Processing math: 84%
Research article

Space-time decay rate of the 3D diffusive and inviscid Oldroyd-B system

  • Received: 03 February 2024 Revised: 08 March 2024 Accepted: 15 March 2024 Published: 21 June 2024
  • MSC : 35B40, 35Q35, 74H40, 76N17

  • We investigate the space-time decay rates of solutions to the 3D Cauchy problem of the compressible Oldroyd-B system with diffusive properties and without viscous dissipation. The main novelties of this paper involve two aspects: On the one hand, we prove that the weighted rate of k-th order spatial derivative (where 0k3) of the global solution (ρ,u,η,τ) is t34+k2+γ in the weighted Lebesgue space L2γ. On the other hand, we show that the space-time decay rate of the m-th order spatial derivative (where m[0,2]) of the extra stress tensor of the field in L2γ is (1+t)54m2+γ, which is faster than that of the velocity. The proofs are based on delicate weighted energy methods and interpolation tricks.

    Citation: Yangyang Chen, Yixuan Song. Space-time decay rate of the 3D diffusive and inviscid Oldroyd-B system[J]. AIMS Mathematics, 2024, 9(8): 20271-20303. doi: 10.3934/math.2024987

    Related Papers:

    [1] Ruihong Ji, Liya Jiang, Wen Luo . Stability of the 3D MHD equations without vertical dissipation near an equilibrium. AIMS Mathematics, 2023, 8(5): 12143-12167. doi: 10.3934/math.2023612
    [2] Ru Bai, Tiantian Chen, Sen Liu . Global stability solution of the 2D incompressible anisotropic magneto-micropolar fluid equations. AIMS Mathematics, 2022, 7(12): 20627-20644. doi: 10.3934/math.20221131
    [3] Xiufang Zhao . Decay estimates for three-dimensional nematic liquid crystal system. AIMS Mathematics, 2022, 7(9): 16249-16260. doi: 10.3934/math.2022887
    [4] Abdelbaki Choucha, Sofian Abuelbacher Adam Saad, Rashid Jan, Salah Boulaaras . Decay rate of the solutions to the Lord Shulman thermoelastic Timoshenko model. AIMS Mathematics, 2023, 8(7): 17246-17258. doi: 10.3934/math.2023881
    [5] Mingyu Zhang . On the Cauchy problem of 3D nonhomogeneous micropolar fluids with density-dependent viscosity. AIMS Mathematics, 2024, 9(9): 23313-23330. doi: 10.3934/math.20241133
    [6] Xiufang Zhao, Ning Duan . On global well-posedness and decay of 3D Ericksen-Leslie system. AIMS Mathematics, 2021, 6(11): 12660-12679. doi: 10.3934/math.2021730
    [7] Prerona Dutta, Barbara Lee Keyfitz . Non-uniform dependence on periodic initial data for the two-component Fornberg-Whitham system in Besov spaces. AIMS Mathematics, 2024, 9(9): 25284-25296. doi: 10.3934/math.20241234
    [8] Adel M. Al-Mahdi . The coupling system of Kirchhoff and Euler-Bernoulli plates with logarithmic source terms: Strong damping versus weak damping of variable-exponent type. AIMS Mathematics, 2023, 8(11): 27439-27459. doi: 10.3934/math.20231404
    [9] Rong Rong, Hui Liu . The Burgers-KdV limit in one-dimensional plasma with viscous dissipation: A study of dispersion and dissipation effects. AIMS Mathematics, 2024, 9(1): 1248-1272. doi: 10.3934/math.2024062
    [10] Jae-Myoung Kim . Time decay rates for the coupled modified Navier-Stokes and Maxwell equations on a half space. AIMS Mathematics, 2021, 6(12): 13423-13431. doi: 10.3934/math.2021777
  • We investigate the space-time decay rates of solutions to the 3D Cauchy problem of the compressible Oldroyd-B system with diffusive properties and without viscous dissipation. The main novelties of this paper involve two aspects: On the one hand, we prove that the weighted rate of k-th order spatial derivative (where 0k3) of the global solution (ρ,u,η,τ) is t34+k2+γ in the weighted Lebesgue space L2γ. On the other hand, we show that the space-time decay rate of the m-th order spatial derivative (where m[0,2]) of the extra stress tensor of the field in L2γ is (1+t)54m2+γ, which is faster than that of the velocity. The proofs are based on delicate weighted energy methods and interpolation tricks.



    We investigate the space-time decay rates of strong solutions to the diffusive Oldroyd-B system, which describes the motion of viscoelastic fluids in R3. The system takes the following form in the space-time cylinder QT=R3×(0,T]:

    {ρt+div(ρu)=0,(ρu)t+div(ρuu)+P(ρ)μΔu(μ+ν)divu=div(T(kLη+ιη2)I),ηt+div(ηu)=αΔη,Tt+div(uT)(uT+TTu)=αΔT+kA02ληIA02λT, (1.1)

    where (x,t)R3×[0,+]. Let P=P(ρ)=aρξ, ρ=ρ(x,t)>0, u=u(x,t)R3 and T(x,t)=Ti,j(x,t)R3 denote the pressure, the density, the velocity field, and the extra stress tensor of the field respectively. In these expressions, the constants a>0, ξ>1, and α>0, where α represents the center-of-mass diffusion coefficient of the system. The viscosity coefficients μ0 and ν satisfy 2μ+3ν0. The polymer number density

    η(x,t)=R3ψ(x,t,q)dq,

    where η represents the integral of the probability density function ψ, a microscopic variable used in the modeling of dilute polymer chains. In addition, ι, k, L, and A0 are known positive constants, and their meanings can be found in [3]. T is a positive symmetric matrix in QT, where 1i,j3.

    Let us provide essential explanations regarding the above model. The system (1.1) is a crucial model employed to characterize the motion of viscoelastic fluids. This model takes the form of the micro-macro compressible Navier-Stokes-Fokker-Planck model, delineating the motion of dilute polymer fluids under the Hookbell-Hookean setting. Barrett originally derived this formulation in [3], and additional physical background can be found in [3,7]. It is worth mentioning that the diffusive Oldroyd-B model for viscoelastic rate-type fluids has been extensively studied in [1,20,21]. Additionally, the diffusive Oldroyd-B model can be obtained as a macroscopic closure of the Fokker-Planck-Navier-Stokes systems, as discussed in [4,15].

    For the incompressible diffusive Oldroyd-B model, existence and uniqueness results are available in [8,9,10]. Regarding the long-term behavior of solutions, comprehensive discussions can be found in [12,24,26] and references therein. For the compressible diffusive Oldroyd-B model, Fang and Zi established the existence of local strong solutions and introduced a novel blow-up criterion in [11]. The global existence of small classical solutions is explored by Zhu in [31] for the Sobolev space Hs with s5, and [29,32] for the critical Besov spaces. As for the long-term behavior of global solutions, we refer to [16,25,29,30].

    For the Oldroyd-B system (1.1) without viscous dissipation, Liu, Wang, and Wen [17] established the global-in-time existence and obtained optimal time decay rates for the strong solution. In order to address the loss of regularity for the velocity and achieve smallness of the initial data independent of the viscosity, they introduced a new unknown τi,j=Ti,jkηIi,j to derive new dissipative estimates of velocity. Following the approach in [17], we reformulate the system (1.1). To see this, we introduce a change of variables by

    (ρ,u,η,τ)(x,t)(ρ+˜ρ,βu,η+˜ρ,τ)(x,t), (1.2)

    where β is a positive constant. The initial conditions are given by

    (ρ,u,η,τ)(x,t)|t=0=(ρ0,u0,η0,τ0)(0,0,0,0). (1.3)

    For simplicity, we removed all in the new system. And then the system (1.1) without viscous dissipation (i.e., μ=ν=0) in QT is equivalent to the following system:

    {ρt+r1divu=S1,ut+r1ρ+r2ηr3divτ=S2,ηt+β˜ηdivuαΔη=S3,τt+A02λταΔτβk˜η(u+Tu)=S4, (1.4)

    with the initial condition

    (ρ,u,η,τ)(x,0)=(ρ0,u0,η0,τ0)(x)(0,0,0,0), as |x|, (1.5)

    where

    {S1=βdiv(ρu),S2=βuu+H(ρ)ρ+G(ρ)[(k(L1)+2ι˜η)ηdivτ]2ιβ(ρ+˜ρ)ηη,S3=βdiv(ηu),S4=βdiv(uτ)+β(uτ+τTu)+βkη(u+Tu), (1.6)

    and

    β=P(˜ρ)˜ρ,r1=P(˜ρ),r2=k(L1)+2˜ηξP(˜ρ),r3=1P(˜ρ).

    H(ρ) and G(ρ) are given nonlinear functions of ρ

    H(ρ)=1β(P(˜ρ)˜ρP(˜ρ+ρ)˜ρ+ρ),G(ρ)=1β(1˜ρ1ρ+˜ρ).

    Building upon the above conclusions, when the initial perturbation is small in Sobolev space, the global solution of the Cauchy problem (1.4)–(1.5) has been proved in the Sobolev space H3(R3) by Liu et al. in [17]. Moreover, if the initial perturbation is additionally bounded in L1(R3), the solution exhibits the following decay estimates:

    ||k(ρ˜ρ,u,η˜η)(t)||L2(R3)˜C0(1+t)34k2fork=0,1,2,3, (1.7)
    ||kτ(t)||L2(R3)˜C1(1+t)54k2fork=0,1,2, (1.8)
    ||3τ(t)||L2(R3)˜C2(1+t)94. (1.9)

    The space-time decay rate of strong solutions has been receiving increasing attention. Below, we will discuss the progress concerning the space-time decay in the weighted Sobolev space Hγ. In [23], Takahashi first established the space-time decay rate of strong solutions to the Navier-Stokes equations. Furthermore, Kukavica et al. extended the weighted decay rate of the strong solution in Lpγ(2p) for n(n2) dimensions in [13,14]. For more results concerning the space-time decay rate in Lpγ, we refer to [6,18,19,28] and references therein.

    However, to the best of our knowledge, there has been no result on the space-time decay rate of the 3D Cauchy problem of the compressible Oldroyd-B system with diffusive properties and without viscous dissipation up to now. The main motivation of this paper is to provide a definitive answer to this issue. More precisely, based on the time-decay estimates of [17], we demonstrate that the weighted rate of k(0k3)-th order spatial derivative of the global solution (ρ,u,η,τ) is t34+k2+γ in the weighted Lebesgue space L2γ. Moreover, we also establish that the space-time decay rate of m([0,2])-th order spatial derivative of the extra stress tensor of the field in L2γ is (1+t)54m2+γ, which is notably faster than that of the velocity. The proofs rely on delicate weighted energy methods and interpolation tricks.

    Let's introduce the notations typically used in this paper. We use Lp to denote the usual Lebesgue space Lp(R3) with the norm Lp, and H to denote Sobolev spaces H(R3)=W,2(R3) with the norm H. For any γR, we denote the weighted Lebesgue space by Lpγ(R3) (where 2p<+) with respect to the spatial variables:

    Lpγ(R3){f(x):R3R,fpLpγ(R3)R3|x|pγ|f(x)|pdx<+}.

    And then, for any γR, we can define the weighted Sobolev space Hkγ as follows:

    Hkγ(R3):={f(x)Lpγ(R3)f2Hkγ:=lklf2L2γ<}.

    Denote L2(R3):=L20(R3) and Hk(R3):=Hk0(R3). In addition, we denote (a,b)XaX+bX for simplicity, and denote δ by a sufficiently small constant independent of time. The notation ab means that aCb for a generic positive constant C>0 depends only on the parameters relevant to the problem. Moreover, we drop the x-dependence of differential operators; hence, f=xf=(x1f,x2f,x3f), and k to denote any partial derivative α with multi-index α, where |α|=k.

    Before presenting our main results, let's provide a brief summary of time decay estimates for the compressible Oldroyd-B system, both with and without viscous dissipation, as discussed in [17,25]. These findings are summarized in the following two propositions:

    Proposition 1.1. (see [25]) We assume that L1, ι0 in system (1.1). There exists a positive constant δ1, which is small enough, such that if

    (ρρ,u0,ηη,T0T)2H3(R3)δ1,

    where

    (ρ,u,η,T)(x,0)=(ρ0,u0,η0,T0)(x)(ρ,0,η,T),|x|+, (1.10)

    and T is a matrix with T=kηI. Additionally, we suppose that (ρ0ρ,u0,η0η,divT0)L1 is bounded. Then the diffusive Oldroyd-B system with viscous dissipation (1.1) with the initial data (1.10) admits a unique global strong solution (ρ,u,η,T), which satisfies the following time-decay estimates:

    m(ρρ,u,ηη,TT(t))˜C(1+t)34m2,m=0,1,
    m(ρρ,u,ηη,TT(t))˜C(1+t)74,m=2,3.

    for all 0tT, where ˜C is a positive constant independent of t.

    Proposition 1.2. (see [17]) We assume that (ρ0˜ρ,u0,η0˜η,τ0)H3(R), and (ρ0˜ρ,u0,η0˜η,divτ0)L1(R3), the parameters L1 and ι0. There exists a positive constant δ2, which is small enough, such that if

    (ρ0˜ρ,u0,η0˜η,τ0)H3(R3)δ2,

    the diffusive Oldroyd-B system without viscous dissipation (1.4) with the initial data (1.5) admits a unique global strong solution (ρ,u,η,τ), which satisfies the following time-decay estimates:

    ||k(ρ,u,η)(t)||L2(R3)˜C0(1+t)34k2,k=0,1,2,3,
    ||kτ(t)||L2(R3)˜C1(1+t)54k2,k=0,1,2,
    ||3τ(t)||L2(R3)˜C2(1+t)94.

    for all 0tT, where ˜C0, ˜C1 and ˜C2 are positive constants that are independent of t.

    With the help of time-decay estimates in [17], our main results are concerned with the following space-time decay rates of the strong solutions in weighted Lebesgue space L2γ.

    Theorem 1.3. Let (ρ,u,η,τ) be the strong solution to the Cauchy problem (1.4)–(1.5). In addition, we assume that (ρ0˜ρ,u0,η0˜η,divτ0)L1(R3)H3γ(R3),γ0. Then, if there exists a small constant δ0>0, such that

    (ρ0˜ρ,u0,η0˜η,τ0)H3δ0,

    then there exists a large enough T such that

    k(ρ,u,η)(t)L2γCt34k2+γ, (1.11)
    mτ(t)L2γCt54m2+γ, (1.12)
    3τ(t)L2γCt94+γ, (1.13)

    for all t>T, 0k3, and 0m2, where C is a positive constant independent of t.

    Remark 1.4. We can derive the space-time decay rates of the smooth solution (ρ,u,η,τ) in weighted Lebesgue space Lpγ by applying Gagliardo-Nirenberg-Sobolev inequality and the weighted interpolation inequality. For any f(s)L2(R3)˙H2(R3), we have f(s)Lf(s)14L2f(s)34H2 in R3. Therefore, we obtain the estimate |x|γk(ρ,u,η,τ)(t)L from |x|γk(ρ,u,η,τ)(t)L2 and |x|γk(ρ,u,η,τ)(t)˙H2. More specifically, for the case of γ2 and k=0, using the Gagliardo-Nirenberg-Sobolev inequality, we have

    |x|γ(ρ,u,η,τ)(t)LC|x|γ(ρ,u,η,τ)(t)14L22(|x|γ(ρ,u,η,τ)(t))34L2C(ρ,u,η,τ)(t)14L2γ(2(ρ,u,η,τ)(t)L2γ+(ρ,u,η,τ)(t)L2γ1+(ρ,u,η,τ)(t)L2γ2)34Ct32+γ.

    On the other hand, one has the following facts by applying the weighted interpolation inequality, and (1.10)–(1.12)

    (ρ,u,η,τ)(t)LpγC(ρ,u,η,τ)(t)2pL2γ|x|γ(ρ,u,η,τ)(t)12pLCt32(11p)+γ.

    In a similar way, for the case of γ2 and k=1, one has

    (ρ,u,η,τ)(t)LpγC(ρ,u,η,τ)(t)2pL2γ|x|γ(ρ,u,η,τ)(t)12pLCt(54+γ)2pt(114+γ)(12p)Ct32(11p)12+γ.

    For the case γ[0,2), the corresponding results can be derived from the weighted interpolation inequality. Consequently, by employing the interpolation inequality, we can show that there exists a large enough T such that

    k(ρ,u,η,τ)(t)LpγCt32(11p)k2+γ, (1.14)

    for t>T, 2p, k=0,1, and γ0, where C is a positive constant independent of t.

    Remark 1.5. In this paper, we analyze the space-time decay rates of (ρ,u,η,τ)(t)L2γ for k([0,3])th-order derivative. Additionally, we determine the sharp space-time decay rate for k([0,2])th-order derivative of the variable τ, which revealed the difference between the polymer number density η and the extra stress tensor T.

    Now, let us outline the strategies employed in proving Theorem 1.3 and explain the primary challenges encountered in the process. Initially, we introduced

    E(t):=(ρ,u,η,τ)2L2γ,

    and then use the delicately weighted energy estimates and interpolation tricks to obtain

    ddtE(t)C0t54E(t)+C1t34γE(t)2γ12γ+C2t32γE(t)γ1γ. (1.15)

    In the process of deriving the aforementioned energy inequality, we encounter four trouble terms arising from the dissipative structure of the original system. If these terms didn't exist, we could achieve better space-time decay rates for the solutions. To illustrate this issue, let us consider the zero-th order space-time decay rates of the solutions. In the derivation of zero-th order weighted-energy estimate, we come across these troublesome terms r1R3|x|2γρdivudx, r1R3|x|2γuρdx, r2R3|x|2γuηdx and r2R3|x|2γηdivudx. By using integration by parts, we obtain

    |r1R3(|x|2γ)ρudx|+|r2R3(|x|2γ)ηudx|ρL2γuL2γ1+ηL2γuL2γ1(ρ,η)L2γuL2γ1,

    and then we get the weighted energy inequality (3.11)

    12ddt(ρ2L2γ+u2L2γ+r2β˜ηη2L2γ+r32βk˜ητ2L2γ)+r2αβ˜ηη2L2γ+r32βk˜ηA02λτ2L2γ+r3α2βk˜ητ2L2γt54(ρ,u,η,τ)2L2γ+(ρ,η)L2γuγ1γL2γu1γL2+(u,η,τ)2γ2γL2γ(u,η,τ)2γL2,

    which is exactly (1.15). Therefore, one has

    E(t)Ct32+2γ,

    which implies

    (ρ,u,η,τ)(t)L2γ0C(ρ,u,η,τ)(t)1γ0γL2(ρ,u,η,τ)(t)γ0γL2γCt34+γ0,

    for all t>T, γ0[0,γ], and [0,32][0,γ](γ>32). This implies that the decay rate of the zero–th order of the solution in L2γ is t34+γ.

    However, in the absence of the troublesome terms, we can derive a new weighted energy inequality as follows:

    12ddt(ρ2L2γ+u2L2γ+r2β˜ηη2L2γ+r32βk˜ητ2L2γ)+r2αβ˜ηη2L2γ+r32βk˜ηA02λτ2L2γ+r3α2βk˜ητ2L2γt54(ρ,u,η,τ)2L2γ+(u,η,τ)2γ2γL2γ(u,η,τ)2γL2,

    which implies

    ddtE(t)C0t54E(t)+C1t32γE(t)γ1γ,

    where C0 and C1 are positive constants independent of t. If γ>32, then we can apply Lemma 2.4 with α0=54>1, α1=32γ<1, β1=γ1γ<1, γ1=1α11β1=32+γ>0 to get

    E(t)Ct32+γ,

    which yields

    (ρ,u,η,τ)(t)L2γ0C(ρ,u,η,τ)(t)1γ0γL2(ρ,u,η,τ)(t)γ0γL2γCt34+γ02,

    for all t>T, γ0[0,γ], and [0,32][0,γ](γ>32). This implies that the decay rate of the zero-th order of the solution in L2γ is t34+γ2.

    By employing a similar method, we have

    ddtE(t)C0t54E(t)+C1t54γE(t)2γ12γ+C2t52γE(t)γ1γ+C3t72+2γfork=1,
    ddtE(t)C0t54E(t)+C1t74γE(t)2γ12γ+C2t72γE(t)γ1γ+C3t92+2γfork=2,
    ddtE(t)C0t54E(t)+C1t94γE(t)2γ12γ+C2t92γE(t)γ1γ+C3t112+2γfork=3.

    The main difficulties in deducing the above estimates arise from the absence of dissipation terms of density and velocity when making the delicate weighted energy estimates. Due to the lack of the dissipation in terms R3|x|γ4ρdx or R3|x|γ4udx on the left-hand (3.39), it seems impossible for us to handle a new trouble term βR3|x|2γρ3ρ4udx. To overcome this difficulty, we fully utilize the equations. Specifically, we employ the fact that divu=ρt+βuρr1+βρ and ρt=r1divuβdiv(ρu) from (1.4)1, which allows us to reduce the order of the spatial derivative of velocity. More specifically, through integration by parts, we transfer the derivative of u to another term: βR3(|x|2γρ3ρ)3udx. Next, one has

    |R3(|x|2γρ3ρ)3udx||βR3|x|2γρ(ρt+βuρ)3ρ3(1r1+βρ)dx|+uL3ρ2L2γ+uL3ρL2γ3ρL2γ1+ρL3ρL2γ3uL2γ.

    Subsequently, we derive the weighted energy inequality by applying Cauchy's inequality, Gagliardo-Nirenberg-Sobolev's inequality, intricate weighted energy estimates, and interpolation tricks. For more details, we refer to the proofs from (3.41) to (3.50).

    Next, utilizing the Gronwall-type lemma, we prove Lemmas 3.1–3.4. Finally, we establish the Lyapunov-type energy inequality to prove Lemma 3.5:

    12ddtmτ2L2γ+Cmτ2L2γ+Cm+1τ2L2γt52m+2γ.

    By combining the previously obtained lemmas, we can complete the proof Theorem 1.3.

    Before proving Theorem 1.3, let us list several tools that will be frequently used in the article. Firstly, we recall the well-known Sobolev interpolation inequalities.

    Lemma 2.1. (see [22]) (Gagliardo-Nirenberg-Sobolev inequality) Let 2p, 0s,lk and 0θ1, then

    sfLpkfθLrlf1θLq,

    where θ is given by

    s31p=(k31r)θ+(l31q)(1θ).

    Particularly, when p=3, q=r=2, s=l=0, and k=1, one has

    fL3fH1, (2.1)

    when p=, q=r=2, s=0, l=1, and k=2, we get

    fLfH1, (2.2)

    while s=l=0, k=1, θ=1, p=q=r=2, and γ>32, we obtain

    fL6γfL2γ+fL2γ1. (2.3)

    Lemma 2.2. (see [5]) Assume that there exists a function f(s) that satisfies

    f(s)s,

    and

    f(k)(s)C(k),

    for any integer k1, one has

    f(k)(s)LpC(k)f(k)(s)Lp,

    for any integer k0 and p2, where C(k) is a constant independent of t. Especially, it holds that G(ρ)O(1)(ρ) in this paper, and then |x|2γkG(ρ)LpC|x|2γkρLp, i.e.,

    kG(ρ)L2γCkρL2γ.

    And by the same token, it holds that kH(ρ)L2γCkρL2γ.

    Lemma 2.3. For the vector function fC0(R3) and bounded scalar function g, it holds that

    |R3(|x|2γ)fgdx|gL2γfL2γ1.

    Proof. We compute

    |R3(|x|2γ)fgdx|=|2γR3|x|2γ2xjixjgfidx|gL2γfL2γ1.

    Thus, we complete the proof of Lemma 2.3.

    Lemma 2.4. (see [2]) (Interpolation inequality with weights) If p1, r1, s+nr>0, a+np>0, b+nq>0, and 0θ1, then

    fLrsfθLpaf1θLqb,

    for fC0(Rn) satisfying

    1r=αp+1αq,

    and

    s=aθ+b(1θ).

    More specifically, while s=p=q=2, θ=γ1γ, s=γ1, a=γ, b=0, one has

    fL2γ1fγ1γL2γf1γL2. (2.4)

    Lemma 2.5. (see [27]) (Gronwall-type Lemma) Let α0>1, α1<1, α2<1, and β1<1, β2<2. Assume that a continuously differential function F:[1,)[0,) satisfies

    ddtF(t)C0tα0F(t)+C1tα1F(t)β1+C2tα2F(t)β2+C3tγ11,t1

    and

    F(1)K0,

    where C0, C1, C2, C3, K00 and γi=1αi1βi>0 for i=1,2. Assume that γ1γ2, then there exists a constant ˜C depending on α0, α1, β1, α2, β2, K0, Ci, where i=1,2,3, such that

    F(t)˜Ctγ1,

    for all t1.

    We can make use of the precise linear approximations for (ρ,u,η,τ) found in [17] to prove Theorem 1.3.

    Lemma 3.1. Under the assumption of Theorem 1.3, there exists a sufficiently large T such that the solution (ρ,u,η,τ) of the system (1.4) with the initial data (1.5) has the following estimate:

    (ρ,u,η,τ)(t)L2γCt34+γ, (3.1)

    for all t>T and γ0, where C is a positive constant independent of t.

    Proof. Multiplying |x|2γρ, |x|2γu, r2β˜η|x|2γη, r32βk˜η|x|2γτ by (1.4)1(1.4)4, and then adding them up and integrating on R3, we have

    R3|x|2γρρtdx+r1R3|x|2γρdivudx+R3|x|2γuutdx+r1R3|x|2γuρdx+r2R3|x|2γuηdxr3R3|x|2γudivτdx+r2β˜ηR3|x|2γηηtdx+r2R3|x|2γηdivudxr2αβ˜ηR3|x|2γηηdx+r32βk˜ηR3|x|2γττtdx+r32βk˜ηA02λR3|x|2γτ2dx+r3α2βk˜ηR3|x|2γττdxr32R3|x|2γτ(u+Tu)dx=R3|x|2γρS1dx+R3|x|2γuS2dx+r2β˜ηR3|x|2γηS3dx+r32βk˜ηR3|x|2γτS4dx. (3.2)

    Then, using integration by parts to simplify, one has

    12ddt(ρ2L2γ+u2L2γ+r2β˜ηη2L2γ+r32βk˜ητ2L2γ)+r2αβ˜ηη2L2γ+r32βk˜ηA02λτ2L2γ+r3α2βk˜ητ2L2γ=r1R3|x|2γρdivudxr1R3|x|2γuρdxr2R3|x|2γuηdxr2R3|x|2γηdivudx+r3R3|x|2γudivτdx+r32R3|x|2γτ(u+Tu)dxr2αβ˜ηR3(|x|2γ)ηηdxr3α2βk˜ηR3(|x|2γ)ττdx+R3|x|2γρS1dx+R3|x|2γuS2dx+r2β˜ηR3|x|2γηS3dx+r32βk˜ηR3|x|2γτS4dx12i=1J1,i. (3.3)

    Initially, by using integration by parts and applying Lemma 2.3 and Young' inequality, we can obtain

    6i=1J1,i|r1R3(|x|2γ)ρudx|+|r2R3(|x|2γ)ηudx|+|r3R3(|x|2γ)uτdx|ρL2γuL2γ1+ηL2γuL2γ1+τL2γuL2γ1(ρ,η)L2γuL2γ1+εr3τ2L2γ+Cr3(ε)u2L2γ1. (3.4)

    Applying Lemma 2.3 and Young' inequality, we can get

    |J1,7|+|J1,8|r2αβ˜ηηL2γηL2γ1+r3α2βk˜ητL2γτL2γ1ε(r2αβ˜η)η2L2γ+Cr2αβ˜η(ε)η2L2γ1+ε(r3α2βk˜η)τ2L2γ+Cr3α2βk˜η(ε)τ2L2γ1. (3.5)

    Using the definitions of S1, S2, S3, and S4, Lemma 2.1, Cauchy's inequality, and Lemma 2.3, we have

    |J1,9|=|βR3|x|2γρuρdx|+|βR3|x|2γρ2udx|ρLuL2γρL2γ+uLρ2L2γ2ρH1u2L2γ+2ρH1ρ2L2γ+2uH1ρ2L2γt74ρ2L2γ+t74u2L2γ. (3.6)

    In a similar way, we have

    |J1,10|=|βR3|x|2γu2udx|+|R3|x|2γuH(ρ)ρdx|+|R3|x|2γuG(ρ)ηdx|+|R3|x|2γuG(ρ)divτdx|+|R3|x|2γu(ηρ+˜ρ)ηdx|βuLu2L2γ+ρLH(ρ)L2γuL2γ+G(ρ)LηL2γuL2γ+G(ρ)LτL2γuL2γ+ηρ+˜ρLuL2γηL2γ2uH1u2L2γ+2ρH1H(ρ)2L2γ+2ρH1u2L2γ+G(ρ)H1η2L2γ+G(ρ)H1u2L2γ+G(ρ)H1τ2L2γ+(ηρ+˜ρ)H1uL2γη2L2γt54u2L2γ+t74ρ2L2γ+t54(η,τ)2L2γ, (3.7)

    and

    |J1,11|=|r2˜ηR3t|x|2γηuηdx|+|r2˜ηR3|x|2γη2udx|uLηL2γηL2γ+uLη2L2γuH1η2L2γ+uH1η2L2γ+2uH1η2L2γt54η2L2γ+t54η2L2γ, (3.8)

    and

    |J1,12|τLuL2γτL2γ+ uLτ2L2γ+uLηL2γτL2γ2τH1uL2γτL2γ+2uH1τ2L2γ+2uH1ηL2γτL2γt74(u,η,τ)2L2γ. (3.9)

    Substituting (3.4) to (3.9) into (3.3), we conclude that there exists a sufficiently large T1 and a sufficiently small ε, such that

    12ddt(ρ2L2γ+u2L2γ+r1β˜ηη2L2γ+r32βk˜ητ2L2γ)+r2αβ˜ηη2L2γ+r32βk˜ηA02λτ2L2γ+r3α2βk˜ητ2L2γt54(ρ,u,η)2L2γ+t74τ2L2γ+(ρ,η)L2γuL2γ1+(u,η,τ)2L2γ1, (3.10)

    for all t>T1. Using the interpolation inequality with weights fL2γ1fγ1γL2γf1γL2, we can obtain

    12ddt(ρ2L2γ+u2L2γ+r2β˜ηη2L2γ+r32βk˜ητ2L2γ)+r2αβ˜ηη2L2γ+r32βk˜ηA02λτ2L2γ+r3α2βk˜ητ2L2γt54(ρ,u,η,τ)2L2γ+(ρ,η)L2γuγ1γL2γu1γL2+(u,η,τ)2γ2γL2γ(u,η,τ)2γL2t54(ρ,u,η,τ)2L2γ+t34γ(ρ,η)2γ1γL2γ+t32γ(u,η,τ)2γ2γL2γ. (3.11)

    Denoting E(t):=(ρ,u,η,τ)2L2γ, we can obtain

    ddtE(t)C0t54E(t)+C1t34γE(t)2γ12γ+C2t32γE(t)γ1γ,

    where C0, C1, and C2 are positive constants independent of t. If γ>32, then we can apply Lemma 2.5 with α0=54>1, α1=34γ<1, β1=2γ12γ<1, α2=32γ<1, β2=γ1γ<1, γ1=1α11β1=32+2γ>0, γ2=1α21β2=32+γ>0, γ1>γ2. Thus, for all t>T, one has

    E(t)Ct32+2γ, (3.12)

    which implies

    (ρ,u,η,τ)(t)L2γ0C(ρ,u,η,τ)(t)1γ0γL2(ρ,u,η,τ)(t)γ0γL2γCt34+γ0,

    for all t>T, γ0[0,γ], and [0,32][0,γ](γ>32). Thus, the proof of Lemma 3.1 has been completed.

    Lemma 3.2. Under the assumption of Theorem 1.3, there exists a sufficiently large T such that the solution (ρ,u,η,τ) of the system (1.4) with the initial data (1.5) has the following estimate:

    (ρ,u,η,τ)(t)L2γCt54+γ, (3.13)

    for all t>T and γ0, where C is a positive constant independent of t.

    Proof. Multiplying |x|2γρ, |x|2γu, r2β˜η|x|2γη, r32βk˜η|x|2γτ by (1.4)1(1.4)4, and then adding them up and integrating on R3, we have

    R3|x|2γρρtdx+r1R3|x|2γρdivudx+R3|x|2γuutdx+r1R3|x|2γu2ρdx+r2R3|x|2γu2ηdxr3R3|x|2γudivτdx+r2β˜ηR3|x|2γηηtdx+r2R3|x|2γηdivudxr2αβ˜ηR3|x|2γηηdx+r32βk˜ηR3|x|2γττtdx+r32βk˜ηA02λR3|x|2γ(τ)2dxr3α2βk˜ηR3|x|2γττdxr32R3|x|2γτ(u+Tu)dx=R3|x|2γρS1dx+R3|x|2γuS2dx+r2β˜ηR3|x|2γηS3dx+r32βk˜ηR3|x|2γτS4dx. (3.14)

    Then, using integration by parts to simplify, one has

    12ddt(ρ2L2γ+u2L2γ+r2β˜ηη2L2γ+r32βk˜ητ2L2γ)+r2αβ˜η2η2L2γ+r32βk˜ηA02λτ2L2γ+r3α2βk˜η2τ2L2γ=r1R3|x|2γρdivudxr1R3|x|2γu2ρdxr2R3|x|2γηdivudxr2R3|x|2γu2ηdx+r3R3|x|2γudivτdx+r32R3|x|2γτ(u+Tu)dxr2αβ˜ηR3(|x|2γ)η2ηdxr3α2βk˜ηR3(|x|2γ)τ2τdx+R3|x|2γρS1dx+R3|x|2γuS2dx+r2β˜ηR3|x|2γηS3dx+r32βk˜ηR3|x|2γτS4dx12i=1J2,i. (3.15)

    Initially, by using integration by parts and applying Cauchy' inequality and Lemma 2.3, we can obtain

    6i=1J2,i|r1R3(|x|2γ)ρudx|+|r2R3(|x|2γ)ηudx|+|r3R3(|x|2γ)τudx|ρL2γuL2γ1+ηL2γuL2γ1+τL2γuL2γ1(ρ,η)L2γuL2γ1+εr3τ2L2γ+Cr3(ε)u2L2γ1. (3.16)

    Applying Lemma 2.3 and Young' inequality, we can get

    |J2,7|+|J2,8|r2αβ˜η2ηL2γηL2γ1+r3α2βk˜η2τL2γτL2γ1ε(r2αβ˜η)2η2L2γ+Cr2αβ˜η(ε)η2L2γ1+ε(r3α2βk˜η)2τ2L2γ+Cr3α2βk˜η(ε)τ2L2γ1. (3.17)

    By the definitions of S1, S2, S3, and S4, and Lemma 2.1, Cauchy's inequality, and Lemma 2.3, we have

    |J2,9|=|βR3|x|2γuρ2ρdx|+|βR3|x|2γρρ2udx|+|βR3|x|2γuρρdx|2ρL3ρL2γuL6γ+2uL3ρL2γρL6γ+uLρ2L2γ2ρH1ρL2γuL2γ1+2ρH1ρL2γuL2γ+2uH1ρL2γρL2γ1+2uH1ρ2L2γt5424t34+γ1ρL2γ+t74ρ2L2γ+t74u2L2γt54(ρ,u)2L2γ+t72+2γ. (3.18)

    In a similar way, one has

    |J2,10|=|βR3|x|2γ(u)3dx|+|βR3|x|2γuu2udx|+|R3|x|2γuH(ρ)ρdx|+|R3|x|2γuH(ρ)2ρdx|+|R3|x|2γuG(ρ)ηdx|+|R3|x|2γuG(ρ)2ηdx|+|R3|x|2γuG(ρ)divτdx|+|R3|x|2γuG(ρ)divτdx|+|R3|x|2γu(ηρ+˜ρ)ηdx|+|R3|x|2γ(ηρ+˜ρ)u2ηdx|,

    therefore

    |J2,10|βuLu2L2γ+β2uL3uL2γuL6γ+H(ρ)LρL2γuL2γ+2ρL3uL2γH(ρ)L6γ+|k(L1)+2˜ηι|G(ρ)LηL2γuL2γ+|k(L1)+2˜ηι|G(ρ)L2ηL2γuL2γ+G(ρ)L2τL2γuL2γ+G(ρ)LτL2γuL2γ+(ηρ+˜ρ)LuL2γηL2γ+ηρ+˜ρL2ηL2γuL2γ2uH1u2L2γ+2uH1uL2γuL2γ1+2H(ρ)H1ρL2γ2uL2γ+2ρH1u2L2γ+2ρH1uL2γρL2γ1+2G(ρ)H1ηL2γuL2γ+G(ρ)H12ηL2γuL2γ+G(ρ)H12τL2γuL2γ+2G(ρ)H1τL2γuL2γ+2(ηρ+˜ρ)H1η2L2γ+2(ηρ+˜ρ)H1u2L2γ+(ηρ+˜ρ)H12η2L2γ+(ηρ+˜ρ)H1u2L2γt54(ρ,u,η)2L2γ+t542(η,τ)2L2γ+t72+2γ, (3.19)

    and

    |J2,11|=|r2˜ηR3|x|2γuη2ηdx|+|r2˜ηR3|x|2γηη2udx|+|r2˜ηR3|x|2γηηudx|uLηL2γ2ηL2γ+2uL3ηL2γηL6γ+uLη2L2γuH1ηL2γ2ηL2γ+2uH1η2L2γ+2uH1ηL2γηL2γ1t54η2L2γ+t542η2L2γ+t72+2γ, (3.20)

    and

    |J2,12|2uL3τL2γτL6γ+uLτL2γ2τL2γ+uLτ2L2γ+uLηL2γτL2γ+2uL3τL2γηL6γ2uH1τ2L2γ+2uH1τL2γτL2γ1+uH1τL2γ2τL2γ+2uH1ηL2γτL2γ+2uH1τL2γηL2γ+2uH1τL2γηL2γ1+2uH1τ2L2γt54τ2L2γ+t74η2L2γ+t542τ2L2γ+t72+2γ. (3.21)

    Substituting (3.16) to (3.21) into (3.15), we conclude that there exists a sufficiently large T1 and a sufficiently small ε, such that

    12ddt(ρ2L2γ+u2L2γ+r2β˜ηη2L2γ+r32βk˜ητ2L2γ)+r2αβ˜η2η2L2γ+r32βk˜ηA02λτ2L2γ+r3α2βk˜η2τ2L2γt54(ρ,u,η,τ)2L2γ+(ρ,η)L2γuL2γ1+(u,η,τ)2L2γ1+t72+2γ, (3.22)

    for all t>T1. Using the interpolation inequality with weights fL2γ1fγ1γL2γf1γL2, we can obtain

    12ddt(ρ2L2γ+u2L2γ+r2β˜ηη2L2γ+r32βk˜ητ2L2γ)+r2αβ˜η2η2L2γ+r32βk˜ηA02λτ2L2γ+r3α2βk˜η2τ2L2γt54(ρ,u,η,τ)2L2γ+(ρ,η)L2γuγ1γL2γu1γL2+(u,η,τ)2γ2γL2γ(u,η,τ)2γL2+t72+2γt54(ρ,u,η,τ)2L2γ+t54γ(ρ,η)2γ1γL2γ+t52γ(u,η,τ)2γ2γL2γ+t72+2γ. (3.23)

    Denoting E(t):=(ρ,u,η,τ)2L2γ, we arrive at

    ddtE(t)C0t54E(t)+C1t54γE(t)2γ12γ+C2t52γE(t)γ1γ+C3t72+2γ,

    where C0, C1, C2, and C3 are positive constants independent of t. If γ>52, then we can apply Lemma 2.5 with α0=54>1, α1=54γ<1, β1=2γ12γ<1, α2=52γ<1, β2=γ1γ<1, γ1=1α11β1=52+2γ>0, γ2=1α21β2=52+γ>0, γ1>γ2, γ11=72+2γ. Thus, for all t>T, one has

    E(t)Ct52+2γ, (3.24)

    we get the fact

    (ρ,u,η,τ)(t)L2γ0C(ρ,u,η,τ)(t)1γ0γL2(ρ,u,η,τ)(t)γ0γL2γCt54+γ0,

    for all t>T, γ0[0,γ], and [0,52][0,γ](γ>52). Thus, the proof of Lemma 3.2 has been completed.

    Lemma 3.3. Under the assumption of Theorem 1.3, there exists a sufficiently large T such that the solution (ρ,u,η,τ) of the system (1.4) with the initial data (1.5) has the following estimate:

    2(ρ,u,η,τ)(t)L2γCt74+γ, (3.25)

    for all t>T and γ0, where C is a positive constant independent of t.

    Proof. Multiplying |x|2γ2ρ, |x|2γ2u, r2β˜η|x|2γ2η, r32βk˜η|x|2γ2τ by 2(1.4)12(1.4)4, and then adding them up and integrating on R3, we have

    R3|x|2γ2ρ2ρtdx+r1R3|x|2γ2ρ2divudx+R3|x|2γ2u2utdx+r1R3|x|2γ2u3ρdx+r2R3|x|2γ2u3ηdxr3R3|x|2γ2u2divτdx+r2β˜ηR3|x|2γ2η2ηtdx+r2R3|x|2γ2η2divudxr2αβ˜ηR3|x|2γ2η2ηdx+r32βk˜ηR3|x|2γ2τ2τtdx+r32βk˜ηA02λR3|x|2γ(2τ)2dxr3α2βk˜ηR3|x|2γ2τ2τdxr32R3|x|2γ2τ2(u+Tu)dx=R3|x|2γ2ρ2S1dx+R3|x|2γ2u2S2dx+r2β˜ηR3|x|2γ2η2S3dx+r32βk˜ηR3|x|2γ2τ2S4dx. (3.26)

    Then, using integration by parts to simplify, one has

    12ddt(2ρ2L2γ+2u2L2γ+r2β˜η2η2L2γ+r32βk˜η2τ2L2γ)+r2αβ˜η3η2L2γ+r32βk˜ηA02λ2τ2L2γ+r3α2βk˜η3τ2L2γ=r1R3|x|2γ2ρ2divudxr1R3|x|2γ2u3ρdxr2R3|x|2γ2η2divudxr2R3|x|2γ2u3ηdx+r3R3|x|2γ2u2divτdx+r32R3|x|2γ2τ2(u+Tu)dxr2αβ˜ηR3(|x|2γ)2η3ηdxr3α2βk˜ηR3(|x|2γ)2τ3τdx+R3|x|2γ2ρ2S1dx+R3|x|2γ2u2S2dx+r2β˜ηR3|x|2γ2η2S3dx+r32βk˜ηR3|x|2γ2τ2S4dx12i=1J3,i. (3.27)

    Initially, by using integration by parts and applying Lemma 2.3, we can obtain

    6i=1J3,i|r1R3(|x|2γ)2ρ2udx|+|r2R3(|x|2γ)2η2udx|+|r3R3(|x|2γ)2τ2udx|2ρL2γ2uL2γ1+2ηL2γ2uL2γ1+2τL2γ2uL2γ12(ρ,η)L2γ2uL2γ1+εr32τ2L2γ+Cr3(ε)2u2L2γ1. (3.28)

    By using Lemma 2.3 and Cauchy's inequality, we obtain

    |J3,7|+|J3,8|r2αβ˜η3τL2γ2τL2γ1+r3α2βk˜η3ηL2γ2ηL2γ1ε(r2αβ˜η)3η2L2γ+Cr2αβ˜η(ε)2η2L2γ1+ε(r3α2βk˜η)3τ2L2γ+Cr3α2βk˜η(ε)2τ2L2γ1. (3.29)

    By the definitions of S1, S2, S3, and S4, Lemma 2.1, Cauchy's inequality, and Lemma 2.3, we get

    |J3,9|=|βR3|x|2γ2ρ2(ρu)dx|+|βR3|x|2γ2ρ2(uρ)dx|3ρL32ρL2γuL6γ+3uL32ρL2γρL6γ+ρL2ρL2γ2uL2γ+uL2ρ2L2γ3ρH12ρL2γuL2γ1+3ρH12ρL2γuL2γ+3uH12ρL2γρL2γ1+3uH12ρL2γρL2γ+2ρH12ρL2γ2uL2γ+2uH12ρ2L2γt5444t34+γ12ρL2γ+t5444t54+γ2ρ2L2γ+t542ρ2L2γ+t742u2L2γt542ρ2L2γ+t742u2L2γ+t92+2γ+t112+2γ. (3.30)

    In a similar way, one has

    |J3,10|βuL2u2L2γ+β3uL32uL2γuL6γ+ρL2uL2γ2H(ρ)L2γ+β3ρL32uL2γH(ρ)L6γ+G(ρ)L3ηL2γ2uL2γ+(ηL+τL)2G(ρ)L2γ2uL2γ+G(ρ)L2uL2γ3τL2γ+2(ηρ+˜ρ)L32uL2γηL6γ+ηρ+˜ρL2uL2γ3ηL2γ2uH12u2L2γ+3uH12uL2γuL2γ+3uH12uL2γuL2γ1+2ρH12H(ρ)L2γ2uL2γ+3ρH12uL2γH(ρ)L2γ+3ρH12uL2γH(ρ)L2γ1+2ηH12u2L2γ2G(ρ)2L2γ+G(ρ)H13η2L2γ2u2L2γ+G(ρ)H12u2L2γ3τ2L2γ+(2ηH1+2τH1)2G(ρ)L2γ2uL2γ+2(ηρ+˜ρ)H12uL2γ2ηL2γ+2(ηρ+˜ρ)H12uL2γηL2γ1+(ηρ+˜ρ)H12u2L2γ+(ηρ+˜ρ)H13η2L2γt542(ρ,u,η,τ)2L2γ+t543(η,τ)2L2γ+t92+2γ+t112+2γ, (3.31)

    and

    |J3,11|=|r2˜ηR3|x|2γ2η2(ηu)dx|+|r2˜ηR3|x|2γ2η2(uη)dx|uL2ηL2γ3ηL2γ+3uL32ηL2γηL6γ+uL2η2L2γ+ηL2uL2γ2ηL2γuH12ηL2γ3η2L2γ+3uH12ηL2γ(ηL2γ+ηL2γ1)+2uH12η2L2γ+2ηH12uL2γ2ηL2γt542η2L2γ+t543η2L2γ+t742u2L2γ+t92+2γ+t112+2γ, (3.32)

    and

    |J3,12|3uL32τL2γτL6γ+uL2τL2γ3τL2γ+uL2τ2L2γ+τL2τL2γ2uL2γ+3uL32τL2γηL6γ+uL2τL2γ2ηL2γ3uH12τL2γ(τL2γ+τL2γ1)+uH12τL2γ3τL2γ+2uH12τ2L2γ+2τH12τ2L2γ+2τH12u2L2γ+3uH12τL2γ(ηL2γ+ηL2γ1)+2uH12τL2γ2ηL2γt542(u,η,τ)2L2γ+t543τ2L2γ+t92+2γ+t112+2γ. (3.33)

    Substituting (3.28) into (3.33) into (3.27), we conclude that there exists a sufficiently large T1 and a sufficiently small ε, such that

    12ddt(2ρ2L2γ+2u2L2γ+r2β˜η2η2L2γ+r32βk˜η2τ2L2γ)+r2αβ˜η3η2L2γ+r32βk˜ηA02λ2τ2L2γ+r3α2βk˜η3τ2L2γt542(ρ,u,η,τ)2L2γ+2(ρ,η)L2γ2uL2γ1+2(u,η,τ)2L2γ1+t92+2γ, (3.34)

    for all t>T1. Using the interpolation inequality with weights 2fL2γ12fγ1γL2γ2f1γL2, we can obtain

    12ddt(2ρ2L2γ+2u2L2γ+r2β˜η2η2L2γ+r32βk˜η2τ2L2γ)+r2αβ˜η3η2L2γ+r32βk˜ηA02λ2τ2L2γ+r3α2βk˜η3τ2L2γt542(ρ,u,η,τ)2L2γ+2(ρ,η)L2γ2uγ1γL2γ2u1γL2+2(u,η,τ)2γ2γL2γ2(u,η,τ)2γL2+t92+2γt542(ρ,u,η,τ)2L2γ+t74γ2(ρ,η)2γ1γL2γ+t72γ2(u,η,τ)2γ2γL2γ+t92+2γ. (3.35)

    Denoting E(t):=2(ρ,u,η,τ)2L2γ, we arrive at

    ddtE(t)C0t54E(t)+C1t74γE(t)2γ12γ+C2t72γE(t)γ1γ+C3t92+2γ,

    where C0, C1, C2, and C3 are positive constants independent of t. If γ>72, then we can apply Lemma 2.5 with α0=54>1, α1=74γ<1, β1=2γ12γ<1, α2=72γ<1, β2=γ1γ<1, γ1=1α11β1=72+2γ>0, γ2=1α21β2=72+γ>0, γ1>γ2, γ11=92+2γ. Thus, for all t>T,

    E(t)Ct72+2γ, (3.36)

    we get the fact

    2(ρ,u,η,τ)(t)L2γ0C2(ρ,u,η,τ)(t)1γ0γL22(ρ,u,η,τ)(t)γ0γL2γCt74+γ0,

    for all t>T, γ0[0,γ], and [0,72][0,γ](γ>72). Thus, the proof of Lemma 3.3 has been completed.

    Lemma 3.4. Under the assumption of Theorem 1.3, there exists a sufficiently large T such that the solution (ρ,u,η,τ) of the system (1.4) with the initial data (1.5) has the following estimate:

    3(ρ,u,η,τ)(t)L2γCt94+γ, (3.37)

    for all t>T and γ0, where C is a positive constant independent of t.

    Proof. Multiplying |x|2γ3ρ, |x|2γ3u, r2β˜η|x|2γ3η, r32βk˜η|x|2γ3τ by 3(1.4)13(1.4)4, and then adding them up and integrating on R3, we have

    R3|x|2γ3ρ3ρtdx+r1R3|x|2γ3ρ3divudx+R3|x|2γ3u3utdx+r1R3|x|2γ3u4ρdx+r2R3|x|2γ3u4ηdxr3R3|x|2γ3u3divτdx+r2β˜ηR3|x|2γ3η3ηtdx+r2R3|x|2γ3η3divudxr2αβ˜ηR3|x|2γ3η3ηdx+r32βk˜ηR3|x|2γ3τ3τtdx+r32βk˜ηA02λR3|x|2γ(3τ)2dxr3α2βk˜ηR3|x|2γ3τ3τdxr32R3|x|2γ3τ3(u+Tu)dx=R3|x|2γ3ρ3S1dx+R3|x|2γ3u3S2dx+r2β˜ηR3|x|2γ3η3S3dx+r32βk˜ηR3|x|2γ3τ3S4dx. (3.38)

    Then, using integration by parts to simplify, one has

    12ddt(3ρ2L2γ+3u2L2γ+r2β˜η3η2L2γ+r32βk˜η3τ2L2γ)+r2αβ˜η4η2L2γ+r32βk˜ηA02λ3τ2L2γ+r3α2βk˜η4τ2L2γ=r1R3|x|2γ3ρ3divudxr1R3|x|2γ3u4ρdxr2R3|x|2γ3η3divudxr2R3|x|2γ3u4ηdx+r3R3|x|2γ3u3divτdx+r32R3|x|2γ3τ3(u+Tu)dxr2αβ˜ηR3(|x|2γ)3η4ηdxr3α2βk˜ηR3(|x|2γ)3τ4τdx+R3|x|2γ3ρ3S1dx+R3|x|2γ3u3S2dx+r2β˜ηR3|x|2γ3η3S3dx+r32βk˜ηR3|x|2γ3τ3S4dx12i=1J4,i. (3.39)

    Initially, by applying integration by parts and using Lemma 2.3, we can obtain

    6i=1J4,i|r1R3(|x|2γ)3ρ3udx|+|r2R3(|x|2γ)3η3udx|+|r3R3(|x|2γ)3τ3udx|3ρL2γ3uL2γ1+3ηL2γ3uL2γ1+3τL2γ3uL2γ13(ρ,η)L2γ3uL2γ1+εr33τ2L2γ+Cr3(ε)3u2L2γ1. (3.40)

    By using integration by parts, Lemma 2.3, and Cauchy's inequality

    |J4,7|+|J4,8|r2αβ˜η4τL2γ3τL2γ1+r3α2βk˜η4ηL2γ3ηL2γ1ε(r2αβ˜η)4η2L2γ+Cr2αβ˜η(ε)3η2L2γ1+ε(r3α2βk˜η)4τ2L2γ+Cr3α2βk˜η(ε)3τ2L2γ1. (3.41)

    By the definitions of S1, S2, S3, and S4, Lemma 2.1, Cauchy's inequality and Lemma 2.3, we get

    |J4,9|=|βR3|x|2γ3ρ3(uρ)dx|+|βR3|x|2γ3ρ3(ρu)dx||βR3|x|2γu3ρ4ρdx|+|βR3|x|2γρ3ρ4udx|+|βR3|x|2γu(3ρ)2dx|+|βR3|x|2γρ3ρ3udx||βR3(|x|2γu)(3ρ)2dx|+|βR3|x|2γρ3ρ4udx|+|βR3|x|2γu(3ρ)2dx|+|βR3|x|2γρ3ρ3udx||βR3|x|2γρ3ρ4udx|+uL3ρ2L2γ+uL3ρL2γ3ρL2γ1+ρL3ρL2γ3uL2γ|βR3|x|2γρ3ρ4udx|+t543ρ2L2γ+t743u2L2γ+3ρ2L2γ1. (3.42)

    Next, we make full use of the dissipative structure of the system (1.4) to deal with the trouble term

    N1|βR3|x|2γρ3ρ4udx|.

    More precisely, based on the fact that divu=ρt+βuρr1+βρ, we can reduce the order of the spatial derivative of velocity. First, we rewrite the trouble N1 as follows:

    N1=|βR3|x|2γρ3ρ3(ρt+βuρr1+βρ)dx|=|βR3|x|2γρ(ρt+βuρ)3ρ3(1r1+βρ)dx|+3|βR3|x|2γρ3ρ(ρt+βuρ)2(1r1+βρ)dx|+3|βR3|x|2γρ3ρ2(ρt+βuρ)(1r1+βρ)dx|+|βR3|x|2γ1r1+βρρ3ρt3ρdx|+β2|R3|x|2γ1r1+βρρu4ρ3ρdx|+3β2|R3|x|2γ1r1+βρρu3ρ3ρdx|+3β2|R3|x|2γ1r1+βρρ2u2ρ3ρdx|+β2|R3|x|2γ1r1+βρρ3uρ3ρdx|8i=1N1,i. (3.43)

    Noticing that \rho_t = -r_1 \operatorname{div}u -\beta\operatorname{div}(\rho u) from (1.4)_1 , we have

    \begin{align} |N_{1, 1}| = & \left|\beta \int_{\mathbb{R}^3}|x|^{2\gamma} \rho (\rho_t + \beta u \nabla \rho )\nabla^3\rho \nabla^3\left(\frac{1}{ r_1+\beta \rho }\right) \mathrm{\; d} x \right| \\ \leq & \left| \int_{\mathbb{R}^3} |x|^{2\gamma} \rho \nabla^3 \rho (\beta u \operatorname{div} \rho + \beta \rho \operatorname{div}u + \beta u \nabla \rho + r_1 \operatorname{div}u) \nabla^3 \left(\frac{1}{ r_1+\beta \rho } \right) \mathrm{\; d} x \right| \\ \lesssim & \| \nabla^3(\frac{1}{ r_1+\beta \rho }) \|_{L^{2}} \| \nabla^3 \rho\|_{L_{\gamma}^{2}} \| |x|^{\gamma} \rho\|_{L^{\infty}}( \|u\|_{L^{\infty}} \|\operatorname{div} \rho\|_{L^{\infty}} + \|\operatorname{div}u\|_{L^{\infty}} \|\rho\|_{L^{\infty}}) \\& +\| \nabla^3(\frac{1}{ r_1+\beta \rho }) \|_{L^{2}} \| \nabla^3 \rho\|_{L_{\gamma}^{2}} \| |x|^{\gamma} \rho\|_{L^{\infty}} ( \| u\|_{L^{\infty}} \|\nabla \rho\|_{L^{\infty}} + r_1 \|\operatorname{div}u\|_{L^{\infty}}) \\ \lesssim & \| \nabla^3\rho \|_{H^{1}} \| \nabla^3 \rho\|_{L_{\gamma}^{2}} \| |x|^{\gamma} \rho\|_{L^{\infty}}( \|\nabla u\|_{H^1} \|\nabla \operatorname{div} \rho\|_{H^1} + \|\nabla \operatorname{div}u\|_{H^1} \|\nabla \rho\|_{H^1}) \\& +\| \nabla^3 \rho \|_{H^{1}} \| \nabla^3 \rho\|_{L_{\gamma}^{2}} \| |x|^{\gamma} \rho\|_{L^{\infty}} (\| \nabla u\|_{H^1} \|\nabla^2 \rho\|_{H^1} + r_1 \|\nabla \operatorname{div} u\|_{H^1}) \\ \lesssim & t^{-\frac{5}{4}}\| \nabla^3 \rho\|_{L_{\gamma}^{2}} ^2 +t^{-\frac{11}{2}+2\gamma}, \end{align} (3.44)

    where we have used the fact that (\frac{1}{ r_1+\beta \rho }) \sim \mathcal{O}(1)(\rho) . By using the Gagliardo-Nirenberg-Sobolev inequality and Cauchy's inequality, we have

    \begin{equation} \begin{split} \| |x|^{\gamma} \rho \|_{L^{\infty}} \lesssim & \| \nabla(|x|^{\gamma} \rho)\|_{L^{2}}^{\frac{1}{2}} \| \nabla^2(|x|^{\gamma} \rho)\|_{L^{2}}^{\frac{1}{2}} \\ \lesssim & (\|\nabla^2(|x|^{\gamma} \rho)\|_{L^{2}} +\|\nabla(|x|^{\gamma} \rho)\|_{L^{2}}) \\ \lesssim & \| \rho\|_{L_{\gamma-2}^{2}} + \| \rho\|_{L_{\gamma-1}^{2}} + \| \nabla \rho\|_{L_{\gamma-1}^{2}} + \| \nabla \rho\|_{L_{\gamma}^{2}} +\| \nabla^2 \rho\|_{L_{\gamma}^{2}} \\ \lesssim & t^{-\frac{5}{4}+\gamma}. \end{split} \end{equation} (3.45)

    In a similar way, one has

    \begin{equation} \begin{split} |N_{1, 2}| \leq & \left| \int_{\mathbb{R}^3}|x|^{2\gamma} \rho \nabla^3 \rho \nabla (r_1 \operatorname{div}u -\beta\operatorname{div}(\rho u) + \beta u \nabla \rho )\nabla^2 \left( \frac{1}{ r_1+\beta \rho } \right) \mathrm{\; d} x \right| \\ \lesssim & \| \nabla^2(\frac{1}{ r_1+\beta \rho }) \|_{L^{2}} \| \nabla^3 \rho\|_{L_{\gamma}^{2}} \| |x|^{\gamma} \rho\|_{L^{\infty}}( \|\nabla^2 u\|_{L^{\infty}} \|\rho\|_{L^{\infty}} + \|u\|_{L^{\infty}} \|\nabla^2 \rho\|_{L^{\infty}}) \\& +\| \nabla^2(\frac{1}{ r_1+\beta \rho }) \|_{L^{2}} \| \nabla^3 \rho\|_{L_{\gamma}^{2}} \| |x|^{\gamma} \rho\|_{L^{\infty}} ( \| \nabla u\|_{L^{\infty}} \|\nabla \rho\|_{L^{\infty}} + r_1 \|\nabla \operatorname{div}u\|_{L^{\infty}}) \\ \lesssim & t^{-\frac{5}{4}}\| \nabla^3 \rho\|_{L_{\gamma}^{2}} ^2 +t^{-\frac{11}{2}+2\gamma}, \end{split} \end{equation} (3.46)

    and

    \begin{equation} \begin{split} |N_{1, 3}| \leq & \left| \int_{\mathbb{R}^3}|x|^{2\gamma} \rho \nabla^3 \rho \nabla^2 (r_1 \operatorname{div}u -\beta\operatorname{div}(\rho u) + \beta u \nabla \rho )\nabla(\frac{1}{ r_1+\beta \rho }) \mathrm{\; d} x \right| \\ \lesssim & \| \nabla(\frac{1}{ r_1+\beta \rho }) \|_{L^{3}} \| \nabla^3 \rho\|_{L_{\gamma}^{2}} \| \nabla^2 \rho\|_{L_{\gamma}^{6}} \| \rho\|_{L^{\infty}} \|\operatorname{div} u\|_{L^{\infty}} \\& +\| \nabla(\frac{1}{ r_1+\beta \rho }) \|_{L^{\infty}} \| \nabla^3 \rho\|_{L_{\gamma}^{2}} \| \nabla^3 u\|_{L_{\gamma}^{2}} \| \rho\|_{L^{\infty}} \|\rho\|_{L^{\infty}} \\& + \| \nabla(\frac{1}{ r_1+\beta \rho }) \|_{L^{3}} \| \nabla^3 \rho\|_{L_{\gamma}^{2}} \| \nabla^2 u\|_{L_{\gamma}^{6}} \| \rho\|_{L^{\infty}} \|\operatorname{div} \rho\|_{L^{\infty}} \\& +\| \nabla(\frac{1}{ r_1+\beta \rho }) \|_{L^{\infty}} \| \nabla^3 \rho\|_{L_{\gamma}^{2}} ^2 \| \rho\|_{L^{\infty}} \|u\|_{L^{\infty}} \\& + r_1\| \rho\|_{L^{\infty}} \| \nabla(\frac{1}{ r_1+\beta \rho }) \|_{L^{\infty}} \| \nabla^3 \rho\|_{L_{\gamma}^{2}} \| \nabla^2\operatorname{div} u\|_{L_{\gamma}^{2}} \\ \lesssim & t^{-\frac{5}{4}}\| \nabla^3(u, \rho)\|_{L_{\gamma}^{2}} ^2 +t^{-\frac{11}{2}+2\gamma}. \end{split} \end{equation} (3.47)

    By applying integration by parts, we arrive at

    \begin{equation} \begin{split} |N_{1, 4}|+|N_{1, 5}| \lesssim & \frac{\beta}{2} \frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^3}|x|^{2\gamma}\frac{1}{ r_1+\beta \rho } \rho \nabla^3\rho \nabla^3 \rho \mathrm{\; d} x - \frac{\beta}{2} \int_{\mathbb{R}^3} (|x|^{2\gamma} \frac{\rho}{ r_1+\beta \rho })_t | \nabla^3 \rho |^2\mathrm{\; d} x \\& -\frac{\beta^2}{2}\int_{\mathbb{R}^3}\nabla(|x|^{2\gamma}\frac{\rho u }{ r_1+\beta \rho}) | \nabla^3 \rho |^2\mathrm{\; d} x \\ \lesssim & \frac{\beta}{2} \frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^3} |x|^{2\gamma} \frac{\rho}{ r_1+\beta \rho } |\nabla^3\rho|^2 \mathrm{\; d} x + \frac{\beta}{2} \left| \int_{\mathbb{R}^3} |x|^{2\gamma}( \frac{\rho}{ \beta \rho })_t |\nabla^3 \rho |^2\mathrm{\; d} x \right| \\& + \frac{\beta}{2} \left| \int_{\mathbb{R}^3} \nabla(|x|^{2\gamma}) \frac{\rho}{ r_1+\beta\rho } |\nabla^3 \rho |^2\mathrm{\; d} x \right| + \left|\frac{\beta^2}{2}\int_{\mathbb{R}^3} \nabla(|x|^{2\gamma} \frac{\rho u}{ r_1+\beta \rho } ) | \nabla^3 \rho |^2\mathrm{\; d} x \right|\\ \lesssim & \frac{\beta}{2} \frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^3} |x|^{2\gamma} \frac{\rho}{ r_1+\beta \rho } |\nabla^3\rho|^2 \mathrm{\; d} x + \varepsilon \| \nabla^3 \rho\|_{L_{\gamma}^{2}}^2 + \| \nabla^3 \rho\|_{L_{\gamma-1}^{2}}^2. \end{split} \end{equation} (3.48)

    Similar to (3.44), we have

    \begin{equation} \begin{split} & |N_{1, 6}|+|N_{1, 7}| +|N_{1, 8}| \\ \lesssim & 3\beta^2 \| \frac{1}{ r_1+\beta \rho } \|_{L^{\infty}} \|\rho\|_{L^{\infty}} \| \nabla u\|_{L^{\infty}} \|\nabla^3\rho\|_{L_{\gamma}^{2}}^2 \\& + 3\beta^2 \| \frac{1}{ r_1+\beta \rho } \|_{L^{3}} \|\rho\|_{L^{\infty}} \| \nabla^2 u\|_{L^{\infty}} \|\nabla^2\rho\|_{L_{\gamma}^{6}} \|\nabla^3\rho\|_{L_{\gamma}^{2}} \\& + \beta^2 \| \frac{1}{ r_1+\beta \rho } \|_{L^{\infty}} \|\rho\|_{L^{\infty}} \| \nabla \rho\|_{L^{\infty}} \|\nabla^3\rho\|_{L_{\gamma}^{2}} \|\nabla^3 u\|_{L_{\gamma}^{2}} \\ \lesssim & t^{-\frac{5}{4}}\| \nabla^3(u, \rho)\|_{L_{\gamma}^{2}} ^2 +t^{-\frac{11}{2}+2\gamma}. \end{split} \end{equation} (3.49)

    Substituting (3.43)–(3.49) into (3.42) gives

    \begin{equation} \begin{split} |J_{4, 9}| & \lesssim \frac{\beta}{2} \frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^3}|x|^{2\gamma} \frac{\rho}{ r_1+\beta \rho } |\nabla^3\rho|^2 \mathrm{\; d} x + t^{-\frac{5}{4}}\| \nabla^3(u, \rho)\|_{L_{\gamma}^{2}} ^2 + \| \nabla^3 \rho\|_{L_{\gamma-1}^{2}}^2 +t^{-\frac{11}{2}+2\gamma}. \end{split} \end{equation} (3.50)

    By applying integration by parts, Lemma 2.1, Cauchy's inequality, Minkowski's inequality, and Lemma 2.3, one has

    \begin{equation} \begin{split} |J_{4, 10}| = & \left|\beta \int_{\mathbb{R}^3}|x|^{2\gamma} ( \nabla^3 u)^2 \nabla u \mathrm{\; d} x \right| + \left|\beta \int_{\mathbb{R}^3}|x|^{2\gamma} u \nabla^3 u \nabla^4 u \mathrm{\; d} x \right| \\& + \left| \int_{\mathbb{R}^3}|x|^{2\gamma} \nabla^3 u H(\rho) \nabla^4 \rho \mathrm{\; d} x \right| + \left| \int_{\mathbb{R}^3}|x|^{2\gamma} \nabla^3 u \nabla^3 H(\rho) \nabla \rho \mathrm{\; d} x \right| \\& +\left|\int_{\mathbb{R}^3}|x|^{2\gamma} \nabla^3 u \nabla^3 G(\rho) \nabla \eta \mathrm{\; d} x \right| + \left| \int_{\mathbb{R}^3}|x|^{2\gamma} \nabla^3 u \nabla^3 G(\rho)\operatorname{div} \tau \mathrm{\; d} x \right| \\& +\left|\int_{\mathbb{R}^3}|x|^{2\gamma} \nabla^3 u G(\rho) \nabla^4 \eta \mathrm{\; d} x \right| + \left| \int_{\mathbb{R}^3}|x|^{2\gamma} \nabla^3 u G(\rho)\nabla^3 \operatorname{div} \tau \mathrm{\; d} x \right| \\& + \left| \int_{\mathbb{R}^3}|x|^{2\gamma} \nabla^3 u \nabla^3( \frac{\eta}{\rho+\tilde{\rho}} ) \nabla \eta \mathrm{\; d} x \right| + \left| \int_{\mathbb{R}^3}|x|^{2\gamma} \frac{\eta}{\rho+\tilde{\rho}} \nabla^3 u \nabla^ 4 \eta \mathrm{\; d} x \right| \\ \triangleq& \sum^{10}_{i = 1}H_{4, i}, \end{split} \end{equation} (3.51)

    where

    \begin{equation} \begin{split} |H_{4, 1}|+|H_{4, 2}| \lesssim & \|\nabla u\|_{L^{\infty}} \| \nabla^3 u\|_{L_{\gamma}^{2}}^2 +\| u\|_{L^{\infty}} \| \nabla^3 u\|_{L_{\gamma}^{2}} \| \nabla^3 u\|_{L_{\gamma-1}^{2}} \\ \lesssim & t^{-\frac{5}{4}} \|\nabla^3 u\|_{L_{\gamma}^{2}}^2 + \|\nabla^3 u\|_{L_{\gamma-1}^{2}}^2. \end{split} \end{equation} (3.52)

    Similar to the delicate weighted energy estimates for the trouble term |J_{4, 9}| , we get

    \begin{equation} \begin{split} |H_{4, 3}| & \lesssim \frac{\beta}{2} \frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^3}|x|^{2\gamma} \frac{H(\rho)}{ r_1+\beta \rho } |\nabla^3\rho|^2 \mathrm{\; d} x + t^{-\frac{5}{4}}\| \nabla^3(u, \rho)\|_{L_{\gamma}^{2}} ^2 + \| \nabla^3 \rho\|_{L_{\gamma-1}^{2}}^2 +t^{-\frac{11}{2}+2\gamma}. \end{split} \end{equation} (3.53)

    By applying integration by parts, Lemma 2.3, and Cauchy's inequality, we have

    \begin{equation} \begin{split} & |H_{4, 4}|+|H_{4, 5}|+ |H_{4, 6}| \\ \lesssim & \| \nabla^3 H(\rho)\|_{L^{3}} \| \nabla^3 u \|_{L_{\gamma}^{2}} \| \nabla \rho \|_{L_{\gamma}^{6}} + \| \nabla^3 G(\rho)\|_{L^{3}} \| \nabla^3 u \|_{L_{\gamma}^{2}} \| \nabla \eta \|_{L_{\gamma}^{6}} \\& + \| \nabla^3 G(\rho)\|_{L^{3}} \| \nabla^3 u \|_{L_{\gamma}^{2}} \| \operatorname{div} \tau \|_{L_{\gamma}^{6}}\\ \lesssim & \| \nabla^3 H(\rho)\|_{H^{1}} \| \nabla^3 u \|_{L_{\gamma}^{2}}( \| \nabla^2 \rho \|_{L_{\gamma}^{2}}+\| \nabla \rho \|_{L_{\gamma-1}^{2}}) + \| \nabla^3 G(\rho)\|_{H^{1}} \| \nabla^3 u \|_{L_{\gamma}^{2}} \|\nabla^2 \eta \|_{L_{\gamma}^{2}} \\& + \| \nabla^3 G(\rho)\|_{H^{1}} \| \nabla^3 u \|_{L_{\gamma}^{2}} \|\nabla \eta \|_{L_{\gamma-1}^{2}} + \|\nabla^3 G(\rho)\|_{H^{1}} \| \nabla^3 u \|_{L_{\gamma}^{2}} (\| \nabla \operatorname{div} \tau \|_{L_{\gamma}^{2}}+ \| \operatorname{div} \tau \|_{L_{\gamma-1}^{2}})\\ \lesssim & t^{-\frac{5}{4}} \| \nabla^3 u \|_{L_{\gamma}^{2}}^2 + t^{-\frac{11}{2}+2\gamma} + t^{-\frac{13}{2}+2\gamma}, \end{split} \end{equation} (3.54)

    and

    \begin{equation} \begin{split} & |H_{3, 7}|+|H_{3, 8}|+|H_{3, 9}|+|H_{3, 10}|\\ \lesssim & \| G(\rho)\|_{L^{\infty}} \| \nabla^3 u \|_{L_{\gamma}^{2}}\| \nabla^4 \eta \|_{L_{\gamma}^{2}} + \| G(\rho)\|_{L^{\infty}} \| \nabla^3 u \|_{L_{\gamma}^{2}}\| \nabla^3 \operatorname{div} \tau \|_{L_{\gamma}^{2}} \\& + \|\nabla^3 (\frac{\eta}{\rho+\tilde{\rho}})\|_{L^{3}} \| \nabla^3 u \|_{L_{\gamma}^{2}}\| \nabla \eta\|_{L_{\gamma}^{6}} +\|\frac{\eta}{\rho+\tilde{\rho}}\|_{L^{\infty}} \| \nabla^3 u \|_{L_{\gamma}^{2}}\| \nabla^4 \eta\|_{L_{\gamma}^{2}} \\ \lesssim & t^{-\frac{5}{4}} \| \nabla^3 u \|_{L_{\gamma}^{2}}^2 + t^{-\frac{5}{4}}\| \nabla^4 (\eta, \tau) \|_{L_{\gamma}^{2}}^2 + t^{-\frac{11}{2}+2\gamma} + t^{-\frac{13}{2}+2\gamma}. \end{split} \end{equation} (3.55)

    Therefore

    \begin{equation} \begin{split} |J_{4, 10}| \lesssim & \frac{\beta}{2} \frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^3}|x|^{2\gamma} \frac{H(\rho)}{ r_1+\beta \rho } |\nabla^3\rho|^2 \mathrm{\; d} x + t^{-\frac{5}{4}} \| \nabla^3 (\rho, u) \|_{L_{\gamma}^{2}}^2 \\& + t^{-\frac{5}{4}}\| \nabla^4( \eta, \tau)\|_{L_{\gamma}^{2}}^2 + \| \nabla^3( u, \rho)\|_{L_{\gamma-1}^{2}}^2 + t^{-\frac{11}{2}+2\gamma}. \end{split} \end{equation} (3.56)

    Similarly, one has

    \begin{equation} \begin{split} |J_{4, 11}| = &\left|\frac{r_2}{\tilde{\eta}} \int_{\mathbb{R}^3}|x|^{2\gamma} \nabla^3 \eta \nabla^ 3( u \nabla \eta )\mathrm{\; d} x \right| + \left|\frac{r_2}{\tilde{\eta}} \int_{\mathbb{R}^3} |x|^{2\gamma} \nabla^3 \eta \nabla^3 ( \eta \nabla u)\mathrm{\; d} x \right| \\ \lesssim & \|\nabla \eta\|_{L^{\infty}} \|\nabla^3 u \|_{L_{\gamma}^{2}}\|\nabla^3 \eta\|_{L_{\gamma}^{2}} + \|u\|_{L^{\infty}} \|\nabla^3 \eta \|_{L_{\gamma}^{2}}\|\nabla^4 \eta\|_{L_{\gamma}^{2}} + \|\nabla u\|_{L^{\infty}} \|\nabla^3 \eta\|_{L_{\gamma}^{2}}^2 \\& + \| \eta\|_{L^{\infty}} \|\nabla^3 u\|_{L_{\gamma}^{2}} \|\nabla^4 \eta\|_{L_{\gamma}^{2}} + \| \eta\|_{L^{\infty}} \|\nabla^3 \eta\|_{L_{\gamma}^{2}} \|\nabla^3 u\|_{L_{\gamma-1}^{2}}\\ \lesssim & \|\nabla^2 \eta\|_{H^1} \|\nabla^3 u \|_{L_{\gamma}^{2}}\|\nabla^3 \eta\|_{L_{\gamma}^{2}} + \|\nabla u\|_{H^1} \|\nabla^3 \eta \|_{L_{\gamma}^{2}}\|\nabla^4 \eta\|_{L_{\gamma}^{2}} + \|\nabla^2 u\|_{H^1} \|\nabla^3 \eta\|_{L_{\gamma}^{2}}^2 \\& + \|\nabla \eta\|_{H^1} \|\nabla^3 u\|_{L_{\gamma}^{2}} \|\nabla^4 \eta\|_{L_{\gamma}^{2}} + \|\nabla \eta\|_{H^1} \|\nabla^3 \eta\|_{L_{\gamma}^{2}} \|\nabla^3 u\|_{L_{\gamma-1}^{2}}\\ \lesssim & t^{-\frac{5}{4}} \|\nabla^3 (u, \eta)\|_{L_{\gamma}^{2}}^2 + t^{-\frac{5}{4}} \|\nabla^4\eta\|_{L_{\gamma}^{2}}^2 +\|\nabla^3u\|_{L_{\gamma-1}^{2}}^2, \end{split} \end{equation} (3.57)

    and

    \begin{equation} \begin{split} |J_{4, 12}| \lesssim & \| \tau \|_{L^{\infty}} \| \nabla^3 \tau \|_{L_{\gamma}^{2}}\| \nabla^3 u\|_{L_{\gamma-1}^{2}} + \| \tau \|_{L^{\infty}} \| \nabla^4 \tau \|_{L_{\gamma}^{2}}\| \nabla^3 u\|_{L_{\gamma}^{2}} + \| \nabla u \|_{L^{\infty}} \| \nabla^3 \tau \|_{L_{\gamma}^{2}}^2 \\& + \|\nabla \tau \|_{L^{\infty}} \| \nabla^3 \tau \|_{L_{\gamma}^{2}}\| \nabla^3 u\|_{L_{\gamma}^{2}} + \| u\|_{L^{\infty}} \|\nabla^3 \tau \|_{L_{\gamma}^{2}}\|\nabla^4 \tau \|_{L_{\gamma}^{2}} \\ & + \| \nabla u \|_{L^{\infty}} \| \nabla^3 \tau \|_{L_{\gamma}^{2}}\| \nabla^3 \eta \|_{L_{\gamma}^{2}} + \| \eta \|_{L^{\infty}} \| \nabla^3 \eta \|_{L_{\gamma}^{2}}\| \nabla^3 u\|_{L_{\gamma-1}^{2}} \\& + \|\nabla \tau \|_{L^{\infty}} \| \nabla^3 \tau \|_{L_{\gamma}^{2}}\| \nabla^3 u\|_{L_{\gamma}^{2}} + \| \eta \|_{L^{\infty}} \| \nabla^4 \tau \|_{L_{\gamma}^{2}}\| \nabla^3 u\|_{L_{\gamma}^{2}}\\ \lesssim & t^{-\frac{5}{4}} \|\nabla^3(u, \eta, \tau)\|_{L_{\gamma}^{2}}^2 +t^{-\frac{5}{4}} \|\nabla^4 \tau\|_{L_{\gamma}^{2}}^2 +\|\nabla^3u\|_{L_{\gamma-1}^{2}}^2. \end{split} \end{equation} (3.58)

    Substituting (3.40) to (3.58) into (3.39), we conclude that there exists a sufficiently large T_1 and a sufficiently small \varepsilon , such that

    \begin{equation} \begin{split} &\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t}(\|\nabla^3 \rho\|_{L_{\gamma}^2}^2+\|\nabla ^3u\|_{L_{\gamma}^2}^2 +\frac{r_2}{\beta \tilde{\eta}}\|\nabla^3 \eta\|_{L_{\gamma}^2}^2 +\frac{r_3}{2\beta k \tilde{\eta}}\|\nabla^3 \tau\|_{L_{\gamma}^2}^2) \\&- \frac{\beta}{2} \frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^3}|x|^{2\gamma} \frac{\rho+H(\rho)}{ r_1+\beta \rho } |\nabla^3\rho|^2 \mathrm{\; d} x +\frac{r_2\alpha}{\beta \tilde{\eta}}\|\nabla^4 \eta\|_{L_{\gamma}^2}^2 +\frac{r_3}{2\beta k \tilde{\eta}}\frac{A_0}{2\lambda}\|\nabla ^3\tau\|_{L_{\gamma}^2}^2 +\frac{r_3\alpha}{2\beta k \tilde{\eta}} \|\nabla^4 \tau\|_{L_{\gamma}^2}^2 \\ \lesssim & t^{-\frac{5}{4}} \|\nabla^3 (\rho, u, \eta, \tau)\|_{L_{\gamma}^{2}}^2 +\|\nabla^3(\rho, \eta)\|_{L_{\gamma}^{2}}\|\nabla^3 u\|_{L_{\gamma-1}^{2}} +\|\nabla^3 (u, \eta, \tau)\|_{L_{\gamma-1}^{2}}^2+ t^{-\frac{11}{2}+2\gamma}, \end{split} \end{equation} (3.59)

    for all t > T_{1} . We define

    K(t) = \|\nabla^3 \rho\|_{L_{\gamma}^2}^2+\|\nabla ^3u\|_{L_{\gamma}^2}^2 +\frac{r_2}{\beta \tilde{\eta}}\|\nabla^3 \eta\|_{L_{\gamma}^2}^2 +\frac{r_3}{2\beta k \tilde{\eta}}\|\nabla^3 \tau\|_{L_{\gamma}^2}^2 - \beta\int_{\mathbb{R}^3}|x|^{2\gamma} \frac{\rho+H(\rho)}{ r_1+\beta \rho } |\nabla^3\rho|^2 \mathrm{d}x.

    Then, it is clear that

    \begin{equation} \begin{split} & \underline{C} (\|\nabla^3 \rho\|_{L_{\gamma}^2}^2+\|\nabla ^3u\|_{L_{\gamma}^2}^2 +\frac{r_2}{\beta \tilde{\eta}}\|\nabla^3 \eta\|_{L_{\gamma}^2}^2 +\frac{r_3}{2\beta k \tilde{\eta}}\|\nabla^3 \tau\|_{L_{\gamma}^2}^2) \\ \leq & K(t) \leq \overline{C}(\|\nabla^3 \rho\|_{L_{\gamma}^2}^2+\|\nabla ^3u\|_{L_{\gamma}^2}^2 +\frac{r_2}{\beta \tilde{\eta}}\|\nabla^3 \eta\|_{L_{\gamma}^2}^2 +\frac{r_3}{2\beta k \tilde{\eta}}\|\nabla^3 \tau\|_{L_{\gamma}^2}^2), \end{split} \end{equation} (3.60)

    where \underline{C} and \overline{C} are two positive constants. Therefore, one has the following fact:

    \begin{equation} \begin{split} &\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t}(\|\nabla^3 \rho\|_{L_{\gamma}^2}^2+\|\nabla ^3u\|_{L_{\gamma}^2}^2 +\frac{r_2}{\beta \tilde{\eta}}\|\nabla^3 \eta\|_{L_{\gamma}^2}^2 +\frac{r_3}{2\beta k \tilde{\eta}}\|\nabla^3 \tau\|_{L_{\gamma}^2}^2) \\& +\frac{r_2\alpha}{\beta \tilde{\eta}}\|\nabla^4 \eta\|_{L_{\gamma}^2}^2 +\frac{r_3}{2\beta k \tilde{\eta}}\frac{A_0}{2\lambda}\|\nabla ^3\tau\|_{L_{\gamma}^2}^2 +\frac{r_3\alpha}{2\beta k \tilde{\eta}} \|\nabla^4 \tau\|_{L_{\gamma}^2}^2 \\ \lesssim & t^{-\frac{5}{4}} \|\nabla^3 (\rho, u, \eta, \tau)\|_{L_{\gamma}^{2}}^2 +\|\nabla^3(\rho, \eta)\|_{L_{\gamma}^{2}}\|\nabla^3 u\|_{L_{\gamma-1}^{2}} +\|\nabla^3 (u, \eta, \tau)\|_{L_{\gamma-1}^{2}}^2+ t^{-\frac{11}{2}+2\gamma}. \end{split} \end{equation} (3.61)

    Using the interpolation inequality with weights \left\| \nabla^3 f\right\|_{L_{\gamma-1}^{2}} \lesssim \left\|\nabla^3 f\right\|_{L_{\gamma}^{2}}^{\frac{\gamma-1}{\gamma}} \left\|\nabla^3 f\right\|_{L^{2}}^{\frac{1}{\gamma}} , we can obtain

    \begin{equation} \begin{split} &\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t}(\|\nabla^3 \rho\|_{L_{\gamma}^2}^2+\|\nabla ^3u\|_{L_{\gamma}^2}^2 +\frac{r_2}{\beta \tilde{\eta}}\|\nabla^3 \eta\|_{L_{\gamma}^2}^2 +\frac{r_3}{2\beta k \tilde{\eta}}\|\nabla^3 \tau\|_{L_{\gamma}^2}^2) \\& +\frac{r_2\alpha}{\beta \tilde{\eta}}\|\nabla^4 \eta\|_{L_{\gamma}^2}^2 +\frac{r_3}{2\beta k \tilde{\eta}}\frac{A_0}{2\lambda}\|\nabla ^3\tau\|_{L_{\gamma}^2}^2 +\frac{r_3\alpha}{2\beta k \tilde{\eta}} \|\nabla^4 \tau\|_{L_{\gamma}^2}^2 \\ \lesssim & t^{-\frac{5}{4}} \|\nabla^3(\rho, u, \eta, \tau)\|_{L_{\gamma}^{2}}^2 +\|\nabla^3 (\rho, \eta)\|_{L_{\gamma}^{2}} \|\nabla^3 u\|_{L_{\gamma}^{2}}^{\frac{\gamma-1}{\gamma}} \| \nabla^3 u\|_{L^{2}}^{\frac{1}{\gamma}} \\& + \|\nabla^3 (u, \eta, \tau)\|_{L_{\gamma}^{2}}^{\frac{2\gamma-2}{\gamma}} \|\nabla ^3(u, \eta, \tau)\|_{L^{2}}^{\frac{2}{\gamma}} + t^{-\frac{11}{2}+2\gamma}\\ \lesssim & t^{-\frac{5}{4}} \|\nabla^3(\rho, u, \eta, \tau)\|_{L_{\gamma}^{2}}^2 +t^{-\frac{9}{4\gamma}}\|\nabla^3(\rho, \eta)\|_{L_{\gamma}^{2}}^{\frac{2\gamma-1}{\gamma}} +t^{-\frac{9}{2\gamma}}\|\nabla^3(u, \eta, \tau)\|_{L_{\gamma}^{2}}^{\frac{2\gamma-2}{\gamma}} + t^{-\frac{11}{2}+2\gamma}. \end{split} \end{equation} (3.62)

    Denoting \mathrm{E}(t): = \left\|\nabla^3(\rho, u, \eta, \tau)\right\|_{L_{\gamma}^{2}}^{2} , we get

    \begin{equation*} \frac{\mathrm{d}}{\mathrm{d} t} \mathrm{E}(t) \leq C_{0} t^{-\frac{5}{4}} \mathrm{E}(t) +C_{1}t^{-\frac{9}{4\gamma}}\mathrm{E}(t)^{\frac{2\gamma-1}{2\gamma}} +C_{2} t^{-\frac{9}{2 \gamma}} \mathrm{E}(t)^{\frac{\gamma-1}{\gamma}} + t^{-\frac{11}{2}+2\gamma}, \end{equation*}

    where C_0 , C_1 , C_2 are positive constants independent of t . If \gamma > \frac{7}{2} , then we can apply Lemma 2.5 with \alpha_{0} = \frac{5}{4} > 1 , \alpha_{1} = \frac{9}{4\gamma} < 1 , \beta_{1} = \frac{2\gamma-1}{2\gamma} < 1 , \alpha_{2} = \frac{9}{2\gamma} < 1 , \beta_{2} = \frac{\gamma-1}{\gamma} < 1 , \gamma_{1} = \frac{1-\alpha_{1}}{1-\beta_{1}} = -\frac{9}{2}+2\gamma > 0 , \gamma_{2} = \frac{1-\alpha_{2}}{1-\beta_{2}} = -\frac{9}{2}+\gamma > 0 , \gamma_{1} > \gamma_{2} . Thus, for all t > T , one has

    \begin{equation} \mathrm{E}(t) \leq C t^{-\frac{9}{2}+ 2\gamma}, \end{equation} (3.63)

    we get the fact

    \begin{equation*} \| \nabla^3(\rho, u, \eta, \tau)(t)\| _{L_{\gamma_{0}}^{2}} \leq C\|\nabla^3 (\rho, u, \eta, \tau)(t)\|_{L^{2}}^{1-\frac{\gamma_{0}}{\gamma}} \|\nabla^3 (\rho, u, \eta, \tau)(t)\|_{L_{\gamma}^{2}}^{\frac{\gamma_{0}}{\gamma}} \leq C t^{-\frac{9}{4}+ \gamma_{0}}, \end{equation*}

    for all t > T , \gamma_{0} \in[0, \gamma] , and [0, \frac{9}{2}] \subset [0, \gamma](\gamma > \frac{9}{2}) . Thus, the proof of Lemma 3.4 has been completed.

    Lemma 3.4. Under the assumption of Theorem 1.3, there exists a sufficiently large T such that the solution (\rho, u, \eta, \tau) of the system (1.4) with the initial data (1.5) has the following estimate:

    \begin{equation} \left\|\nabla^m\tau(t)\right\|_{L^{2}_{\gamma}} \leq Ct^{-\frac{5}{4}-\frac{m}{2}+\gamma}, \end{equation} (3.64)

    for all t > T , \gamma \geq 0 , and 0\leq m\leq 2 , where C is a positive constant independent of t .

    Proof. Multiplying |x|^{2\gamma}\nabla^m\tau by \nabla^m(1.4)_{4} , and then adding them up, and integrating on \mathbb{R}^{3} , we have

    \begin{equation} \begin{split} &\int_{\mathbb{R}^3}|x|^{2\gamma} \nabla^m\tau \nabla^m\tau_t \mathrm{\; d} x +\frac{A_0}{2\lambda}\int_{\mathbb{R}^3}|x|^{2\gamma}(\nabla^m\tau)^2 \mathrm{\; d} x \\& -\alpha \int_{\mathbb{R}^3}|x|^{2\gamma}\nabla^m\tau \nabla^m\triangle \tau \mathrm{\; d} x - \beta k\tilde{\eta} \int_{\mathbb{R}^3}|x|^{2\gamma}\nabla^m\tau\nabla^m(\nabla u +\nabla^T u) \mathrm{\; d} x\\ = &\int_{\mathbb{R}^3}|x|^{2\gamma} \nabla^m\tau \nabla^mS_4 \mathrm{d} x . \end{split} \end{equation} (3.65)

    Then, using integration by parts to simplify, one has

    \begin{equation} \begin{split} &\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t}\|\nabla^m\tau\|_{L_{\gamma}^2}^2 +\frac{A_0}{2\lambda}\|\nabla^m\tau\|_{L_{\gamma}^2}^2 +\alpha\|\nabla^{m+1} \tau\|_{L_{\gamma}^2}^2 \\ = & -\alpha \int_{\mathbb{R}^3}\nabla (|x|^{2\gamma})\nabla^{m+1}\tau \nabla^m \tau \mathrm{\; d} x + \beta k\tilde{\eta} \int_{\mathbb{R}^3}|x|^{2\gamma}\nabla^m\tau\nabla^m(\nabla u +\nabla^T u) \mathrm{\; d} x \\& +\int_{\mathbb{R}^3}|x|^{2\gamma} \nabla^m\tau \nabla^mS_4 \mathrm{d} x \\ \triangleq& \sum^{3}_{i = 1}J_{5, i}. \end{split} \end{equation} (3.66)

    Initially, using Lemma 2.3 and Cauchy's inequality, we can obtain

    \begin{equation} \begin{split} \left|J_{5, 1} \right|& \lesssim \alpha \left\|\nabla^{m+1}\tau \right\|_{L_{\gamma}^2}\|\nabla^m \tau\|_{L_{\gamma-1}^2} \\ & \lesssim \varepsilon \alpha \left\|\nabla^{m+1}\tau \right\|_{L_{\gamma}^2}^2 + C \alpha(\varepsilon)\left\|\nabla^{m}\tau \right\|_{L_{\gamma-1}^2}^2 . \end{split} \end{equation} (3.67)

    Applying Lemma 2.3, Lemmas 3.2–3.4 and Hölder's inequality, one has

    \begin{equation} \begin{split} |J_{5, 2}| \lesssim & \left\|\nabla^{m+1} u \right\|_{L_{\gamma}^2}\|\nabla^m \tau\|_{L_{\gamma}^2} \\ \lesssim & t^{-\frac{5}{4}-\frac{m}{2}+\gamma}\|\nabla^m \tau\|_{L_{\gamma}^2}\\ \lesssim & t^{-\frac{5}{2}-m+2\gamma}+\frac{1}{2}\|\nabla^m \tau\|_{L_{\gamma}^2}^2. \end{split} \end{equation} (3.68)

    By using Lemma 2.1, Hölder's inequality, Cauchy's inequality, we can get the following weighted estimate

    \begin{align} |J_{5, 3}| \lesssim & \left| \int_{\mathbb{R}^3}|x|^{2\gamma}\nabla^m \tau \nabla^m (\operatorname{div} (u \tau)) \mathrm{\; d} x \right| + \left| \int_{\mathbb{R}^3}|x|^{2\gamma}\nabla^m \tau \nabla^m (\nabla u \tau + \tau \nabla^T u ) \mathrm{\; d} x \right| \\ & + \left| \int_{\mathbb{R}^3}|x|^{2\gamma}\nabla^m \tau \nabla^m(\eta (\nabla u + \nabla^T u ) ) \mathrm{\; d} x \right| \\ \lesssim & \left| \sum\limits_{j = 0}^{m} C_{m}^{j} \int_{\mathbb{R}^3}|x|^{2\gamma}\nabla^m \tau \nabla^j u \nabla^{m-j+1}\tau \mathrm{\; d} x \right| + \left| \sum\limits_{j = 0}^{m} C_{m}^{j} \int_{\mathbb{R}^3}|x|^{2\gamma}\nabla^m \tau \nabla^j \tau \nabla^{m-j+1}u \mathrm{\; d} x \right| \\& +\left| \sum\limits_{j = 0}^{m} C_{m}^{j} \int_{\mathbb{R}^3}|x|^{2\gamma}\nabla^m \tau \nabla^j \eta \nabla^{m-j+1}u \mathrm{\; d} x \right|\\ \lesssim & \sum\limits_{j = 0}^{m} C_{m}^{j} \|\nabla^j u\|_{L^{\infty}} \| \nabla^{m-j+1}\tau \|_{L_{\gamma}^{2}} \|\nabla^m \tau\|_{L_{\gamma}^{2}} +\sum\limits_{j = 0}^{m} C_{m}^{j} \|\nabla^j \tau\|_{L^{\infty}} \| \nabla^{m-j+1} u \|_{L_{\gamma}^{2}} \|\nabla^m \tau\|_{L_{\gamma}^{2}} \\& + \sum\limits_{j = 0}^{m} C_{m}^{j} \|\nabla^j \eta \|_{L^{\infty}} \| \nabla^{m-j+1} u \|_{L_{\gamma}^{2}} \|\nabla^m \tau\|_{L_{\gamma}^{2}} \\ \lesssim & \sum\limits_{j = 0}^{m} C_{m}^{j} \|\nabla^{j+1} u\|_{H^1} \| \nabla^{m-j+1}\tau \|_{L_{\gamma}^{2}} \|\nabla^m \tau\|_{L_{\gamma}^{2}} +\sum\limits_{j = 0}^{m} C_{m}^{j} \|\nabla^{j+1} \tau\|_{H^1} \| \nabla^{m-j+1} u \|_{L_{\gamma}^{2}} \|\nabla^m \tau\|_{L_{\gamma}^{2}} \\& + \sum\limits_{j = 0}^{m} C_{m}^{j} \|\nabla^{j+1} \eta \|_{H^1} \| \nabla^{m-j+1} u \|_{L_{\gamma}^{2}} \|\nabla^m \tau\|_{L_{\gamma}^{2}} \\ \lesssim & \sum\limits_{j = 0}^{m} t^{-\frac{5}{4}-\frac{j}{2}} \times t^{-\frac{5}{4}-\frac{m-j}{2}+\gamma} \|\nabla^m \tau\|_{L_{\gamma}^{2}}\\ \lesssim & t^{-\frac{5}{2}-m+2\gamma}+t^{-\frac{5}{4}}\|\nabla^m \tau\|_{L_{\gamma}^{2}}^2. \end{align} (3.69)

    Substituting (3.67) to (3.69) into (3.66), we conclude that there exists a sufficiently large T_1 and a sufficiently small \varepsilon , such that

    \begin{equation} \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t}\|\nabla^m\tau\|_{L_{\gamma}^2}^2 +C'\|\nabla^m\tau\|_{L_{\gamma}^2}^2 +C'' \|\nabla^{m+1} \tau\|_{L_{\gamma}^2}^2 \lesssim t^{-\frac{5}{2}-m +2\gamma}. \end{equation} (3.70)

    for all t > T_{1} , where C' and C'' are positive constant independent of t . By the Gronwall's argument, one has

    \begin{equation} \|\nabla^m\tau(t)\|_{L_{\gamma}^2} \lesssim t^{-\frac{5}{4}-\frac{m}{2} +\gamma}, \end{equation} (3.71)

    for all 0\leq m \leq 2 and 0 \leq \gamma . Thus, the proof of Theorem 1.3 has been completed.

    In this paper, we studied the space-time decay rates of solutions to the Cauchy problem of the compressible Oldroyd-B system with diffusive properties and without viscous dissipation in three dimensions. More precisely, we demonstrated that the weighted rate of k(0\leq k\leq3) -th order spatial derivative of the global solution (\rho, u, \eta, \tau) is t^{-\frac{3}{4}+\frac{k}{2}+\gamma} in the weighted Lebesgue space L^2_{\gamma} . And we further explained the reason why the decay estimates cannot achieve better results. Moreover, we also establish that the space-time decay rate of m\left (\in\left [0, 2\right] \right) -th order spatial derivative of the extra stress tensor of the field in L^2_{\gamma } is (1+t)^{-\frac{5}{4}-\frac{m}{2}+\gamma} , which is faster than that of the velocity.

    All authors have contributed significantly to the development of this article. Yangyang Chen: Conceptualization, Methodology, Validation, Writing-original draft and editing; Yixuan Song: Formal analysis, Validation, Writing-original draft and editing. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work is partially supported by Innovation Project of Guangxi Graduate Education #YCSW2024151, Innovation Project of Guangxi Graduate Education #JGY2023061, and key Laboratory of Mathematical and Statistical Model (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region.

    The authors declare that they have no conflict of interest.



    [1] C. Ai, Z. Tan, J. Zhou, Global existence and decay estimate of solution to rate type viscoelastic fluids, J. Differ. Equations, 377 (2023), 188–220. https://doi.org/10.1016/j.jde.2023.08.039 doi: 10.1016/j.jde.2023.08.039
    [2] M. Amara, D. Capatina-Papaghiuc, D. Trujillo, Stabilized finite element method for Navier-Stokes equations with physical boundary conditions, Math. Comp., 76 (2007), 1195–1217. https://doi.org/10.1090/S0025-5718-07-01929-1 doi: 10.1090/S0025-5718-07-01929-1
    [3] J. W. Barrett, Y. Lu, E. Süli, Existence of large-data finite-energy global weak solutions to a compressible Oldroyd-B model, Commun. Math. Sci., 15 (2017), 1265–1323. https://doi.org/10.4310/CMS.2017.v15.n5.a5 doi: 10.4310/CMS.2017.v15.n5.a5
    [4] M. Bathory, M. Bulíček, J. Málek, Large data existence theory for three-dimensional unsteady flows of rate-type viscoelastic fluids with stress diffusion, Adv. Nonlinear Anal., 10 (2021), 501–521. https://doi.org/10.1515/anona-2020-0144 doi: 10.1515/anona-2020-0144
    [5] Q. Chen, Z. Tan, Time decay of solutions to the compressible Euler equations with damping, Kinet. Relat. Models, 7 (2014), 605–619. https://doi.org/10.3934/krm.2014.7.605 doi: 10.3934/krm.2014.7.605
    [6] Y. Chen, Z. Luo, Y. Zhang, Space-time decay rates for the 3D full compressible MHD equations, Discrete Cont. Dyn.-B, 29 (2024), 245–281. https://doi.org/10.3934/dcdsb.2023095 doi: 10.3934/dcdsb.2023095
    [7] L. Chupin, S. Martin, Viscoelastic flows in a rough channel: A multiscale analysis, Ann. I. H. Poincaré C Anal. Non Linéaire, 34 (2017), 483–508. https://doi.org/10.1016/j.anihpc.2016.01.002 doi: 10.1016/j.anihpc.2016.01.002
    [8] P. Constantin, M. Kliegl, Note on global regularity for two-dimensional Oldroyd-B fluids with diffusive stress, Arch. Ration. Mech. An., 206 (2012), 725–740. https://doi.org/10.1007/s00205-012-0537-0 doi: 10.1007/s00205-012-0537-0
    [9] T. M. Elgindi, F. Rousset, Global regularity for some Oldroyd-B type models, Commun. Pure Appl. Math., 68 (2015), 2005–2021. https://doi.org/10.1002/cpa.21563 doi: 10.1002/cpa.21563
    [10] D. Fang, M. Hieber, R. Zi, Global existence results for Oldroyd-B fluids in exterior domains: The case of non-small coupling parameters, Math. Ann., 357 (2013), 687–709. https://doi.org/10.1007/s00208-013-0914-5 doi: 10.1007/s00208-013-0914-5
    [11] D. Fang, R. Zi, Strong solutions of 3D compressible Oldroyd-B fluids, Math. Method. Appl. Sci., 36 (2013), 1423–1439. https://doi.org/10.1002/mma.2695 doi: 10.1002/mma.2695
    [12] J. Huang, Y. Wang, H. Wen, R. Zi, Optimal time-decay estimates for an Oldroyd-B model with zero viscosity, J. Differ. Equations, 306 (2022), 456–491. https://doi.org/10.1016/j.jde.2021.10.046 doi: 10.1016/j.jde.2021.10.046
    [13] I. Kukavica, On the weighted decay for solutions of the Navier-Stokes system, Nonlinear Anal., 70 (2009), 2466–2470. https://doi.org/10.1016/j.na.2008.03.031 doi: 10.1016/j.na.2008.03.031
    [14] I. Kukavica, J. J. Torres, Weighted L^p decay for solutions of the Navier-Stokes equations, Commun. Part. Diff. Eq., 32 (2007), 819–831. https://doi.org/10.1080/03605300600781659 doi: 10.1080/03605300600781659
    [15] B. Lai, J. Lin, C. Wang, Forward self-similar solutions to the viscoelastic Navier-Stokes equation with damping, SIAM J. Math. Anal., 49 (2017), 501–529. https://doi.org/10.1137/16M1060340 doi: 10.1137/16M1060340
    [16] S. Liu, Y. Lu, H. Wen, On the Cauchy problem for a compressible Oldroyd-B model without stress diffusion, SIAM J. Math. Anal., 53 (2021), 6216–6242. https://doi.org/10.1137/20M1362243 doi: 10.1137/20M1362243
    [17] S. Liu, W. Wang, H. Wen, The Cauchy problem for an inviscid Oldroyd-B model in three dimensions: Global well posedness and optimal decay rates, P. Roy. Soc. Edinb. A, 153 (2023), 441–490. https://doi.org/10.1017/prm.2022.2 doi: 10.1017/prm.2022.2
    [18] Z. Luo, Q. Ye, Y. Zhang, Space-time decay rate for the two-phase flow model, Z. Angew. Math. Phys., 73 (2022), 1–34. https://doi.org/10.1007/s00033-022-01884-9 doi: 10.1007/s00033-022-01884-9
    [19] Z. Luo, Y. Zhang, Optimal large-time behavior of solutions to the full compressible Navier-Stokes equations with large initial data, J. Evol. Equ., 22 (2022), 1–35. https://doi.org/10.1007/s00028-022-00841-3 doi: 10.1007/s00028-022-00841-3
    [20] A. J. Majda, A. L. Bertozzi, Vorticity and incompressible flow. Cambridge texts in applied mathematics, Appl. Mech. Rev., 55 (2002), B77–B78. https://doi.org/10.1115/1.1483363 doi: 10.1115/1.1483363
    [21] L. Molinet, R. Talhouk, On the global and periodic regular flows of viscoelastic fluids with a differential constitutive law, Nodea-Nonlinear Diff., 11 (2004), 349–359. https://doi.org/10.1007/s00030-004-1073-x doi: 10.1007/s00030-004-1073-x
    [22] V. Sohinger, R. M. Strain, The Boltzmann equation, Besov spaces, and optimal time decay rates in \mathbb{R}_x^n, Adv. Math., 261 (2014), 274–332. https://doi.org/10.1016/j.aim.2014.04.012 doi: 10.1016/j.aim.2014.04.012
    [23] S. Takahashi, A weighted equation approach to decay rate estimates for the Navier-Stokes equations, Nonlinear Anal., 37 (1999), 751–789. https://doi.org/10.1016/S0362-546X(98)00070-4 doi: 10.1016/S0362-546X(98)00070-4
    [24] P. Wang, J. Wu, X. Xu, Y. Zhong, Sharp decay estimates for Oldroyd-B model with only fractional stress tensor diffusion, J. Funct. Anal., 282 (2022), 109332. https://doi.org/10.1016/j.jfa.2021.109332 doi: 10.1016/j.jfa.2021.109332
    [25] W. Wang, H. Wen, The Cauchy problem for an Oldroyd-B model in three dimensions, Math. Mod. Meth. Appl. Sci., 30 (2020), 139–179. https://doi.org/10.1142/s0218202520500049 doi: 10.1142/s0218202520500049
    [26] Y. Wang, Optimal time-decay estimates for a diffusive Oldroyd-B model, Z. Angew. Math. Phys., 74 (2023), 1–13. https://doi.org/10.1007/s00033-022-01902-w doi: 10.1007/s00033-022-01902-w
    [27] S. Weng, Space-time decay estimates for the incompressible viscous resistive MHD and Hall-MHD equations, J. Funct. Anal., 270 (2016), 2168–2187. https://doi.org/10.1016/j.jfa.2016.01.021 doi: 10.1016/j.jfa.2016.01.021
    [28] Q. Ye, Y. Zhang, Space-time decay rate of the compressible adiabatic flow through porous media in \mathbb{R}^3, Bull. Malays. Math. Sci. Soc., 46 (2023), 1–34. https://doi.org/10.1007/s40840-023-01529-8 doi: 10.1007/s40840-023-01529-8
    [29] X. Zhai, Y. Li, Global wellposedness and large time behavior of solutions to the N-dimensional compressible Oldroyd-B model, J. Differ. Equations, 290 (2021), 116–146. https://doi.org/10.1016/j.jde.2021.04.027 doi: 10.1016/j.jde.2021.04.027
    [30] Z. Zhou, C. Zhu, R. Zi, Global well-posedness and decay rates for the three dimensional compressible Oldroyd-B model, J. Differ. Equations, 265 (2018), 1259–1278. https://doi.org/10.1016/j.jde.2018.04.003 doi: 10.1016/j.jde.2018.04.003
    [31] Y. Zhu, Global existence of classical solutions for the 3D generalized compressible Oldroyd-B model, Math. Method. Appl. Sci., 43 (2020), 6517–6528. https://doi.org/10.1002/mma.6393 doi: 10.1002/mma.6393
    [32] R. Zi, Global solution in critical spaces to the compressible Oldroyd-B model with non-small coupling parameter, Discrete Contin. Dyn. Syst., 37 (2017), 6437–6470. https://doi.org/10.3934/dcds.2017279 doi: 10.3934/dcds.2017279
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(935) PDF downloads(52) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog