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Abstract: Linear correlated fractional fuzzy differential equations (LCFFDEs) are one of the best
tools for dealing with physical problems with uncertainty. The LCFFDEs mostly do not have unique
solutions, especially if the basic fuzzy number is symmetric. The LCFFDEs of symmetric basic fuzzy
numbers extend to the new system by extension and produce many solutions. The existing literature
does not have any criteria to ensure the existence of unique solutions to LCFFDEs. In this study, we
will explore the main causes of the extension and the unavailability of unique solutions. Next, we
will discuss the existence and uniqueness conditions of LCFFDEs by using the concept of metric fixed
point theory. For the useability of established results, we will also provide numerical examples and
discuss their unique solutions. To show the authenticity of the solutions, we will also provide 2D and
3D plots of the solutions.
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1. Introduction

Zadeh [1] introduced the concept of fuzzy numbers(F-numbers) and fuzzy operations. The fuzzy
set theory is a robust mathematical framework for addressing uncertainty in practical situations. The
physical models, network problems [2, 3], etc. are facing uncertainty. The uncertainty is dealt with
easily in the fuzzy models. The fuzzy concept is important to optimize various problems, such as robot
routing and energy consumption problems [4]. In the decision-making models for the operating system
and human-computer interaction [5], data envelopment analysis in the banking industry [6], medical
resources allocation [7], etc., fuzzy concepts have significant importance.

The operations of F-numbers do not indicate any interaction due to the random variables used
in the arithmetic operations. Therefore, Carlsson et al. [8] introduced interactive F-numbers, whose
interactivities were based on some joint distribution functions. To avoid the need for joint distribution
functions, Barros and Pedro [9] introduced linear correlated fuzzy numbers (LCF-numbers). Esmi
et al. [10] defined an operator from 2D Euclidean space to space of LCF-numbers Ry ). The spaces of
LCF-numbers R are based on fuzzy numbers A, known as basic fuzzy numbers(BF-numbers). If the
BF-number is non-symmetric, then the space of LCF-numbers is linear and given by Ry ,,. Therefore,
the operator from 2D Euclidean space to space of LCF-numbers Ry, ,, is a bijection. The addition
and scalar multiplication in Ry, are defined by the linear isomorphism. While fuzzy difference ©,
is defined by addition and scalar multiplication. But if the BF-number is symmetric, then the space
of LCF-numbers is not linear and is given by Ry, ). The operator from 2D Euclidean space to the
space of LCF-numbers Ry, is not a bijection. Therefore, the fuzzy operations in space Ry, are

not possible by the process performed for space Ry, ,,. Shen’s [11] defined equivalence relations and

conical representation to address this complicity in the space Ry, by defining a bijection operator
from the set of equivalence classes associated with the equivalence relation in R? to the space Rp).
Therefore, the fuzzy operations were defined by the linear isomorphism and developed calculus for
both non-symmetric and symmetric fuzzy numbers. But C ©, C # 0 if C € Rr \ R is symmetric also
the space R;( A is not liner. To avoid these difficulties, Shen’s [12] introduced LC-difference and LC-

differentiability, which always exist in both spaces Ry, ,, and Ry, , . LC-differentiability is equivalent to

Fréchet differentiability [10] and differentiability of [11] in the spaces R}, , . Also in the spaces, Ry, ,,
LC-differentiability and gH-differentiability [13] are equivalent. The linear correlated fuzzy differential
equations (LCFDEs) with LC-differentiability were discussed by [14]. These LCFDEs mostly have
many solutions due to the extension process and sometimes do not have solutions. Therefore, Jamal
et al. [15] discussed the existence and uniqueness conditions for unique solutions of LCFDEs. In their
paper [16], the authors discussed the existence for unique solutions of LCFDEs in conical form and
their practical applications.

Fractional calculus is the globalization of classical calculus. The fractional models have significant
use in dealing with real-life problem; therefore, existence [17], stability [18,19] and control [20,21] are
discussed by the authors of these papers and many others. The fuzzy fractional differential equations
have also wide application in the population dynamic [22], evaluating weapon systems [23], electro-
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hydraulic servo systems [24], security control in response to cyber attacks [25] and other scientific
area (see [26,27]) etc. The linear correlated fuzzy fractional differential equations (LCFFDEs) with
Caputo’s fractional LC-differentiability are discussed in [28]. They discussed the stability of LCFFDEs
by considering unique solutions to LCFFDEs. The LCFFDEs mostly do not have unique solutions
due to the extension process and produce many continuous and differentiable solutions. The existing
literature does not have any criteria to ensure the existence of unique solutions for LCFFDEs.

Motivated by the above deficiency in the existing literature, in this paper, we will discuss the
existence and uniqueness conditions for solutions to LCFFDEs. LCFFDEs mostly have many
solutions due to the extension process. The main case of the extension of a system into a new system
is the form of LCFFDEs discussed in [28]. Therefore, we will discuss the following LCFFDEs to
avoid the extension of systems.

(1.1)

€.D%9() = (0, 90), Je,
Ha) = Do, Yo € Rpy,

where, { : I X Rp@) — Rpa) 1s a LCF-numbers valued function. At the points at which the extension
condition holds, the LCFFDEs of [28] will extend and produce many solutions, but Eq (1.1) does not
extend at these points therefore, we preferred to discuss Eq (1.1). For the authenticity of established
results, we will provide numerical examples. To show the validity of our findings, we will compare the
solutions of numerical examples with the results of [28].

2. Preliminaries

Throughout this manuscript, Rp, Rrs) and R denote the space of F-numbers, LCF-numbers and real
numbers, respectively.
Definition 2.1. [29] The mapping D : R — [0, 1] is a fuzzy number if D following conditions:

(i) D exhibits upper semi-continuity;

(ii) Forall a,b € R and u € [0, 1], D(ua + (1 — pw)b) = min D(a), D(b);
(iii) D is normal, implying there exists ¢ € R such that k(c) = 1;
(iv) The closure of {a € R | D(a) > 0} is compact.

The space Ry contains all fuzzy numbers.

Definition 2.2. [30] The set {a € R | D(a) > a} with a € [0, 1] is called a—level set of F-number,
D € Ryp. B
Where the a—level set has lower and upper bounds D(a) and D(a), respectively.

The a—-level sets of triangular F-numbers D = (x;y;®) and trapezoidal E = (p; x;y; 1) where
p < x <y < are given by

(Dl =[x+ (-0, 0 - (@ -yal, [El.=[p+(&-pa,d-(-yal
The diameter of a fuzzy number D is the length of the support set {a € R | D(a) > 0}.

Definition 2.3. [10] If for unique ay € R, D(a + ay) = D(ay — a) for all a € R, then D is a symmetric
F-number with respect to ay; otherwise, D is non-symmetric.
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Let ¥, : R? — Rps) be an operator such that for all (g,h) € R?, there exists D € Rps) where
D = ¥,(g,h). Then, Rrp) = {‘I’A(g, h)|(g,h) € Rz} is the space of LCF-numbers of BF-number A.
If BF-number A is non-symmetric, then the space of LCF-numbers is denoted by R}, ,,, while if BF-
number A is symmetric, then the space of LCF-numbers is denoted by Ry ). Let for (g,h) € R? there
exist D = Wu(g,h) = gA + h then D is called LCF-number. Moreover, the a-level set is defined by
[Walg, M)], = {gt +heR|te [A]a} = p[A], + s. Clearly, if A is a non-symmetric F-number, then ¥,

is one-one and onto, therefore (Rr(a), ®4,©a) is a linear space, where ®, and O, are defined as
Dy @, Dy = Yu(¥s ™' (Dy) + ¥4 (D2)) and BOs D = WA(BY4™ (D))

Moreover, if A € Rp\R is symmetric, then ¥, : R*> — Rps) 1s not one-one because Wu(g, h) =
Y,(—g,2gt + h), where ¢ is a symmetric point.
Definition 2.4. [11] The equivalence relation =5 of any (g, h), (j,k) € R?* is define by (g, h)=4(j, h) if
and only if (g,h) = (j, k) or (g, h) = (—J,2jt + k).

The set of equivalence classes associated with an equivalence relation =, is a quotient in R?, defined
by R?/=.. = {[(g. h)l=, | (g.h) € R?} where, [(g. h)l=, = {(g.h).(~g.2gt + h)} is equivalence class. The
fuzzy operations @, and ©, in R?/=, are defined as [(g, M=, ®al(j, k)=, = [(g+ j,h + k)]=, and

[(ﬁg’ﬁh)]EA’ﬂ Z 03
[(=Bg.2Bgt + Bh)]=,. 5 < 0.

Now, if Y4 ([(g, h)]=,) = gA +1 is canonical form whereg=gorg=—g andh=horh = 2gt+h. Now
the operator W, is a bijection from R?/=, to Rps). The difference ©, is defined from the operation of
®, and Oy in R?/=, as Dy ©4 Dy = D®4(~1)04D>. From Proposition 3.5 in [11], Ce, C # 0, if
€ Rp\R is symmetric. To remove this drawback, linear correlated fuzzy difference (LC-difference) is
introduced in the literature.

Definition 2.5. [12] Let D, D, € R’}( A then LC-difference is defined as

Dy 8By Dy, =¥u(g,h)Ba Pa(j k) =Yu(g—jh—k) =(@g—-)HA+h—k.

=a

ﬁQA[(g, h)]EA = {

Moreover, if Dy,D, € Ry where BF-number A has point of symmetry t, then LC-difference is
defined as
Dy By Dy = Ya(l(g, M]=,) Ba Ya(l(), 0)]=,) = Yall(g, W=, Bal(j, b)]=,),
(J-QA+2@g—-j)y+h-kg<]

P

dy,(D,E) =||D Ba Dlly,, where D, E € Ry ,,,.
While, the norm ||.||y, is defined as ||D||y, = ¥, (D)||e, With D € R’;(A).
Furthermore, the metric dy, with LC-difference in the space R

\PA([(g’ h)]EAEA[(ja k)]EA) = {

Moreover, the metric dy, with LC-difference in the space R 18 defined as

N
F(A)

d“PA(D7 E) = ||D EA E”“PA = ||[(g’ h)]EA EA [(j’ k)]EA”“PA’ Where Da E € RSF(A)-
Where, norm |||y, is defined as [[Dlly, = ¥4~ (D)lleo = lI[(g, D))=, ll, with [(g, )=, € R?/=4.
(g, M=, lle = max{ll(g, )|, (=8, 287 + M)l }-

is defined as
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Lemma 2.6. [[2] Let A € Ry be non-symmetric and the continuous function f : I — Rpa) is
defined by f(a) = g(a)A + h(a). If g(a) and h(a) are differentiable, then f is LC-differentiable, and
() =g @A +H(a).

Lemma 2.7. [12] Let the function f : I — Ry be continuous, and its canonical form is given by

gA+h,g>0,

f(a) = \PA([(g’ h)]EA) = gA +h= { _gA + th + h,g < 07

where, A € Rp\R is symmetric with symmetric point t then f(a) is LC-differentiable if the following
conditions holds:

g_(a) =g .(@), I (a) = ' .(a), or g (a) = =g’ ,(a), W' (a) = 2¢' (@)t + IV . (a),
where, the right and left derivatives of g, h are denoted by g’ ., I’ and g’'_, I’ _ respectively.

Definition 2.8. [28] The Caputo fractional linear correlated derivative of order 0 € (0,1] of ¢ : I —
Rp), where 9(1) = r(DA + s() and r, s : I — R, is defined as

¢ p?.90) = \PA(ch; rQ), ECDZ+S(J)),
where for function y(1) we have

1
T(n - 0)

oDl = [a-ryreyaar

Definition 2.9. [28] The Riemann-Liouville linear correlated fractional integral of order 6 € (0, 1] of
0 : I = Rp), defined by 9(J) = r()A + s(J) wherer,s : [ — R,

RLIO §(3) = \PA(’L%IQQ rQ), ’gglgs@)),

where the fractional integral of the function say y(J) is defined as

1 J
RL y6 _ _y\0-1 ’ ’

such that the antiderivative converges to some value.

o+

Definition 2.10. [31] Mittag-Leffler type two-parametric function is defined by E, ;,(x) = Y02, TakeD)’

where I'(x) = fooo e Y dt x,a,b € C where real part of a,b > 0.
The Mittag-Leffler type two-parametric function has the following properties;

(i) X°E) g1 (ax) = rle fox(x — x)? e dx’ where 6 > 0;
(i) Eyn(x) = ﬁ{ex =Y %}

Definition 2.11. [14]

If Problem (1.1) possesses a solution, denoted as 9(J) in the space C(I, Rp(A)), then there exists a
vector (r, s) such that 9(3) = r(Q)A + s(J) and 9(J) satisfies the equation of Problem (1.1). Additionally,
for any 9y € C(I, Rp(A)), there exist sy and ry such that $y = roA + .
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3. LCFFDE:s in the LC-spaces of non-symmetric basic fuzzy numbers

In this section, we discuss the existence and uniqueness of the solution for Problem (1.1) with a

non-symmetric BF-number, denoted as A € Ry, .

CeDLI90) = £(3,90)),
19(]0) = roA + s9.

One can easily express this problem in the following equivalent systems of equations:

€D r() = £(, (),
€Dl s() = £0, s0)),

r(30) = ro, 5(J) = So.
From this, the following equivalent system of integral equations is obtained:

r)= rn+—=— f Q-1 rQ)dY,
3.1

sQ) = S0+ 55 f A=1"12@a, sQ)dy.

In the following theorem, we discuss the existence and uniqueness of the solution for Problem (1.1)
for non-symmetric BF-numbers.

Theorem 3.1. Let |{(1, r())| < elr()] and |G, s1())~£ (. 52| < |s1()—s2(3)| such that 0 < | =2 - -] <1
then Problem (1.1) has a unique solution 9(J) € C(I,R", F A))
Proof. Let us define the metric a > 1

d(@1(2),92()) = sup{lh () — BO)lle™}, @ > 1,94,9, € CU, Ry ,). (3.2)

Jel

The operator, T : Ri = R is defined as T'(¥(J)) = 9(J), where ¥(J) = Y4 (r(3), s(3)). Therefore, by
using Eq (3.1), we have

nmmnmm—mm+—jh n“mwwwrm+—faJW%a«mﬂ>
Now, we have to prove that T is a contraction.

d(T9,(2), TH(3) = sup{l[91(3) = 2 (Dlly, e} = Sup{llt//A(rl(J), 513) = Ya(r2(3), s5D)lly, e}

Jel

—wmmm+—foJW%@MMMM+—fGJWWrmmw>mm

Jel

1
+ﬁfa:W2wmmﬂ%+—fuwameﬂmJﬂ
0
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1 [ 1 (7 1 [
= supll (e fo G-I RN - o fo G-I RN, = fo 0- 7y

Jel

1 .
(5N - = f 0= YL 52Ty, e

= sup ||— f Q=" all@ n() = L)), LQ, 51(7) = LG, 5:37)dT)ly, e )

Jel

1 [ .
SSUP{E f Q="M@ r()) = 2 1), £ 51()) = £ s 2T )y, dY e ™)
0

Jel

1 [ .
< SuP{r—e f Q=""Nalar () — arn @), s1(7)) = 523y, dY e}
0

Jel

< SuP{g f A= e ), 1)) = Ya(ra@), 55Dl dY e™)

Jel

= suplr f G ="l 1) = 92Dy, e e dT ™)
Jel

= sup{— f Q=)™ dY e d(9,(3), 9,(D)).
e 16
Using the two parameter Mittag-Leffler function E 4,; as follows:
= sup{| Y E1 g1 (aDe™ " |Je ad($1(2), 9,0).
Jel

Using the series expression of Mittag-Leffler function E 4, as follows:

—ady

(@) 1-
{ _;0 C]i! } ]a/d(ﬁl(l) 192(3))—[ (C:;e

= sup [Jg

Jel

(ad)f ]Q/d(ﬂl D, %))

Hence, d(T%¥,(J), T9-,()) < kd(¥,(0), ¥,(3)) where, k = [ ] If @ > 1 is choose enough large that 0 <

()91

k= [1 (a‘;gfl‘)] < 1 then T is a contraction and Problem (1.1) has a unique solution ©¥(J) € C(I, R Py O
Example 3.2. If with a non-symmetric BF-number, A = (0;2; 3), one can take the FDEs
! 16 10Vl
€.DZI0) = On B(0) By —= (3.3)
e 3y Vi 3vr

The Eq (3.3) satisfying the conditions of Theorem (3.1) by choosing a > 1 is sufficiently large that
G, ()| = ‘IW| <alr@Q)| = e and 0 < k = [ ] < 1forall € (0,0).
(@) 2

Hence, Eq (3.3) has a unique solution 9(3) = PA + J, for all 1 € (0, c0). Figure 1 show 2D and 3D
plots of this solution.

Moreover, 9(3) = A +1is also the solution of the following equation discussed in the example (3.1)
of the paper [28].

1 16] 2
CeD2Y() = \f VI (3.4)

RN

But Eq (3.4) does not have a unique solution, while Eq (3.3) has a unique solution.
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3D-plots of solution of FFDEs

2D-plots of solution of FFDEs

50

40

z(t) ]

20F

10

Figure 1. Show 2D-fuzzy plots and 3D-fuzzy plots of the solution of Example (3.2).

Example 3.3. If with non-symmetric BF-number, A = (—1;0;2), one can take the LCFFDEs

C s __2V M
1Pt = i O T -2)
P0)=A+1.

The following condition can be readily demonstrated |{(3, r(J))| = ‘%ﬂ < alrQ)| = a|(3 + 1), Clearly

for large value of I we need a large a to hold this condition, and the contraction condition 0 < k =

['()—] < 1 holds for all 3 € [0, o) and a > 1.

Thus, the condition of Theorem (3.1) holds for all ] € (0, o). Consequently, the FDEs (3.5) possess
a unique solution, given by 9(J) = 0+ 1)A + 1 — . Figure 2 show 2D and 3D plots of this solution.
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2D-plots with non-symmetfric fuzzy 3D-plots with non-symmetfric fuzzy
number number

(1)

0 0.5 1 1.5 2
t

Figure 2. Show 2D-fuzzy plots and 3D-fuzzy plots of the solution of Example (3.3).

4. LCFFDE:s in the LC-spaces of symmetric basic fuzzy numbers

In this section, we discuss the existence and uniqueness of the solution for Problem (1.1) in the
space of symmetric BF-number Rp(,).

If A € Rp\R is a symmetric BF-number with symmetric point x and Wy, : R/ = A — Ria 1
bijection, then the canonical form of 3(J) = W4 ([r(2), s(D)]=n) = F(DA +5(J)

and €.D09() = Ya([IS-DIr(DLS - DIsc(Dl=n) = 15-DIF(DIA +6 . DIs.(2), can be expressed as
DA + $.DI50) if €D > 0,
chzl?(J) |LCD (J)lA + DGA;;(J) _ LC Q_E) . S( ) 1 c r(gl . W
€ DIFO)A + 25 DIF(D)x + .DISO), if S-DIF() < 0.

Therefore, Problem (1.1) has the following form:

C M9 C o= C o= 4GP al[r), sc(D)]=)),
1cD90) = YalllLeDarOl, e Dyse(l=a) = { 9C) = By = Toh + 5 4.1)

This produces the following equivalent system of equations

€D = £, 70)), for €.DIF() > 0, o ~C.DIF(0) = {(J 7)), for €D (1) < 0 “42)
1eDgs() = £G,50), 27 Dar()x + eDgs() = £(,50). .
Eq (4.2) can be expressed in the following integral form:
1
= Tt g [ G- Y.
0 (4.3)

_ _ 1 _
50) = 0+ 55 fo Q=112 5(Y))dy.
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And

)= Toea L f 4(: = A Y))ay,
4.4)

= oo f (0= ) xg (T + (TN

Now, we discuss the existence and uniqueness conditions for first-order LCFFDEs in space Ry, .

Theorem 4.1. Let |£(3,7(3))| < a[r(Q)| where a > 1, and ||£(3,'s1(3)) = £, s:()I| < [[513) = 52| such

—al

that [ o ] < 1, then Problem (1.1) with symmetric basic fuzzy number has a unique solution.

Proof. Let us define metric
A1), 9200 = sup {1 8 920l e} @ > 1,901,902 € D = CUL Ry )
Jel

= sup {||wA(m<J>,a<J)JEA> 8, wA(rrz(J),'s}(J)]EA)nme—“J}

Jel

= sup WA - 20,50 = Tl )

Jel

= sup { max {I[ﬂ(J) =0 Is13) = 2L 112x(r () = 1)) +513) - 'SVz(J)II}e_"J}-

Jel

Case 1. First, we find the condition of a unique solution to Problem (1.1) with a non-decreasing
diameter on [, C [. Let the operator T : D — D be defined as T(3(1)) = (), where

9(Q) = Ya([r(3),s(3)]=4); therefore, by using Eq (4.3), one can have

TE) = T, T = a2 f R R R f O=3) TN 1on).

Now, we have to prove that T is a contraction.

AT, T9:0) = sup {[191) 8 920, €| @ > 1,91,92 € CULRi)

Jel
= sup { max { lpA(
Jel

(G g [ e -G s [[e-n- e men)]| )

(ot g [ =10 e RN - G o [ 0=l T an),

}e—al}
wA

‘”A( (7o fo Q=@ RO - 5 fo (=)@ RENAY)),

fe)
Ya

= sup { max {I f 6= 2 (€0 RN - a@ R I f ¢- 1 (e m@)

Jel

= sup { max{

Jel

! : o=l ' s (Y / 1 : 7\6—1 = v ’
(F—Hfo(l—l) LY, 51(3))d] —FHL(J—J) {(3,52(3))613))]_)
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_ 1 ([ _ _ 1 _
S CRAE0) TN R s fo 6= e T - € RN + fo 6= (aeme
- 5(:',32<J'>>)d:'||}e—“3}

1 [ _ _ _ — —

<sup{ fo (=3 max (G O) - L0 RO, IC TN~ L6 2O IRK(CR0)
- 4“(3,71(3))) +(e0F0) - HE)Ijave ]

< sup o (J 2 max (IO =T O KO - RO 270 -7 ) + (70 - He))ijdre )

Jel

Ssup a— (J—J’)H_ll//.z-x(ff](l)—72(3),'51(3)—’svz(J)]E.z-x)llzpA e dYe }

Jel

J
= sup{— f (-1)% 1||ﬂ1(J')—ﬁzu')n|e-‘”/e‘”/d3'e-‘”}=sup{r% f =-1)""e™ dY e d(9,(3), $,(I))}.
0

Jel re Jel

Using the two parameter Mittag-Leffler function E 4,; as follows:

= supl[VE1 g1 (@De” |} Pad (). 2.

Jel
Using the series expression of Mittag-Leffler function E 4, as follows:

1

(o5

1 —alo
= sup [+ et @, ), 92000 = [m)—l]dwlc),ﬂz(m

Jel

@)y |” "4

.

Hence, d(T%1(), Tt()) < kd(1(), %)) where k = [( )’

0<k-= [1(;)39,1] < 1, then T is a contraction, and problem (1.1) has a unique solution with a non-
decreasing diameter on /) C 1.

Case 2. Now, we find the condition of a unique solution of the problem (1.1) with a non-increasing
diameter on I; C I. Let the operator 7 : D — D be defined by 7'(9(])) = ¢#(J); therefore, by using

Eq (4.4) one can obtain

] If @ > 1 is choose enough large that

1 _ 1 [ _ _
T(ﬁ(J))zwA(r‘ ~To f (J—J’)”“{(J’,ru’))dr,so+F—H fo (J—J’)"“(2xg<3',r<3’)>+{(J’,s<3’)>)d3']EA).

Now, we have to prove that T is a contraction.

AT1), T9:0) = sup {[19:0) 84 920, ™}, @ > 181,02 € CUL Ry )

Jel
o

(5 + f 6= 1) QugC R + L TN~ Go+ f (- 2xg( T

= sup { max { [ - = f G-I LG RN - G- f (=2 BN,

Jel
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+ L REMD)| )

fe)
Y

= sup { max {1 f 6 -1 (e BE) - 2@ RN I f 6 -1 (20 )

Jel

_ _ _ 1 ([ _ _
— 2 (VT + L)) - £ 52(3')))613/”, ||2x(ﬁ f (- J')a*(m', RO - QT (J')))da')
0
1 [ _ _ _ _ .
+ — f - J')g_1 2xg(3', r (J')) - 2x{(]', rz(J')) + {(J', sl(J')) — {(J', sz(l/)))dl’ll}e“"}
= sup { max {1 f 6 -1 (e BE) - 2@ RN I f 0= (2a{ee Ty
_ _ _ 1 [ _ _
. 72(3’))) T - RO f (=200 RO - 200 )
0
T 2xg( A = 26 ) + L0 ) — 4(3/,?2<J')))d3’||}e—03}

1 [ _ _ _ _ _
Ssup{r—g fo Q=1 max{llé(lrl(l))—é(l HIL KA, 1) = ¢, Sz(J))II,IIZx({(J, 1)

Jel

- m,m») + (20,500 - 5(1,‘52<J>>)||}d:'e-“}

< sup o (J 2 max (IO - RO RO - RO (7O -70) + (710D - Te))iljdre )

Jel

SSUP a— (J_J/)971¢A(VI(J)_E(J)»E&(J)_E(J)]EA)HW e dYe }

lel

= sup{— f =" O) = D)lle™ ™ e dY e ‘f“}—sup{— f Q=-1""e™ Y e d(9,(3), $2(D)}.
el F@ lel

Using the two parameter Mittag-Lefller function £, 4, as follows:

= supl| YE, g1 (@D |l d(0 (D), 02(3).

Jel
Using series expression of Mittag-Leftler function E| 4, as follow:

-1

-5 5

] —e @
= sup[ } ]ad(ﬁl(l) 9,0)) = [W]ad(ﬁl(l),ﬁzﬁ))-

Jel

(ad)?

k=0

—al

Hence, d(T91(2), T9,()) < kd(91(1), 9,(3)) where, k = [< T

0 < k= [ o FI] < 1, then T is a contraction and Problem (1.1) has a unique solution with non-
increasing dlameter on I; C I. Consequently, Problem (1.1) has a unique solution. O

] If @ > 1 is chosen enough large that

Example 4.2. [If the symmetric BF-number, A = (-1;0;1), has symmetric point O we consider the
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following FFDEs:
o 2VITd 20— 1)3
LCD0+19(J) - \/;(2 _ J) Oa ﬂ(J) Ba \/;(2 _ J)’ (45)
9(0) = 2A.

The Eq (4.5) has a fuzzy solution 9(J) = (2 — )A + ] with a non-increasing diameter in [0,2). By
choosing a > 1 sufficiently large, the conditions of Theorem (4.1) hold for all I € [0,2) as |£(, r(J))| =
IL\;?I < al2 - 1|, but for ] = 2 we cannot find any @ > 1 at which the condition holds and the Eq.(4.5)
is undefined on 1} = 2. Hence, the fuzzy solution ¥(J) = (2 — ))A + 1 is a unique solution having a
non-increasing diameter in [0,2). Figure 3 show 2D and 3D plots of the solution. Moreover, with
solutions 9(J) = (2 —2)A +1, the Eq (4.5) produces following LCFFDEs discussed in the example (3.2)

of paper [28]:

2VJ—1A+2\/J—1

C N _
1P 0C) = NG NG (4.6)

(1) = A+ 1.

But the Eq (4.6) does not have unique solutions 9(3) = (2 —)A + 1, because 9(3) = A+ 1)A + Jand all
equations in the form ¥(J) = r()A + 1, with r'(Q) = 1 and r'(J) = —1, are also there solutions. Hence,
Eq (4.6) does not represent a suitable form of first-order FFDEs when the BF-number is symmetric.
This underscores the significance of existence theory and the structure of Eq (1.1) in handling the
physical model of LCFFDE: .

Decreasing daimeter 3D-plots

Decreasing daimeter 2D-plots

15} 1 1

(1)

Figure 3. Show the 2D and 3D plots of the solution of example 4.2 with decreasing diameter
in [0, 2).
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Example 4.3. If the symmetric BF-number, A = (—1;0;1) has symmetric point 0, we consider the
following FFDEs:

cob o 2VIZd 40-1)3
D06 = Ty O PO e T “.7)

H)=A-1.

The Eq (4.7) has a fuzzy solution 9() = (3 + DA + P — 1 with a non-decreasing diameter in [0, o).
By choosing a > 1 sufficiently large conditions of Theorem (4.1) hold for all J € [0, 00), |£(3,r(3))| =
|L\;?| < a|d + 1|, therefore fuzzy solution of non-decreasing diameter in [0, 00) is unique solution.

Figure 4 show 2D and 3D plots of the solution. Moreover, with solutions 9(J) = 3+ 1A + P — 1, the
Eq (4.7) produces the following LCFFDEs, discussed in the example (4.2) of paper [28].

2VJ—1A+ 80-1VlI-1
Vr V3
But the Eq (4.8) does not have unique but solutions 9(1) = 1+ 1)A+1 =1, because 9(}) = 2-JA+7 -1

and all equations in the form 9() = rQ)A+X7 -1, with ¥’ (Q) = 1 and ¥ () = —1 are also their solutions.
Therefore, Eq (4.8) is not a proper form of first order FFDEs if the BF-number is symmetric.

(4.8)

1
D90 =

Non-decreasing daimeter 2D-plots Non-increasing dimeter 3D-plots

z(t)

Figure 4. Show the 2D and 3D plots of the solution of example 4.3 with non-decreasing
diameter in [0, 00).
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Example 4.4. If symmetric BF-number, A = (-1;0;1) has symmetric point 0, we consider the
following LCFFDEs:

ol 81V 2(6-1 V3
1cD Q) = 3VA(R - 4) ©Oa ) & 30+ 2) \/5’ (4.9)
3(0) = 4A - 2.

The Eq (4.9) has a fuzzy solution 9(J) = (4 — *)A + 1 — 2 with a non-increasing diameter in [0,2). By
choosing a > 1 sufficiently large, the conditions of Theorem (4.1), |{(3, r(2))| = |§T\g| < al4 — P, holds
for all 1 € [0,2), but for ] = 2 we cannot find any @ > 1 at which the condition holds. Hence, the
fuzzy solution 9()) = (4 — P)A + I — 2 is a unique solution having a non-increasing diameter in [0, 2).
Figure 5 show 2D and 3D plots of the solution.

Decreasing daimeter 2D-plots Decreasing daimeter 3D-plots

0 0.5 1 1.5
t

Figure 5. Show the 2D and 3D plots of the solution of example 4.4 with decreasing diameter
in [0, 2).

5. Conclusions

In this manuscript, we discussed conditions for the existence of unique solutions of LCFFDEs in
the spaces of linear correlated fuzzy numbers of non-symmetric basic fuzzy numbers Ry, . For the
useability of established results, we also discussed numerical problems. The LCFFDEs in the spaces
of linear correlated fuzzy numbers of symmetric basic fuzzy numbers R, have many differentiable
and continuous solutions due to the extension process. In this research work, we discussed the cases
of extension and the importance of the form of Eq (1.1) for the first-order LCFFDEs. This work
indicates the drawbacks of taking any first-order LCFFDEs. We, also discussed conditions for the

AIMS Mathematics Volume 9, Issue 6, 14747-14764.
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existence of unique solution of LCFFDE:s in the spaces with symmetric basic fuzzy numbers, Ry, . For
the utilization of established conditions for unique solutions of LCFFDEs in spaces with symmetric
basic fuzzy numbers, we discussed numerical problems. In the numerical examples, we discussed the
comparative analysis between our fractional problems and the fractional problems discussed in the
paper [28] to show the importance of existence theory. Moreover, we provided 2D and 3D plots to
enhance our findings. This study is also helpful in discussing the stability and control of LCFFDEs
in future. The pair solutions of LCFFDEs in the canonical form are also interesting for future study.
Moreover, the study of LCFFDEs with other fractional differentiability, like ABC-differentiability, is
also interesting for research.

Use of AI tools declaration

The authors declare they have not used artificial intelligence (Al) tools in the creation of this article.

Acknowledgments

The authors are thankful to Prince Sultan University for the support of this work through TAS
research lab.

Funding

This research was funded by the National Science, Research, and Innovation Fund (NSRF) and
King Mongkut’s University of Technology North Bangkok with Contract No. KMUTNB-FF-67-B-31.

Conflicts of interest

The authors declare no conflicts of interest.

References

1. L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338-353. https://doi.org/10.1016/S0019-
9958(65)90241-X

2. Q. Li, H. Wei, D. Hua, Stabilization of semi-markovian jumping uncertain complex-valued
networks with time-varying delay: A sliding-mode control approach, Neural Process. Lett., 56
(2024). https://doi.org/10.21203/rs.3.rs-3244753/v1

3. Q. Li J. Liang, W. Gong, K. Wang, J. Wang, Nonfragile state estimation for semi-Markovian
switching CVNs with general uncertain transition rates: An event-triggered scheme, Math.
Comput. Simul., 218 (2024), 204-222. https://doi.org/10.1016/j.matcom.2023.11.028

4. A. A. Sori, A. Ebrahimnejad, H. Motameni, Elite artificial bees’ colony algorithm to
solve robot’s fuzzy constrained routing problem, Comput. Intell., 36 (2020), 659—681.
https://doi.org/10.1111/coin.12258

AIMS Mathematics Volume 9, Issue 6, 14747-14764.


http://dx.doi.org/https://doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/https://doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/https://doi.org/10.21203/rs.3.rs-3244753/v1
http://dx.doi.org/https://doi.org/10.1016/j.matcom.2023.11.028
http://dx.doi.org/https://doi.org/10.1111/coin.12258

14763

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

N. Jan, J. Gwak, D. Pamucar, A robust hybrid decision making model for Human-Computer
interaction in the environment of Bipolar complex picture fuzzy soft Sets, Inf. Sci., 645 (2023),
119163. https://doi.org/10.1016/j.ins.2023.119163

S. H. Nasseri, A. Ebrahimnejad, O. Gholami, Fuzzy stochastic data envelopment analysis with
undesirable outputs and its application to banking industry, Int. J. Fuzzy Syst., 20 (2018), 534-548.
https://doi.org/10.1007/s40815-017-0367-1

Y. Xi, Y. Ding, Y. Cheng, J. Zhao, M. Zhou, S. Qin, Evaluation of the medical resource allocation:
Evidence from China, Healthcare, 11 (2023), 829. https://doi.org/10.3390/healthcare11060829

C. Carlsson, R. Fullér, P. Majlender, Additions of completely correlated fuzzy numbers, IEEE Int.
Conf. Fuzzy Sys., 1 (2004), 535-539. https://doi.org/10.1109/FUZZY.2004.1375791

L. C. Barros, F. S. Pedro, Fuzzy differential equations with interactive derivative, Fuzzy Sets Syst.,
309 (2017), 64-80. https://doi.org/10.1016/j.fss.2016.04.002

E. Esmi, F. S. Pedro, L. C. Barros, W. Lodwick, Fréchet derivative for linearly correlated fuzzy
function, Inf. Sci., 435 (2018), 150-160. https://doi.org/10.1016/].ins.2017.12.051

Y. H. Shen, Calculus for linearly correlated fuzzy number-valued functions, Fuzzy Sets Syst., 429
(2022), 101-135. https://doi.org/10.1016/j.fss.2021.02.017

Y. H. Shen, A novel difference and derivative for linearly correlated fuzzy number-valued
functions, J. Intell. Fuzzy Syst., 42 (2022), 6027-6043. https://doi.org/10.3233/JIFS-212908

B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets Syst.,
230 (2013), 119-141. https://doi.org/10.1016/].fss.2012.10.003

Y. Shen, First-order linear fuzzy differential equations on the space of linearly correlated fuzzy
numbers, Fuzzy Sets Syst., 429 (2022), 136-168. https://doi.org/10.1016/j.£55.2020.11.010

N. Jamal, M. Sarwar, S. Hussain, Existence criteria for the unique solution of first order linear
fuzzy differential equations on the space of linearly correlated fuzzy numbers, Fractals, 8 (2022),
1-13. https://doi.org/10.1142/S0218348X22402216

N. Jamal, M. Sarwar, N. Mlaiki, A. Aloqaily, Solution of linear correlated fuzzy differential
equations in the linear correlated fuzzy spaces, AIMS Math., 9 (2023), 2695-2721.
https://doi.org/10.3934/math.2024134

H. Khan, J. F. Gomez-Aguilar, T. Abdeljawad, A. Khan, Existence results and stability
criteria for ABC-fuzzy-Volterra integro-differential equation, Fractals, 28 (2020), 2040048.
https://doi.org/10.1142/S0218348X20400484

D. Luo, M. Tian, Q. Zhu, Some results on finite-time stability of stochastic fractional-
order delay differential equations, Chaos, Solitons Fract., 158 (2022), 111996.
https://doi.org/10.1016/j.chaos.2022.111996

G. Li, Y. Zhang, Y. Guan, W. Li, Stability analysis of multi-point boundary conditions for
fractional differential equation with noninstantaneous integral impulse, Math. Biosci. Eng., 20
(2023), 7020-7041. https://doi.org/10.3934/mbe.2023303

H. Fan, J. Tang, K. Shi, Y. Zhao, Hybrid impulsive feedback control for drive-response
synchronization of fractional-order multi-link memristive neural networks with multi-delays,
Fractal Fract., 495 (2023), 1-19. https://doi.org/10.3390/fractalfract7070495

AIMS Mathematics Volume 9, Issue 6, 14747-14764.


http://dx.doi.org/https://doi.org/10.1016/j.ins.2023.119163
http://dx.doi.org/https://doi.org/10.1007/s40815-017-0367-1
http://dx.doi.org/https://doi.org/10.3390/healthcare11060829
http://dx.doi.org/https://doi.org/10.1109/FUZZY.2004.1375791
http://dx.doi.org/https://doi.org/10.1016/j.fss.2016.04.002
http://dx.doi.org/https://doi.org/10.1016/j.ins.2017.12.051
http://dx.doi.org/https://doi.org/10.1016/j.fss.2021.02.017
http://dx.doi.org/https://doi.org/10.3233/JIFS-212908
http://dx.doi.org/https://doi.org/10.1016/j.fss.2012.10.003
http://dx.doi.org/https://doi.org/10.1016/j.fss.2020.11.010
http://dx.doi.org/https://doi.org/10.1142/S0218348X22402216
http://dx.doi.org/https://doi.org/10.3934/math.2024134
http://dx.doi.org/https://doi.org/10.1142/S0218348X20400484
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2022.111996
http://dx.doi.org/https://doi.org/10.3934/mbe.2023303
http://dx.doi.org/https://doi.org/10.3390/fractalfract7070495

14764

21.

22.

23.
24.

25.

26.
217.
28.

29.
30.

31.

%.1\@ AIMS Press

H. Fan, Y. Rao, K. Shi, H. Wen, Global synchronization of fractional-order multi-delay
coupled neural networks with multi-link complicated structures via hybrid impulsive control,
Mathematics, 11 (2023), 3051. https://doi.org/10.3390/math11143051

L. C. Barrosa, R. C. Bassanezia, P. A. Tonelli, Fuzzy modelling in population dynamics, Ecol.
Model., 128 (2000), 27-33. https://doi.org/10.1016/S0304-3800(99)00223-9

D. L. Mon, C. H. Cheng, J. C. Lin, Evaluating weapon system using fuzzy analytic
hierarchy process based on entropy weight, Fuzzy Sets Syst., 62 (1994), 127-134.
https://doi.org/10.1016/0165-0114(94)90052-3

A. Tony Thomas, S. K. Thangarasu, T. Sowmithra, Simulation and experimental validation of
electro hydraulic servo system using fuzzy logic controller, AIP Conf. Proc., 2336 (2021), 040021.
https://doi.org/10.1063/5.0045724

G. Narayanan, M. S. Ali, Q. Zhu, B. Priya, G. K. Thakur, Fuzzy observer-based
consensus tracking control for fractional-order multi-agent systems under cyber-attacks and
its application to electronic circuits, I[EEE Trans. Netw. Sci. Eng., 10 (2023), 698-708.
https://doi.org/10.1109/TNSE.2022.3217618

M. Arfan, K. Shah, A. Ullah, T. Abdeljawad, Study of fuzzy fractional order diffusion problem
under the Mittag-Leffler Kernel Law, Phys. Scr., 96 (2021), 074002. https://doi.org/10.1088/1402-
4896/abf582

N. Ahmad, A. Ullah, A. Ullah, S. Ahmad, K. Shah, I. Ahmad, On analysis of the fuzzy
fractional order Volterra-Fredholm integro-differential equation, Alex. Eng. J., 60 (2021), 1827—
1838. https://doi.org/10.1016/j.2ej.2020.11.031

N. T. K. Son, H. T. P. Thao, T. Allahviranloo, H. V. Long, State feedback control for fractional
differential equation system in the space of linearly correlated fuzzy numbers, Fuzzy Sets Syst.,
453 (2023), 164-191. https://doi.org/10.1016/j.fss.2022.06.022

B. Bede, Mathematics of fuzzy sets and fuzzy logic, London: Springer, 2013.

O. Kaleva, A note on fuzzy differential equations, Nonlinear Anal., 64 (2006), 8§95-900.
https://doi.org/10.1016/j.na.2005.01.003

A. Erdélyied, Higher transcendental functions, New York: McGraw-Hill, 1955.

©2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 6, 14747-14764.


http://dx.doi.org/https://doi.org/10.3390/math11143051
http://dx.doi.org/https://doi.org/10.1016/S0304-3800(99)00223-9
http://dx.doi.org/https://doi.org/10.1016/0165-0114(94)90052-3
http://dx.doi.org/https://doi.org/10.1063/5.0045724
http://dx.doi.org/https://doi.org/10.1109/TNSE.2022.3217618
http://dx.doi.org/https://doi.org/10.1088/1402-4896/abf582
http://dx.doi.org/https://doi.org/10.1088/1402-4896/abf582
http://dx.doi.org/https://doi.org/10.1016/j.aej.2020.11.031
http://dx.doi.org/https://doi.org/10.1016/j.fss.2022.06.022
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1016/j.na.2005.01.003
http://dx.doi.org/
http://creativecommons.org/licenses/by/4.0

	 Introduction
	Preliminaries
	LCFFDEs in the LC-spaces of non-symmetric basic fuzzy numbers
	LCFFDEs in the LC-spaces of symmetric basic fuzzy numbers
	Conclusions

