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1. Introduction

Theory of m-subharmonic functions was recently developed by many mathematicians such as Li
[20], Błocki [9], Dinew and Kołodziej [14, 15], Lu [21, 22], Sadullaev and Abdullaev [30], Nguyen [23,
24], Åhag, Czyż and Hed [3, 4] and many others. The notion of m-subharmonicity appears naturally
in generalization of subharmonicity and plurisubharmonicity. For the similarities and the differences
between these notions, we refer the readers to the paper [15].

A bounded domain Ω ⊂ Cn is called m-hyperconvex if there exists an m-subharmonic function
ρ : Ω→ (−∞, 0) such that the closure of the set {z ∈ Ω : ρ(z) < c} is compact in Ω for every c ∈ (−∞, 0).
In what follows we will always assume that Ω is an m-hyperconvex domain. Denote by S Hm(Ω) the
set of all m-subharmonic functions in Ω. Let the cones E0,m,Ep,m,Fm be defined in the similar way as
in [21, 25]:

E0,m =

{
u ∈ S Hm(Ω) ∩ L∞(Ω) : lim

z→∂Ω
u(z) = 0 and

∫
Ω

Hm(u) < ∞
}
,
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Ep,m =

{
u ∈ S Hm(Ω) : ∃ {u j} ⊂ E0,m, u j ↓ u, sup

j

∫
Ω

(−u j)pHm(u j) < ∞
}
,

Fm =

{
u ∈ S Hm(Ω) : ∃ {u j} ⊂ E0,m, u j ↓ u and sup

j

∫
Ω

Hm(u j) < ∞
}
.

For the properties and applications of these classes, see [1, 21, 22, 25, 26, 27].
We use the notation δK = K = K for K be one of the classes E0,m,Ep,m,Fm. Define

||u||p,m = inf
u=u1−u2

u1,u2∈Ep,m


(∫

Ω

(−u1 − u2)pHm(u1 + u2)
) 1

m+p
 , (1.1)

with the convention that (−u1 − u2)p = 1 if p = 0. For the reason why this quasi-norm is effective,
please see [2, 13, 16, 22, 29]. It was proved in [25] that (δEp,m, || · ||p,m) is a quasi-Banach space for
p > 0, p , 1 and it is a Banach space if p = 1. Moreover in [17] it was proved that (δFm, || · ||0,m) is a
Banach space. The authors in [12] show that (δEp,m, || · ||p,m) can not be a Banach space. These facts are
counterparts of [5, 6, 10, 18] in m-subharmonic setting.

In Section 2, we shall show that E0,m and δE0,m are closed neither in (δEp,m, || · ||p,m) nor in (δFm, || ·

||0,m). Moreover we prove that the inclusions E0,m ⊆ Fm, δE0,m ⊆ δFm are proper in the space (δFm, || ·

||0,m).
In Section 3, we prove that the convergence in δEp,m implies the convergence in m-capacity (

Theorem 3). But the convergence in m-capacity is not a sufficient condition for the convergence in
δEp,m ( Example 3). Similar results in plurisubharmonic setting have been proved by Czyż in [11].

2. Preliminaries

In plurisubharmonic case, the following proposition was proved in (see [11]). Let B = B(0, 1) ⊂ Cn

be the unit ball in Cn. Then the cones E0,m(B) and δE0,m(B) are not closed respectively in (δFm(B), || ·
||0,m) and (δEp,m(B), || · ||p,m).

Proof. We define

v(z) =

ln |z| if m = n,

1 − |z|2−
2n
m if 1 ≤ m < n.

We obtain that Hm(v) := ddc(v) ∧ βn−m = c(n,m)δ0, where c(n,m) is a constant depending only on
n and m, δ0 is the Dirac measure at the origin 0 (see [28]). For each j ∈ N, define the function
v j : B→ R ∪ {−∞} by

v j(z) = max(a jv(z),−b j),

where a j = 1
2 j , b j = 1

j .
We can see that v j ∈ E0,m(B), for each j. Therefore, the function uk :=

∑k
j=1 v j belongs to E0,m(B).

For k > l we can compute

||uk − ul||
m
0,m = ||

k∑
j=l+1

v j||
m =

∫
B

Hm

 k∑
j=l+1

v j


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=c(n,m)

 k∑
j=l+1

a j


m

, (2.1)

and

||uk − ul||
p+m
p,m = ||

k∑
j=l+1

v j||
p+m
p+m = ep,m

 k∑
j=l+1

v j


=

∫
B

− k∑
j=l+1

v j


p

Hm

 k∑
j=l+1

v j


=c(n,m)

k∑
j1,··· , jm=l+1

− k∑
r=l+1

vr(max(t j1 , · · · , t jm))

p

a j1 · · · a jm

≤c(n,m)
k∑

j1,··· , jm=l+1

[
−uk(max(t j1 , · · · , t jm))

]p
a j1 · · · a jm

≤c(n,m)

 k∑
j=l+1

(−uk(t j))
p
m a j


m

,

where

t j =


(
1 +

b j

a j

) m
2(m−n)

, if 1 ≤ m < n,

e−
b j
a j , if m = n.

The last inequality is a consequence of the fact that v j is increasing function for each j. Since

vl(t j) =

−1
l , if 1 ≤ l ≤ j,

− 2 j

j2l , if l > j,

we have

−uk(t j) =

j∑
l=1

1
l

+
2 j

j

k∑
l= j+1

1
2l ≤ j + 1.

Hence

||uk − ul||
p+m
p,m ≤ c(n,m)

 k∑
j=l+1

( j + 1)
p
m

2 j


m

. (2.2)

Let u : B → R ∪ {−∞} be defined by u = limk→∞ uk. Observe that u is the limit of a decreasing
sequence of m-subharmonic functions and u(z) > −∞ on the boundary of the ball B(0, 1

2 ). Hence u is
m-subharmonic. Moreover u < E0,m(B) since it is not bounded on B, its value is not bounded below
at the origin. Equality (2.1) shows that {uk} is a Cauchy sequence in the space δFm(B). Thus the cone
E0,m(B) and the space δE0,m(B) are not closed in (δFm(B), || · ||0,m).

The series
∑∞

j=1
( j+1)

p
m

2 j is convergent by the ratio test. Therefore {uk} is a Cauchy sequence in δEp,m

by (2.2). We have proved that the cone E0,m(B) and the space δE0,m(B) are not closed in (δEp,m(B), || ·
||p,m). �
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The following proposition shows that the closure of the cone E0,m (resp. δE0,m) is strictly smaller
than Fm (resp. δFm) in the space (δFm, || · ||0,m). We have E0,m ( Fm and δE0,m ( δFm in the space
(δFm, || · ||0,m).

Proof. The definition of the m-Lelong number of a function v ∈ S Hm(Ω) at a ∈ Ω is the following

νm,a(v) = lim
r→0+

∫
|z−a|≤r

ddcv ∧
[
ddc(−|z − a|2−

2n
m )

]m−1
∧ βn−m

It is easy to see that m-Lelong number is a linear functional on δFm. Moreover, as in [7, Remark 1],
for a function ϕ ∈ Fm then

νm,a(ϕ) ≤ (Hm(ϕ)({a}))
1
m ≤ (Hm(ϕ)(Ω))

1
m .

Hence, for any representation u = u1 − u2 of u ∈ δFm we have

|νm,a(u)| ≤ (Hm(u1 + u2)(Ω))
1
m .

This implies that m-Lelong number is a bounded functional on the space δFm. We have shown that
m-Lelong number is continuous on the Banach space (δFm, || · ||0,m). We recall the definition of m-Green
function with pole at a

gm,Ω,a(z) = sup{v ∈ S H−m(Ω) : u(z) + |z − a|2−
2n
m ≤ O(1) as z→ a}.

The readers can find more properties of m-Green function in [31]. Assume that E0,m = Fm. Then
there exists a sequence {u j} in E0,m that converges to gm,Ω,a in the space δFm as j → ∞. The m-Lelong
number of all u j at a vanishes since u j is bounded, but the m-Lelong number of gm,Ω,a at a is 1. Hence
we get a contradiction. Thus, E0,m ( Fm. By the same argument, if δE0,m = δFm, then there exists a
sequence {u j} in E0,m that converges to gm,Ω,a in the space δFm as j → ∞, but this is impossible since
νm,a(u j) = 0. �

3. The convergence in δEp,m

We are going to recall a Błocki type inequality (see [8]) for the class Ep,m. Similar results for the
class Fm were proved by Hung and Phu in [19, Proposition 5.3] (see also [1]) and for locally bounded
functions were proved by Wan and Wang [31]. Assume that v ∈ Ep,m and h ∈ S Hm is such that
−1 ≤ h ≤ 0. Then ∫

Ω

(−v)m+pHm(h) ≤ m!
∫

Ω

(−v)pHm(v).

Proof. See the proof of [19, Proposition 5.3]. �

Recall that the relative m-capacity of a Borel set E ⊂ Ω with respect to Ω is defined by

capm,Ω(E) = sup{
∫

E
Hm(u) : u ∈ S Hm(Ω),−1 ≤ u ≤ 0}.
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We are going to recall the convergence in m-capacity. We say that a sequence {u j} ⊂ S Hm(Ω) converges
to u ∈ S Hm(Ω) in m-capacity if for any ε > 0 and K b Ω then we have

lim
j→∞

capm,Ω(K ∩ {|u j − u| > ε}) = 0.

Let {u j} ⊂ δEp,m be a sequence that converges to a function u ∈ δEp,m as j tends to ∞. Then {u j}

converges to u in m-capacity.

Proof. Replacing u j by u j − u, we can assume that u = 0. By the definition of δEp,m, there exist
functions v j,w j ∈ Ep,m such that u j = v j − w j and ep(v j + w j)→ 0 as j→ ∞. By [25],

max(ep,m(vi), ep,m(w j)) ≤ ep,m(v j + w j),

which implies that ep,m(v j), ep,m(w j) tend to 0 as j → ∞. Given ε > 0 and K b Ω. For a function
ϕ ∈ S Hm(Ω), −1 ≤ ϕ ≤ 0, we have∫

{|v j |>ε}∩K
Hm(ϕ) ≤

1
ε p+m

∫
Ω

(−v j)p+mHm(ϕ) ≤
m!
ε p+m ep,m(v j). (3.1)

The last inequality comes from Lemma 3. Hence, by taking the supremum over all functions ϕ in
inequality (3.1), we get

capm,Ω({|v j| > ε} ∩ K) ≤
m!
εm+p ep,m(v j). (3.2)

Similarly,

capm,Ω({|w j| > ε} ∩ K) ≤
m!
εm+p ep,m(w j). (3.3)

From (3.2), (3.3) we obtain

capm,Ω({|u j| > ε} ∩ K)

≤capm,Ω({|v j| >
ε

2
} ∩ K) + capm,Ω({|w j| >

ε

2
} ∩ K)

≤
m!2m+p

εm+p (ep,m(v j) + ep,m(w j))→ 0 as j→ ∞.

Hence the sequence {u j} tends to 0 in m-capacity and the proof is finished. �

A similar result for the space δFm is proved in [17]. But the convergence in m-capacity is not a
sufficient condition for the convergence in the space δEp,m. The following example shows that
convergence in m-capacity is strictly weaker than convergences in both δEp,m and δFm. The case
m = n has been showed in [11, Example 3.3]. Let v(z) be the function defined in the unit ball in Cn as
in the proof of Proposition 2. We define

u j(z) = max( j
p
m v(z),−

1
j
), v j(z) = max(v(z),−

1
j
)

Then we have u j, v j ∈ E0,m(B) for every j, and ep,m(u j) = c(n,m), e0,m(v j) = 1. These show that the
sequence {u j} and {v j} do not converge to 0 in δEp,m(B) and δFm(B) respectively as j→ ∞. Moreover,
for fixed ε > 0 and K b B there exists j0 such that for all j ≥ j0 we have

u j = v j = −
1
j

on K.

This infers that both sets K ∩ {u j < −ε} and K ∩ {v j < −ε} are empty. Hence u j and v j tend to 0 in
m-capacity.
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