{ r_1+\beta \rho } \|_{L^{\infty}} \|\rho\|_{L^{\infty}} \| \nabla u\|_{L^{\infty}} \|\nabla^3\rho\|_{L_{\gamma}^{2}}^2 \\& + 3\beta^2 \| \frac{1}{ r_1+\beta \rho } \|_{L^{3}} \|\rho\|_{L^{\infty}} \| \nabla^2 u\|_{L^{\infty}} \|\nabla^2\rho\|_{L_{\gamma}^{6}} \|\nabla^3\rho\|_{L_{\gamma}^{2}} \\& + \beta^2 \| \frac{1}{ r_1+\beta \rho } \|_{L^{\infty}} \|\rho\|_{L^{\infty}} \| \nabla \rho\|_{L^{\infty}} \|\nabla^3\rho\|_{L_{\gamma}^{2}} \|\nabla^3 u\|_{L_{\gamma}^{2}} \\ \lesssim & t^{-\frac{5}{4}}\| \nabla^3(u, \rho)\|_{L_{\gamma}^{2}} ^2 +t^{-\frac{11}{2}+2\gamma}. \end{split} \end{equation} | (3.49) |
Substituting (3.43)–(3.49) into (3.42) gives
\begin{equation} \begin{split} |J_{4, 9}| & \lesssim \frac{\beta}{2} \frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^3}|x|^{2\gamma} \frac{\rho}{ r_1+\beta \rho } |\nabla^3\rho|^2 \mathrm{\; d} x + t^{-\frac{5}{4}}\| \nabla^3(u, \rho)\|_{L_{\gamma}^{2}} ^2 + \| \nabla^3 \rho\|_{L_{\gamma-1}^{2}}^2 +t^{-\frac{11}{2}+2\gamma}. \end{split} \end{equation} | (3.50) |
By applying integration by parts, Lemma 2.1, Cauchy's inequality, Minkowski's inequality, and Lemma 2.3, one has
\begin{equation} \begin{split} |J_{4, 10}| = & \left|\beta \int_{\mathbb{R}^3}|x|^{2\gamma} ( \nabla^3 u)^2 \nabla u \mathrm{\; d} x \right| + \left|\beta \int_{\mathbb{R}^3}|x|^{2\gamma} u \nabla^3 u \nabla^4 u \mathrm{\; d} x \right| \\& + \left| \int_{\mathbb{R}^3}|x|^{2\gamma} \nabla^3 u H(\rho) \nabla^4 \rho \mathrm{\; d} x \right| + \left| \int_{\mathbb{R}^3}|x|^{2\gamma} \nabla^3 u \nabla^3 H(\rho) \nabla \rho \mathrm{\; d} x \right| \\& +\left|\int_{\mathbb{R}^3}|x|^{2\gamma} \nabla^3 u \nabla^3 G(\rho) \nabla \eta \mathrm{\; d} x \right| + \left| \int_{\mathbb{R}^3}|x|^{2\gamma} \nabla^3 u \nabla^3 G(\rho)\operatorname{div} \tau \mathrm{\; d} x \right| \\& +\left|\int_{\mathbb{R}^3}|x|^{2\gamma} \nabla^3 u G(\rho) \nabla^4 \eta \mathrm{\; d} x \right| + \left| \int_{\mathbb{R}^3}|x|^{2\gamma} \nabla^3 u G(\rho)\nabla^3 \operatorname{div} \tau \mathrm{\; d} x \right| \\& + \left| \int_{\mathbb{R}^3}|x|^{2\gamma} \nabla^3 u \nabla^3( \frac{\eta}{\rho+\tilde{\rho}} ) \nabla \eta \mathrm{\; d} x \right| + \left| \int_{\mathbb{R}^3}|x|^{2\gamma} \frac{\eta}{\rho+\tilde{\rho}} \nabla^3 u \nabla^ 4 \eta \mathrm{\; d} x \right| \\ \triangleq& \sum^{10}_{i = 1}H_{4, i}, \end{split} \end{equation} | (3.51) |
where
\begin{equation} \begin{split} |H_{4, 1}|+|H_{4, 2}| \lesssim & \|\nabla u\|_{L^{\infty}} \| \nabla^3 u\|_{L_{\gamma}^{2}}^2 +\| u\|_{L^{\infty}} \| \nabla^3 u\|_{L_{\gamma}^{2}} \| \nabla^3 u\|_{L_{\gamma-1}^{2}} \\ \lesssim & t^{-\frac{5}{4}} \|\nabla^3 u\|_{L_{\gamma}^{2}}^2 + \|\nabla^3 u\|_{L_{\gamma-1}^{2}}^2. \end{split} \end{equation} | (3.52) |
Similar to the delicate weighted energy estimates for the trouble term |J_{4, 9}| , we get
\begin{equation} \begin{split} |H_{4, 3}| & \lesssim \frac{\beta}{2} \frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^3}|x|^{2\gamma} \frac{H(\rho)}{ r_1+\beta \rho } |\nabla^3\rho|^2 \mathrm{\; d} x + t^{-\frac{5}{4}}\| \nabla^3(u, \rho)\|_{L_{\gamma}^{2}} ^2 + \| \nabla^3 \rho\|_{L_{\gamma-1}^{2}}^2 +t^{-\frac{11}{2}+2\gamma}. \end{split} \end{equation} | (3.53) |
By applying integration by parts, Lemma 2.3, and Cauchy's inequality, we have
\begin{equation} \begin{split} & |H_{4, 4}|+|H_{4, 5}|+ |H_{4, 6}| \\ \lesssim & \| \nabla^3 H(\rho)\|_{L^{3}} \| \nabla^3 u \|_{L_{\gamma}^{2}} \| \nabla \rho \|_{L_{\gamma}^{6}} + \| \nabla^3 G(\rho)\|_{L^{3}} \| \nabla^3 u \|_{L_{\gamma}^{2}} \| \nabla \eta \|_{L_{\gamma}^{6}} \\& + \| \nabla^3 G(\rho)\|_{L^{3}} \| \nabla^3 u \|_{L_{\gamma}^{2}} \| \operatorname{div} \tau \|_{L_{\gamma}^{6}}\\ \lesssim & \| \nabla^3 H(\rho)\|_{H^{1}} \| \nabla^3 u \|_{L_{\gamma}^{2}}( \| \nabla^2 \rho \|_{L_{\gamma}^{2}}+\| \nabla \rho \|_{L_{\gamma-1}^{2}}) + \| \nabla^3 G(\rho)\|_{H^{1}} \| \nabla^3 u \|_{L_{\gamma}^{2}} \|\nabla^2 \eta \|_{L_{\gamma}^{2}} \\& + \| \nabla^3 G(\rho)\|_{H^{1}} \| \nabla^3 u \|_{L_{\gamma}^{2}} \|\nabla \eta \|_{L_{\gamma-1}^{2}} + \|\nabla^3 G(\rho)\|_{H^{1}} \| \nabla^3 u \|_{L_{\gamma}^{2}} (\| \nabla \operatorname{div} \tau \|_{L_{\gamma}^{2}}+ \| \operatorname{div} \tau \|_{L_{\gamma-1}^{2}})\\ \lesssim & t^{-\frac{5}{4}} \| \nabla^3 u \|_{L_{\gamma}^{2}}^2 + t^{-\frac{11}{2}+2\gamma} + t^{-\frac{13}{2}+2\gamma}, \end{split} \end{equation} | (3.54) |
and
\begin{equation} \begin{split} & |H_{3, 7}|+|H_{3, 8}|+|H_{3, 9}|+|H_{3, 10}|\\ \lesssim & \| G(\rho)\|_{L^{\infty}} \| \nabla^3 u \|_{L_{\gamma}^{2}}\| \nabla^4 \eta \|_{L_{\gamma}^{2}} + \| G(\rho)\|_{L^{\infty}} \| \nabla^3 u \|_{L_{\gamma}^{2}}\| \nabla^3 \operatorname{div} \tau \|_{L_{\gamma}^{2}} \\& + \|\nabla^3 (\frac{\eta}{\rho+\tilde{\rho}})\|_{L^{3}} \| \nabla^3 u \|_{L_{\gamma}^{2}}\| \nabla \eta\|_{L_{\gamma}^{6}} +\|\frac{\eta}{\rho+\tilde{\rho}}\|_{L^{\infty}} \| \nabla^3 u \|_{L_{\gamma}^{2}}\| \nabla^4 \eta\|_{L_{\gamma}^{2}} \\ \lesssim & t^{-\frac{5}{4}} \| \nabla^3 u \|_{L_{\gamma}^{2}}^2 + t^{-\frac{5}{4}}\| \nabla^4 (\eta, \tau) \|_{L_{\gamma}^{2}}^2 + t^{-\frac{11}{2}+2\gamma} + t^{-\frac{13}{2}+2\gamma}. \end{split} \end{equation} | (3.55) |
Therefore
\begin{equation} \begin{split} |J_{4, 10}| \lesssim & \frac{\beta}{2} \frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^3}|x|^{2\gamma} \frac{H(\rho)}{ r_1+\beta \rho } |\nabla^3\rho|^2 \mathrm{\; d} x + t^{-\frac{5}{4}} \| \nabla^3 (\rho, u) \|_{L_{\gamma}^{2}}^2 \\& + t^{-\frac{5}{4}}\| \nabla^4( \eta, \tau)\|_{L_{\gamma}^{2}}^2 + \| \nabla^3( u, \rho)\|_{L_{\gamma-1}^{2}}^2 + t^{-\frac{11}{2}+2\gamma}. \end{split} \end{equation} | (3.56) |
Similarly, one has
\begin{equation} \begin{split} |J_{4, 11}| = &\left|\frac{r_2}{\tilde{\eta}} \int_{\mathbb{R}^3}|x|^{2\gamma} \nabla^3 \eta \nabla^ 3( u \nabla \eta )\mathrm{\; d} x \right| + \left|\frac{r_2}{\tilde{\eta}} \int_{\mathbb{R}^3} |x|^{2\gamma} \nabla^3 \eta \nabla^3 ( \eta \nabla u)\mathrm{\; d} x \right| \\ \lesssim & \|\nabla \eta\|_{L^{\infty}} \|\nabla^3 u \|_{L_{\gamma}^{2}}\|\nabla^3 \eta\|_{L_{\gamma}^{2}} + \|u\|_{L^{\infty}} \|\nabla^3 \eta \|_{L_{\gamma}^{2}}\|\nabla^4 \eta\|_{L_{\gamma}^{2}} + \|\nabla u\|_{L^{\infty}} \|\nabla^3 \eta\|_{L_{\gamma}^{2}}^2 \\& + \| \eta\|_{L^{\infty}} \|\nabla^3 u\|_{L_{\gamma}^{2}} \|\nabla^4 \eta\|_{L_{\gamma}^{2}} + \| \eta\|_{L^{\infty}} \|\nabla^3 \eta\|_{L_{\gamma}^{2}} \|\nabla^3 u\|_{L_{\gamma-1}^{2}}\\ \lesssim & \|\nabla^2 \eta\|_{H^1} \|\nabla^3 u \|_{L_{\gamma}^{2}}\|\nabla^3 \eta\|_{L_{\gamma}^{2}} + \|\nabla u\|_{H^1} \|\nabla^3 \eta \|_{L_{\gamma}^{2}}\|\nabla^4 \eta\|_{L_{\gamma}^{2}} + \|\nabla^2 u\|_{H^1} \|\nabla^3 \eta\|_{L_{\gamma}^{2}}^2 \\& + \|\nabla \eta\|_{H^1} \|\nabla^3 u\|_{L_{\gamma}^{2}} \|\nabla^4 \eta\|_{L_{\gamma}^{2}} + \|\nabla \eta\|_{H^1} \|\nabla^3 \eta\|_{L_{\gamma}^{2}} \|\nabla^3 u\|_{L_{\gamma-1}^{2}}\\ \lesssim & t^{-\frac{5}{4}} \|\nabla^3 (u, \eta)\|_{L_{\gamma}^{2}}^2 + t^{-\frac{5}{4}} \|\nabla^4\eta\|_{L_{\gamma}^{2}}^2 +\|\nabla^3u\|_{L_{\gamma-1}^{2}}^2, \end{split} \end{equation} | (3.57) |
and
\begin{equation} \begin{split} |J_{4, 12}| \lesssim & \| \tau \|_{L^{\infty}} \| \nabla^3 \tau \|_{L_{\gamma}^{2}}\| \nabla^3 u\|_{L_{\gamma-1}^{2}} + \| \tau \|_{L^{\infty}} \| \nabla^4 \tau \|_{L_{\gamma}^{2}}\| \nabla^3 u\|_{L_{\gamma}^{2}} + \| \nabla u \|_{L^{\infty}} \| \nabla^3 \tau \|_{L_{\gamma}^{2}}^2 \\& + \|\nabla \tau \|_{L^{\infty}} \| \nabla^3 \tau \|_{L_{\gamma}^{2}}\| \nabla^3 u\|_{L_{\gamma}^{2}} + \| u\|_{L^{\infty}} \|\nabla^3 \tau \|_{L_{\gamma}^{2}}\|\nabla^4 \tau \|_{L_{\gamma}^{2}} \\ & + \| \nabla u \|_{L^{\infty}} \| \nabla^3 \tau \|_{L_{\gamma}^{2}}\| \nabla^3 \eta \|_{L_{\gamma}^{2}} + \| \eta \|_{L^{\infty}} \| \nabla^3 \eta \|_{L_{\gamma}^{2}}\| \nabla^3 u\|_{L_{\gamma-1}^{2}} \\& + \|\nabla \tau \|_{L^{\infty}} \| \nabla^3 \tau \|_{L_{\gamma}^{2}}\| \nabla^3 u\|_{L_{\gamma}^{2}} + \| \eta \|_{L^{\infty}} \| \nabla^4 \tau \|_{L_{\gamma}^{2}}\| \nabla^3 u\|_{L_{\gamma}^{2}}\\ \lesssim & t^{-\frac{5}{4}} \|\nabla^3(u, \eta, \tau)\|_{L_{\gamma}^{2}}^2 +t^{-\frac{5}{4}} \|\nabla^4 \tau\|_{L_{\gamma}^{2}}^2 +\|\nabla^3u\|_{L_{\gamma-1}^{2}}^2. \end{split} \end{equation} | (3.58) |
Substituting (3.40) to (3.58) into (3.39), we conclude that there exists a sufficiently large T_1 and a sufficiently small \varepsilon , such that
\begin{equation} \begin{split} &\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t}(\|\nabla^3 \rho\|_{L_{\gamma}^2}^2+\|\nabla ^3u\|_{L_{\gamma}^2}^2 +\frac{r_2}{\beta \tilde{\eta}}\|\nabla^3 \eta\|_{L_{\gamma}^2}^2 +\frac{r_3}{2\beta k \tilde{\eta}}\|\nabla^3 \tau\|_{L_{\gamma}^2}^2) \\&- \frac{\beta}{2} \frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^3}|x|^{2\gamma} \frac{\rho+H(\rho)}{ r_1+\beta \rho } |\nabla^3\rho|^2 \mathrm{\; d} x +\frac{r_2\alpha}{\beta \tilde{\eta}}\|\nabla^4 \eta\|_{L_{\gamma}^2}^2 +\frac{r_3}{2\beta k \tilde{\eta}}\frac{A_0}{2\lambda}\|\nabla ^3\tau\|_{L_{\gamma}^2}^2 +\frac{r_3\alpha}{2\beta k \tilde{\eta}} \|\nabla^4 \tau\|_{L_{\gamma}^2}^2 \\ \lesssim & t^{-\frac{5}{4}} \|\nabla^3 (\rho, u, \eta, \tau)\|_{L_{\gamma}^{2}}^2 +\|\nabla^3(\rho, \eta)\|_{L_{\gamma}^{2}}\|\nabla^3 u\|_{L_{\gamma-1}^{2}} +\|\nabla^3 (u, \eta, \tau)\|_{L_{\gamma-1}^{2}}^2+ t^{-\frac{11}{2}+2\gamma}, \end{split} \end{equation} | (3.59) |
for all t > T_{1} . We define
K(t) = \|\nabla^3 \rho\|_{L_{\gamma}^2}^2+\|\nabla ^3u\|_{L_{\gamma}^2}^2 +\frac{r_2}{\beta \tilde{\eta}}\|\nabla^3 \eta\|_{L_{\gamma}^2}^2 +\frac{r_3}{2\beta k \tilde{\eta}}\|\nabla^3 \tau\|_{L_{\gamma}^2}^2 - \beta\int_{\mathbb{R}^3}|x|^{2\gamma} \frac{\rho+H(\rho)}{ r_1+\beta \rho } |\nabla^3\rho|^2 \mathrm{d}x. |
Then, it is clear that
\begin{equation} \begin{split} & \underline{C} (\|\nabla^3 \rho\|_{L_{\gamma}^2}^2+\|\nabla ^3u\|_{L_{\gamma}^2}^2 +\frac{r_2}{\beta \tilde{\eta}}\|\nabla^3 \eta\|_{L_{\gamma}^2}^2 +\frac{r_3}{2\beta k \tilde{\eta}}\|\nabla^3 \tau\|_{L_{\gamma}^2}^2) \\ \leq & K(t) \leq \overline{C}(\|\nabla^3 \rho\|_{L_{\gamma}^2}^2+\|\nabla ^3u\|_{L_{\gamma}^2}^2 +\frac{r_2}{\beta \tilde{\eta}}\|\nabla^3 \eta\|_{L_{\gamma}^2}^2 +\frac{r_3}{2\beta k \tilde{\eta}}\|\nabla^3 \tau\|_{L_{\gamma}^2}^2), \end{split} \end{equation} | (3.60) |
where \underline{C} and \overline{C} are two positive constants. Therefore, one has the following fact:
\begin{equation} \begin{split} &\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t}(\|\nabla^3 \rho\|_{L_{\gamma}^2}^2+\|\nabla ^3u\|_{L_{\gamma}^2}^2 +\frac{r_2}{\beta \tilde{\eta}}\|\nabla^3 \eta\|_{L_{\gamma}^2}^2 +\frac{r_3}{2\beta k \tilde{\eta}}\|\nabla^3 \tau\|_{L_{\gamma}^2}^2) \\& +\frac{r_2\alpha}{\beta \tilde{\eta}}\|\nabla^4 \eta\|_{L_{\gamma}^2}^2 +\frac{r_3}{2\beta k \tilde{\eta}}\frac{A_0}{2\lambda}\|\nabla ^3\tau\|_{L_{\gamma}^2}^2 +\frac{r_3\alpha}{2\beta k \tilde{\eta}} \|\nabla^4 \tau\|_{L_{\gamma}^2}^2 \\ \lesssim & t^{-\frac{5}{4}} \|\nabla^3 (\rho, u, \eta, \tau)\|_{L_{\gamma}^{2}}^2 +\|\nabla^3(\rho, \eta)\|_{L_{\gamma}^{2}}\|\nabla^3 u\|_{L_{\gamma-1}^{2}} +\|\nabla^3 (u, \eta, \tau)\|_{L_{\gamma-1}^{2}}^2+ t^{-\frac{11}{2}+2\gamma}. \end{split} \end{equation} | (3.61) |
Using the interpolation inequality with weights \left\| \nabla^3 f\right\|_{L_{\gamma-1}^{2}} \lesssim \left\|\nabla^3 f\right\|_{L_{\gamma}^{2}}^{\frac{\gamma-1}{\gamma}} \left\|\nabla^3 f\right\|_{L^{2}}^{\frac{1}{\gamma}} , we can obtain
\begin{equation} \begin{split} &\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t}(\|\nabla^3 \rho\|_{L_{\gamma}^2}^2+\|\nabla ^3u\|_{L_{\gamma}^2}^2 +\frac{r_2}{\beta \tilde{\eta}}\|\nabla^3 \eta\|_{L_{\gamma}^2}^2 +\frac{r_3}{2\beta k \tilde{\eta}}\|\nabla^3 \tau\|_{L_{\gamma}^2}^2) \\& +\frac{r_2\alpha}{\beta \tilde{\eta}}\|\nabla^4 \eta\|_{L_{\gamma}^2}^2 +\frac{r_3}{2\beta k \tilde{\eta}}\frac{A_0}{2\lambda}\|\nabla ^3\tau\|_{L_{\gamma}^2}^2 +\frac{r_3\alpha}{2\beta k \tilde{\eta}} \|\nabla^4 \tau\|_{L_{\gamma}^2}^2 \\ \lesssim & t^{-\frac{5}{4}} \|\nabla^3(\rho, u, \eta, \tau)\|_{L_{\gamma}^{2}}^2 +\|\nabla^3 (\rho, \eta)\|_{L_{\gamma}^{2}} \|\nabla^3 u\|_{L_{\gamma}^{2}}^{\frac{\gamma-1}{\gamma}} \| \nabla^3 u\|_{L^{2}}^{\frac{1}{\gamma}} \\& + \|\nabla^3 (u, \eta, \tau)\|_{L_{\gamma}^{2}}^{\frac{2\gamma-2}{\gamma}} \|\nabla ^3(u, \eta, \tau)\|_{L^{2}}^{\frac{2}{\gamma}} + t^{-\frac{11}{2}+2\gamma}\\ \lesssim & t^{-\frac{5}{4}} \|\nabla^3(\rho, u, \eta, \tau)\|_{L_{\gamma}^{2}}^2 +t^{-\frac{9}{4\gamma}}\|\nabla^3(\rho, \eta)\|_{L_{\gamma}^{2}}^{\frac{2\gamma-1}{\gamma}} +t^{-\frac{9}{2\gamma}}\|\nabla^3(u, \eta, \tau)\|_{L_{\gamma}^{2}}^{\frac{2\gamma-2}{\gamma}} + t^{-\frac{11}{2}+2\gamma}. \end{split} \end{equation} | (3.62) |
Denoting \mathrm{E}(t): = \left\|\nabla^3(\rho, u, \eta, \tau)\right\|_{L_{\gamma}^{2}}^{2} , we get
\begin{equation*} \frac{\mathrm{d}}{\mathrm{d} t} \mathrm{E}(t) \leq C_{0} t^{-\frac{5}{4}} \mathrm{E}(t) +C_{1}t^{-\frac{9}{4\gamma}}\mathrm{E}(t)^{\frac{2\gamma-1}{2\gamma}} +C_{2} t^{-\frac{9}{2 \gamma}} \mathrm{E}(t)^{\frac{\gamma-1}{\gamma}} + t^{-\frac{11}{2}+2\gamma}, \end{equation*} |
where C_0 , C_1 , C_2 are positive constants independent of t . If \gamma > \frac{7}{2} , then we can apply Lemma 2.5 with \alpha_{0} = \frac{5}{4} > 1 , \alpha_{1} = \frac{9}{4\gamma} < 1 , \beta_{1} = \frac{2\gamma-1}{2\gamma} < 1 , \alpha_{2} = \frac{9}{2\gamma} < 1 , \beta_{2} = \frac{\gamma-1}{\gamma} < 1 , \gamma_{1} = \frac{1-\alpha_{1}}{1-\beta_{1}} = -\frac{9}{2}+2\gamma > 0 , \gamma_{2} = \frac{1-\alpha_{2}}{1-\beta_{2}} = -\frac{9}{2}+\gamma > 0 , \gamma_{1} > \gamma_{2} . Thus, for all t > T , one has
\begin{equation} \mathrm{E}(t) \leq C t^{-\frac{9}{2}+ 2\gamma}, \end{equation} | (3.63) |
we get the fact
\begin{equation*} \| \nabla^3(\rho, u, \eta, \tau)(t)\| _{L_{\gamma_{0}}^{2}} \leq C\|\nabla^3 (\rho, u, \eta, \tau)(t)\|_{L^{2}}^{1-\frac{\gamma_{0}}{\gamma}} \|\nabla^3 (\rho, u, \eta, \tau)(t)\|_{L_{\gamma}^{2}}^{\frac{\gamma_{0}}{\gamma}} \leq C t^{-\frac{9}{4}+ \gamma_{0}}, \end{equation*} |
for all t > T , \gamma_{0} \in[0, \gamma] , and [0, \frac{9}{2}] \subset [0, \gamma](\gamma > \frac{9}{2}) . Thus, the proof of Lemma 3.4 has been completed.
Lemma 3.4. Under the assumption of Theorem 1.3, there exists a sufficiently large T such that the solution (\rho, u, \eta, \tau) of the system (1.4) with the initial data (1.5) has the following estimate:
\begin{equation} \left\|\nabla^m\tau(t)\right\|_{L^{2}_{\gamma}} \leq Ct^{-\frac{5}{4}-\frac{m}{2}+\gamma}, \end{equation} | (3.64) |
for all t > T , \gamma \geq 0 , and 0\leq m\leq 2 , where C is a positive constant independent of t .
Proof. Multiplying |x|^{2\gamma}\nabla^m\tau by \nabla^m(1.4)_{4} , and then adding them up, and integrating on \mathbb{R}^{3} , we have
\begin{equation} \begin{split} &\int_{\mathbb{R}^3}|x|^{2\gamma} \nabla^m\tau \nabla^m\tau_t \mathrm{\; d} x +\frac{A_0}{2\lambda}\int_{\mathbb{R}^3}|x|^{2\gamma}(\nabla^m\tau)^2 \mathrm{\; d} x \\& -\alpha \int_{\mathbb{R}^3}|x|^{2\gamma}\nabla^m\tau \nabla^m\triangle \tau \mathrm{\; d} x - \beta k\tilde{\eta} \int_{\mathbb{R}^3}|x|^{2\gamma}\nabla^m\tau\nabla^m(\nabla u +\nabla^T u) \mathrm{\; d} x\\ = &\int_{\mathbb{R}^3}|x|^{2\gamma} \nabla^m\tau \nabla^mS_4 \mathrm{d} x . \end{split} \end{equation} | (3.65) |
Then, using integration by parts to simplify, one has
\begin{equation} \begin{split} &\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t}\|\nabla^m\tau\|_{L_{\gamma}^2}^2 +\frac{A_0}{2\lambda}\|\nabla^m\tau\|_{L_{\gamma}^2}^2 +\alpha\|\nabla^{m+1} \tau\|_{L_{\gamma}^2}^2 \\ = & -\alpha \int_{\mathbb{R}^3}\nabla (|x|^{2\gamma})\nabla^{m+1}\tau \nabla^m \tau \mathrm{\; d} x + \beta k\tilde{\eta} \int_{\mathbb{R}^3}|x|^{2\gamma}\nabla^m\tau\nabla^m(\nabla u +\nabla^T u) \mathrm{\; d} x \\& +\int_{\mathbb{R}^3}|x|^{2\gamma} \nabla^m\tau \nabla^mS_4 \mathrm{d} x \\ \triangleq& \sum^{3}_{i = 1}J_{5, i}. \end{split} \end{equation} | (3.66) |
Initially, using Lemma 2.3 and Cauchy's inequality, we can obtain
\begin{equation} \begin{split} \left|J_{5, 1} \right|& \lesssim \alpha \left\|\nabla^{m+1}\tau \right\|_{L_{\gamma}^2}\|\nabla^m \tau\|_{L_{\gamma-1}^2} \\ & \lesssim \varepsilon \alpha \left\|\nabla^{m+1}\tau \right\|_{L_{\gamma}^2}^2 + C \alpha(\varepsilon)\left\|\nabla^{m}\tau \right\|_{L_{\gamma-1}^2}^2 . \end{split} \end{equation} | (3.67) |
Applying Lemma 2.3, Lemmas 3.2–3.4 and Hölder's inequality, one has
\begin{equation} \begin{split} |J_{5, 2}| \lesssim & \left\|\nabla^{m+1} u \right\|_{L_{\gamma}^2}\|\nabla^m \tau\|_{L_{\gamma}^2} \\ \lesssim & t^{-\frac{5}{4}-\frac{m}{2}+\gamma}\|\nabla^m \tau\|_{L_{\gamma}^2}\\ \lesssim & t^{-\frac{5}{2}-m+2\gamma}+\frac{1}{2}\|\nabla^m \tau\|_{L_{\gamma}^2}^2. \end{split} \end{equation} | (3.68) |
By using Lemma 2.1, Hölder's inequality, Cauchy's inequality, we can get the following weighted estimate
\begin{align} |J_{5, 3}| \lesssim & \left| \int_{\mathbb{R}^3}|x|^{2\gamma}\nabla^m \tau \nabla^m (\operatorname{div} (u \tau)) \mathrm{\; d} x \right| + \left| \int_{\mathbb{R}^3}|x|^{2\gamma}\nabla^m \tau \nabla^m (\nabla u \tau + \tau \nabla^T u ) \mathrm{\; d} x \right| \\ & + \left| \int_{\mathbb{R}^3}|x|^{2\gamma}\nabla^m \tau \nabla^m(\eta (\nabla u + \nabla^T u ) ) \mathrm{\; d} x \right| \\ \lesssim & \left| \sum\limits_{j = 0}^{m} C_{m}^{j} \int_{\mathbb{R}^3}|x|^{2\gamma}\nabla^m \tau \nabla^j u \nabla^{m-j+1}\tau \mathrm{\; d} x \right| + \left| \sum\limits_{j = 0}^{m} C_{m}^{j} \int_{\mathbb{R}^3}|x|^{2\gamma}\nabla^m \tau \nabla^j \tau \nabla^{m-j+1}u \mathrm{\; d} x \right| \\& +\left| \sum\limits_{j = 0}^{m} C_{m}^{j} \int_{\mathbb{R}^3}|x|^{2\gamma}\nabla^m \tau \nabla^j \eta \nabla^{m-j+1}u \mathrm{\; d} x \right|\\ \lesssim & \sum\limits_{j = 0}^{m} C_{m}^{j} \|\nabla^j u\|_{L^{\infty}} \| \nabla^{m-j+1}\tau \|_{L_{\gamma}^{2}} \|\nabla^m \tau\|_{L_{\gamma}^{2}} +\sum\limits_{j = 0}^{m} C_{m}^{j} \|\nabla^j \tau\|_{L^{\infty}} \| \nabla^{m-j+1} u \|_{L_{\gamma}^{2}} \|\nabla^m \tau\|_{L_{\gamma}^{2}} \\& + \sum\limits_{j = 0}^{m} C_{m}^{j} \|\nabla^j \eta \|_{L^{\infty}} \| \nabla^{m-j+1} u \|_{L_{\gamma}^{2}} \|\nabla^m \tau\|_{L_{\gamma}^{2}} \\ \lesssim & \sum\limits_{j = 0}^{m} C_{m}^{j} \|\nabla^{j+1} u\|_{H^1} \| \nabla^{m-j+1}\tau \|_{L_{\gamma}^{2}} \|\nabla^m \tau\|_{L_{\gamma}^{2}} +\sum\limits_{j = 0}^{m} C_{m}^{j} \|\nabla^{j+1} \tau\|_{H^1} \| \nabla^{m-j+1} u \|_{L_{\gamma}^{2}} \|\nabla^m \tau\|_{L_{\gamma}^{2}} \\& + \sum\limits_{j = 0}^{m} C_{m}^{j} \|\nabla^{j+1} \eta \|_{H^1} \| \nabla^{m-j+1} u \|_{L_{\gamma}^{2}} \|\nabla^m \tau\|_{L_{\gamma}^{2}} \\ \lesssim & \sum\limits_{j = 0}^{m} t^{-\frac{5}{4}-\frac{j}{2}} \times t^{-\frac{5}{4}-\frac{m-j}{2}+\gamma} \|\nabla^m \tau\|_{L_{\gamma}^{2}}\\ \lesssim & t^{-\frac{5}{2}-m+2\gamma}+t^{-\frac{5}{4}}\|\nabla^m \tau\|_{L_{\gamma}^{2}}^2. \end{align} | (3.69) |
Substituting (3.67) to (3.69) into (3.66), we conclude that there exists a sufficiently large T_1 and a sufficiently small \varepsilon , such that
\begin{equation} \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t}\|\nabla^m\tau\|_{L_{\gamma}^2}^2 +C'\|\nabla^m\tau\|_{L_{\gamma}^2}^2 +C'' \|\nabla^{m+1} \tau\|_{L_{\gamma}^2}^2 \lesssim t^{-\frac{5}{2}-m +2\gamma}. \end{equation} | (3.70) |
for all t > T_{1} , where C' and C'' are positive constant independent of t . By the Gronwall's argument, one has
\begin{equation} \|\nabla^m\tau(t)\|_{L_{\gamma}^2} \lesssim t^{-\frac{5}{4}-\frac{m}{2} +\gamma}, \end{equation} | (3.71) |
for all 0\leq m \leq 2 and 0 \leq \gamma . Thus, the proof of Theorem 1.3 has been completed.
In this paper, we studied the space-time decay rates of solutions to the Cauchy problem of the compressible Oldroyd-B system with diffusive properties and without viscous dissipation in three dimensions. More precisely, we demonstrated that the weighted rate of k(0\leq k\leq3) -th order spatial derivative of the global solution (\rho, u, \eta, \tau) is t^{-\frac{3}{4}+\frac{k}{2}+\gamma} in the weighted Lebesgue space L^2_{\gamma} . And we further explained the reason why the decay estimates cannot achieve better results. Moreover, we also establish that the space-time decay rate of m\left (\in\left [0, 2\right] \right) -th order spatial derivative of the extra stress tensor of the field in L^2_{\gamma } is (1+t)^{-\frac{5}{4}-\frac{m}{2}+\gamma} , which is faster than that of the velocity.
All authors have contributed significantly to the development of this article. Yangyang Chen: Conceptualization, Methodology, Validation, Writing-original draft and editing; Yixuan Song: Formal analysis, Validation, Writing-original draft and editing. All authors have read and approved the final version of the manuscript for publication.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work is partially supported by Innovation Project of Guangxi Graduate Education #YCSW2024151, Innovation Project of Guangxi Graduate Education #JGY2023061, and key Laboratory of Mathematical and Statistical Model (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region.
The authors declare that they have no conflict of interest.
[1] |
C. Ai, Z. Tan, J. Zhou, Global existence and decay estimate of solution to rate type viscoelastic fluids, J. Differ. Equations, 377 (2023), 188–220. https://doi.org/10.1016/j.jde.2023.08.039 doi: 10.1016/j.jde.2023.08.039
![]() |
[2] |
M. Amara, D. Capatina-Papaghiuc, D. Trujillo, Stabilized finite element method for Navier-Stokes equations with physical boundary conditions, Math. Comp., 76 (2007), 1195–1217. https://doi.org/10.1090/S0025-5718-07-01929-1 doi: 10.1090/S0025-5718-07-01929-1
![]() |
[3] |
J. W. Barrett, Y. Lu, E. Süli, Existence of large-data finite-energy global weak solutions to a compressible Oldroyd-B model, Commun. Math. Sci., 15 (2017), 1265–1323. https://doi.org/10.4310/CMS.2017.v15.n5.a5 doi: 10.4310/CMS.2017.v15.n5.a5
![]() |
[4] |
M. Bathory, M. Bulíček, J. Málek, Large data existence theory for three-dimensional unsteady flows of rate-type viscoelastic fluids with stress diffusion, Adv. Nonlinear Anal., 10 (2021), 501–521. https://doi.org/10.1515/anona-2020-0144 doi: 10.1515/anona-2020-0144
![]() |
[5] |
Q. Chen, Z. Tan, Time decay of solutions to the compressible Euler equations with damping, Kinet. Relat. Models, 7 (2014), 605–619. https://doi.org/10.3934/krm.2014.7.605 doi: 10.3934/krm.2014.7.605
![]() |
[6] |
Y. Chen, Z. Luo, Y. Zhang, Space-time decay rates for the 3D full compressible MHD equations, Discrete Cont. Dyn.-B, 29 (2024), 245–281. https://doi.org/10.3934/dcdsb.2023095 doi: 10.3934/dcdsb.2023095
![]() |
[7] |
L. Chupin, S. Martin, Viscoelastic flows in a rough channel: A multiscale analysis, Ann. I. H. Poincaré C Anal. Non Linéaire, 34 (2017), 483–508. https://doi.org/10.1016/j.anihpc.2016.01.002 doi: 10.1016/j.anihpc.2016.01.002
![]() |
[8] |
P. Constantin, M. Kliegl, Note on global regularity for two-dimensional Oldroyd-B fluids with diffusive stress, Arch. Ration. Mech. An., 206 (2012), 725–740. https://doi.org/10.1007/s00205-012-0537-0 doi: 10.1007/s00205-012-0537-0
![]() |
[9] |
T. M. Elgindi, F. Rousset, Global regularity for some Oldroyd-B type models, Commun. Pure Appl. Math., 68 (2015), 2005–2021. https://doi.org/10.1002/cpa.21563 doi: 10.1002/cpa.21563
![]() |
[10] |
D. Fang, M. Hieber, R. Zi, Global existence results for Oldroyd-B fluids in exterior domains: The case of non-small coupling parameters, Math. Ann., 357 (2013), 687–709. https://doi.org/10.1007/s00208-013-0914-5 doi: 10.1007/s00208-013-0914-5
![]() |
[11] |
D. Fang, R. Zi, Strong solutions of 3D compressible Oldroyd-B fluids, Math. Method. Appl. Sci., 36 (2013), 1423–1439. https://doi.org/10.1002/mma.2695 doi: 10.1002/mma.2695
![]() |
[12] |
J. Huang, Y. Wang, H. Wen, R. Zi, Optimal time-decay estimates for an Oldroyd-B model with zero viscosity, J. Differ. Equations, 306 (2022), 456–491. https://doi.org/10.1016/j.jde.2021.10.046 doi: 10.1016/j.jde.2021.10.046
![]() |
[13] |
I. Kukavica, On the weighted decay for solutions of the Navier-Stokes system, Nonlinear Anal., 70 (2009), 2466–2470. https://doi.org/10.1016/j.na.2008.03.031 doi: 10.1016/j.na.2008.03.031
![]() |
[14] |
I. Kukavica, J. J. Torres, Weighted L^p decay for solutions of the Navier-Stokes equations, Commun. Part. Diff. Eq., 32 (2007), 819–831. https://doi.org/10.1080/03605300600781659 doi: 10.1080/03605300600781659
![]() |
[15] |
B. Lai, J. Lin, C. Wang, Forward self-similar solutions to the viscoelastic Navier-Stokes equation with damping, SIAM J. Math. Anal., 49 (2017), 501–529. https://doi.org/10.1137/16M1060340 doi: 10.1137/16M1060340
![]() |
[16] |
S. Liu, Y. Lu, H. Wen, On the Cauchy problem for a compressible Oldroyd-B model without stress diffusion, SIAM J. Math. Anal., 53 (2021), 6216–6242. https://doi.org/10.1137/20M1362243 doi: 10.1137/20M1362243
![]() |
[17] |
S. Liu, W. Wang, H. Wen, The Cauchy problem for an inviscid Oldroyd-B model in three dimensions: Global well posedness and optimal decay rates, P. Roy. Soc. Edinb. A, 153 (2023), 441–490. https://doi.org/10.1017/prm.2022.2 doi: 10.1017/prm.2022.2
![]() |
[18] |
Z. Luo, Q. Ye, Y. Zhang, Space-time decay rate for the two-phase flow model, Z. Angew. Math. Phys., 73 (2022), 1–34. https://doi.org/10.1007/s00033-022-01884-9 doi: 10.1007/s00033-022-01884-9
![]() |
[19] |
Z. Luo, Y. Zhang, Optimal large-time behavior of solutions to the full compressible Navier-Stokes equations with large initial data, J. Evol. Equ., 22 (2022), 1–35. https://doi.org/10.1007/s00028-022-00841-3 doi: 10.1007/s00028-022-00841-3
![]() |
[20] |
A. J. Majda, A. L. Bertozzi, Vorticity and incompressible flow. Cambridge texts in applied mathematics, Appl. Mech. Rev., 55 (2002), B77–B78. https://doi.org/10.1115/1.1483363 doi: 10.1115/1.1483363
![]() |
[21] |
L. Molinet, R. Talhouk, On the global and periodic regular flows of viscoelastic fluids with a differential constitutive law, Nodea-Nonlinear Diff., 11 (2004), 349–359. https://doi.org/10.1007/s00030-004-1073-x doi: 10.1007/s00030-004-1073-x
![]() |
[22] |
V. Sohinger, R. M. Strain, The Boltzmann equation, Besov spaces, and optimal time decay rates in \mathbb{R}_x^n, Adv. Math., 261 (2014), 274–332. https://doi.org/10.1016/j.aim.2014.04.012 doi: 10.1016/j.aim.2014.04.012
![]() |
[23] |
S. Takahashi, A weighted equation approach to decay rate estimates for the Navier-Stokes equations, Nonlinear Anal., 37 (1999), 751–789. https://doi.org/10.1016/S0362-546X(98)00070-4 doi: 10.1016/S0362-546X(98)00070-4
![]() |
[24] |
P. Wang, J. Wu, X. Xu, Y. Zhong, Sharp decay estimates for Oldroyd-B model with only fractional stress tensor diffusion, J. Funct. Anal., 282 (2022), 109332. https://doi.org/10.1016/j.jfa.2021.109332 doi: 10.1016/j.jfa.2021.109332
![]() |
[25] |
W. Wang, H. Wen, The Cauchy problem for an Oldroyd-B model in three dimensions, Math. Mod. Meth. Appl. Sci., 30 (2020), 139–179. https://doi.org/10.1142/s0218202520500049 doi: 10.1142/s0218202520500049
![]() |
[26] |
Y. Wang, Optimal time-decay estimates for a diffusive Oldroyd-B model, Z. Angew. Math. Phys., 74 (2023), 1–13. https://doi.org/10.1007/s00033-022-01902-w doi: 10.1007/s00033-022-01902-w
![]() |
[27] |
S. Weng, Space-time decay estimates for the incompressible viscous resistive MHD and Hall-MHD equations, J. Funct. Anal., 270 (2016), 2168–2187. https://doi.org/10.1016/j.jfa.2016.01.021 doi: 10.1016/j.jfa.2016.01.021
![]() |
[28] |
Q. Ye, Y. Zhang, Space-time decay rate of the compressible adiabatic flow through porous media in \mathbb{R}^3, Bull. Malays. Math. Sci. Soc., 46 (2023), 1–34. https://doi.org/10.1007/s40840-023-01529-8 doi: 10.1007/s40840-023-01529-8
![]() |
[29] |
X. Zhai, Y. Li, Global wellposedness and large time behavior of solutions to the N-dimensional compressible Oldroyd-B model, J. Differ. Equations, 290 (2021), 116–146. https://doi.org/10.1016/j.jde.2021.04.027 doi: 10.1016/j.jde.2021.04.027
![]() |
[30] |
Z. Zhou, C. Zhu, R. Zi, Global well-posedness and decay rates for the three dimensional compressible Oldroyd-B model, J. Differ. Equations, 265 (2018), 1259–1278. https://doi.org/10.1016/j.jde.2018.04.003 doi: 10.1016/j.jde.2018.04.003
![]() |
[31] |
Y. Zhu, Global existence of classical solutions for the 3D generalized compressible Oldroyd-B model, Math. Method. Appl. Sci., 43 (2020), 6517–6528. https://doi.org/10.1002/mma.6393 doi: 10.1002/mma.6393
![]() |
[32] |
R. Zi, Global solution in critical spaces to the compressible Oldroyd-B model with non-small coupling parameter, Discrete Contin. Dyn. Syst., 37 (2017), 6437–6470. https://doi.org/10.3934/dcds.2017279 doi: 10.3934/dcds.2017279
![]() |