Citation: Van Thien Nguyen, Samsul Ariffin Abdul Karim, Dinh Dat Truong. A note on the space of delta m-subharmonic functions[J]. AIMS Mathematics, 2020, 5(3): 2369-2375. doi: 10.3934/math.2020156
[1] | P. Åhag, R. Czyż, On a characterization of m-subharmonic functions with weak singularities, Annales Polonici Mathematici, 123 (2019), 21-29. |
[2] | P. Åhag, U. Cergell, R. Czyż, Vector spaces of delta-plurisubharmonic functions and extensions of the complex Monge-Ampère operator, J. Math. Anal. Appl., 422 (2015), 960-980. doi: 10.1016/j.jmaa.2014.09.022 |
[3] | P. Åhag, R. Czyż, L. Hed, The geometry of m-hyperconvex domains, J. Geo. Anal., 28 (2018), 3196-3222. doi: 10.1007/s12220-017-9957-2 |
[4] | P. Åhag, R. Czyż, L. Hed, Extension and approximation of m-subharmonic functions, Complex. Var. Elliptic. Equ., 63 (2018), 783-801. doi: 10.1080/17476933.2017.1345888 |
[5] | P. Åhag, R. Czyż, An inequality for the Beta function with Application to Pluripotential Theory, J. Inequal Appl., 2009 (2009), 1-8. |
[6] | P. Åhag, R. Czyż, Modulability and duality of certain cones in pluripotential theory, J. Math. Anal. Appl., 361 (2010), 302-321. doi: 10.1016/j.jmaa.2009.07.013 |
[7] | A. Benali, N. Ghiloufi, Lelong number of m-subharmonic functions, J. Math. Anal. Appl., 466 (2018), 1373-1392. doi: 10.1016/j.jmaa.2018.06.055 |
[8] | Z. Błocki, Estimates for the complex Monge-Amp'ere operator, Bull. Polon. Acad. Sci. Math., 41 (1993), 151-157. |
[9] | Z. Błocki, Weak solutions to the complex Hessian equation, Ann. Inst. Fourier (Grenoble), 55 (2005), 1735-1756. doi: 10.5802/aif.2137 |
[10] | U. Cegrell, J. Wiklund, A Monge-Ampère norm for delta-plurisubharmonic functions, Math. Scand., 97 (2005), 201-216. doi: 10.7146/math.scand.a-14972 |
[11] | R. Czyż, A note on Le-Pham's paper, Acta. Math. Vietnamica., 34 (2009), 401-410. |
[12] | R. Czyż, V.T. Nguyen, On a constant in the energy estimate, Comptes Rendus Math., 355 (2017), 1050-1054. doi: 10.1016/j.crma.2017.09.019 |
[13] | T. Darvas, The Mabuchi Completion of the Space of Kähler Potentials, Amer. J. Math., 139 (2017), 1275-1313. doi: 10.1353/ajm.2017.0032 |
[14] | S. Dinew, S. Kołodziej, A priori estimates for the complex Hessian equations, Anal. PDE., 1 (2014), 227-244. |
[15] | S. Dinew, S. Kołodziej, Non standard properties of m-subharmonic functions, Dolomites Research Notes on Approximation, 11 (2018), 35-50. |
[16] | V. Guedj, A. Zeriahi, The weighted Monge-Amprère energy of quasiplurisubharmonic functions, J. Funct. Anal., 250 (2007), 442-482. doi: 10.1016/j.jfa.2007.04.018 |
[17] | H. Hawari, M. Zaway, On the space of delta m-subharmonic functions, Analysis Math., 42 (2016), 353-369. doi: 10.1007/s10476-016-0404-6 |
[18] | L.M. Hai, P.H. Hiep, The topology on the space of δ-psh functions in the Cegrell classes, Results Math., 49 (2006), 127-140. doi: 10.1007/s00025-006-0212-6 |
[19] | V.V. Hung, N.V. Phu, Hessian measures on m-polar sets and applications to the complex Hessian equations, Complex Var. Elliptic Equ., 62 (2017), 1135-1164. doi: 10.1080/17476933.2016.1273907 |
[20] | S.Y. Li, On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian, Asian J. Math., 8 (2004), 87-106. doi: 10.4310/AJM.2004.v8.n1.a8 |
[21] | H.C. Lu, Complex Hessian equations, Doctoral thesis, University of Toulouse III Paul Sabatier, 2012. |
[22] | H.C. Lu, A variational approach to complex Hessian equations in $\mathbb{C}^n$, J. Math. Anal. Appl., 431 (2015), 228-259. |
[23] | N.C. Nguyen, Subsolution theorem for the complex Hessian equation, Univ. Iagel. Acta Math., 50 (2013), 69-88. |
[24] | N.C. Nguyen, Hölder continuous solutions to complex Hessian equations, Potential Anal., 41 (2014), 887-902. doi: 10.1007/s11118-014-9398-5 |
[25] | V.T. Nguyen, On delta m-subharmonic functions, Ann. Polon. Math., 118 (2016), 25-49. |
[26] | V.T. Nguyen, Maximal m-subharmonic functions and the Cegrell class $\mathcal{N}_m$, Indagationes Mathematicae 30 (2019), 717-739. |
[27] | V.T. Nguyen, A characterization of Cegrell's classes and generalized m-capacities, Ann. Polon. Math., 121 (2018), 33-43. doi: 10.4064/ap170728-26-1 |
[28] | V.T. Nguyen, The convexity of radially symmetric m-subharmonic functions, Complex. Var. Elliptic. Equ., 63 (2018), 1396-1407. doi: 10.1080/17476933.2017.1373347 |
[29] | A. Rashkovskii, Local geodesics for plurisubharmonic functions, Math. Z., 287 (2017), 73-83. |
[30] | A. Sadullaev, B. Abdullaev, Potential theory in the class of m-subharmonic functions, Trudy Matematicheskogo Instituta imeni V.A. Steklova, 279 (2012), 166-192. |
[31] | D. Wan, W. Wang, Complex Hessian operator and Lelong number for unbounded m-subharmonic functions, Potential. Anal., 44 (2016), 53-69. doi: 10.1007/s11118-015-9498-x |