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Abstract: Hybrid optical systems with integrated control mechanisms enable a dynamic adjustment 

of optical components, ensuring real-time optimization, adaptability to changing conditions, and 

precise functionality. This control requirement enhances their performance in applications demanding 

responsiveness, such as autonomous systems, adaptive optics, and advanced imaging technologies. 

This research introduces a novel approach, employing a dynamic-free Takagi-Sugeno fuzzy sliding 

mode control (TS-fuzzy SMC) technique, to regulate and stabilize a specific category of chaotic 

fractional-order modified hybrid optical systems. The method addresses uncertainties and input-

saturation challenges within the system. Leveraging a novel fractional calculus definition along with 

the non-integer type of the Lyapunov stability theorem and linear matrix inequality principle, the TS-

fuzzy SMC approach was applied to effectively mitigate and regulate the undesired behavior of the 

fractional-order chaotic-modified hybrid optical system. Notably, this scheme achieved control 

without experiencing undesirable chattering phenomena. The paper concludes by offering concrete 

examples and comparisons, demonstrating how the theoretical findings are applied in real-world 

scenarios. This provides practical insights into the effectiveness of the proposed approach in diverse 

applications. 
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1. Introduction 

1.1. Primary background 

A hybrid optical system combines traditional optical elements like lenses and mirrors with modern 

digital components such as sensors or holographic displays. This integration aims to leverage the 

strengths of both technologies to achieve enhanced imaging capabilities, improved adaptability, and 

multifunctional applications. By merging optics with digital technology, these systems can offer 

superior performance in areas such as medical imaging, surveillance, aerospace, and entertainment. 

Challenges in design complexity and calibration need to be carefully addressed for optimal 

functionality. Overall, hybrid optical systems represent a versatile and powerful solution, capitalizing 

on the synergies between traditional and advanced optical technologies [1]. 

Fractional calculus is a field within mathematical analysis that extends the principles of 

differentiation and integration to non-integer orders. In contrast to classical calculus, which focuses on 

integer-order derivatives and integrals, fractional calculus encompasses operations involving 

derivatives and integrals with non-integer orders [2,3]. 

A fractional-order (FO)-modified hybrid optical system integrates traditional optical components 

with fractional calculus principles, allowing for enhanced control over system dynamics. This 

innovation, leveraging non-integer derivatives or integrals, provides increased adaptability in light 

propagation, signal processing, and image manipulation. The system shows promise in applications 

such as signal processing, offering improved performance over integer-order systems. However, its 

implementation requires careful consideration of both optical and fractional calculus principles, adding 

complexity to system design and analysis [4,5]. 

Controlling a FO-modified hybrid optical system comes with its fair share of challenges. These 

systems have complex dynamics that are tough to predict because they involve memory effects and 

long-range dependencies, which can make them harder to manage than traditional systems. Stability 

is a big concern, as the unique properties of FO systems can lead to unexpected behavior or sluggish 

responses. Plus, these systems are sensitive to changes in parameters, meaning that getting the control 

settings just right is crucial. The hybrid nature of optical systems, which combines various technologies, 

also adds another layer of complexity by introducing potential noise and disturbances that can affect 

performance. 

However, there are compelling reasons to tackle these challenges. FO controllers can offer a 

higher level of precision and robustness, better capturing real-world processes with their memory-

dependent characteristics. This means improved system performance and stability, even in the face of 

uncertainties or parameter changes. Working on control strategies for FO systems not only pushes the 

boundaries of current technology but also opens doors to advancements in fields like 

telecommunications, medical imaging, and sensors, where precise and reliable control is essential. 

Over the past twenty years, there has been a noticeable rise in the number of scientists and 

engineers exploring FO systems for modeling a wide range of phenomena. The extensive 

documentation of the role of FO systems extends across various fields, including quantum systems [6], 

aerospace UAV systems [7], economical mechanisms [8], body health systems [9], power systems [10], 

artificial networks [11], and more. This arises from their oscillatory characteristics and heightened 

susceptibility to initial values. Numerous studies have asserted that a significant portion of fractional-

order systems (FOs) exhibits unpredictability owing to their oscillatory traits and pronounced 
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sensitivity to initial conditions. Consequently, scholars have directed their attention toward 

formulating alternative approaches for synchronizing and sustaining chaotic FOs [12]. In this context, 

diverse control methodologies have been suggested, encompassing the adaptive control method [13,14], 

the observer controller [15], the robust control method [16], the fuzzy control method [17], the sliding 

mode control method [18], the multi-switching based method [19], and the PID control method [20], 

all aimed at governing and stabilizing chaotic FOs. 

For the purpose of coordinating and controlling nonlinear FOs, the TS-fuzzy methodology has 

emerged as a widely used method, and it has found favor in both theoretical research and practical 

application [21]. When it comes to effectively converting nonlinear systems into linear counterparts, 

the TS-fuzzy technique makes use of fuzzy weight and cost functions as tools. Benefits can be 

attributed to the TS-fuzzy flexibility method such as robust theoretical analysis, practical applicability, 

and enduring resilience. 

In recent decades, the sliding mode control (SMC) technique has gained rapid acclaim as one of 

the most preferred control strategies, gaining recognition in both theoretical frameworks and practical 

scenarios [22,23]. In a broad sense, the SMC can be dissected into two fundamental components, as 

delineated below [24]: 

I. The formulation of an appropriate and stable sliding surface. 

II. The generation of control signals designed to suppress chaotic trajectories of FO systems, 

ensuring their conformity to the specified sliding surface. 

TS-fuzzy sliding mode controllers provide a means to represent and control complex nonlinear 

relationships, ensuring adaptability to changing system dynamics. The incorporation of fuzzy logic 

allows for smooth transitions between control modes and reduces the chattering phenomenon 

associated with traditional sliding mode control. TS-fuzzy sliding mode controllers demonstrate 

improved robustness by operating on a designated sliding surface, effectively mitigating the impact of 

external disturbances. Their versatility extends across various applications, including robotics and 

industrial processes, and they strike a balance between complexity and ease of implementation. The 

integration of human expertise into the control system, stability, and convergence further enhances 

their practical usability, making them a valuable tool for addressing control challenges in diverse 

domains [25]. 

1.2. An exploration of the pertinent literature 

Many scholars have embraced the TS-fuzzy method as a valuable tool for stabilizing and 

synchronizing FO nonlinear systems. This is notably demonstrated, for example, in [26], where a 

proposed adaptive TS-fuzzy method, utilizing Lyapunov functions and fractional-order adaptation 

laws, stabilized the model, ensuring convergence and bounded signals. In [27], Zhang and Wang 

addressed the stabilization of TS-fuzzy singular FOs while considering the impact of actuator 

saturation. In [28], a novel observer for TS-fuzzy singular Fos was established, enabling the 

simultaneous assessment of immeasurable or partly detectable states and defects. An adaptive control 

scheme was then suggested to estimate actuator faults in these systems, with conditions for 

admissibility established through linear matrix inequalities (LMIs). In [29], Zhang and Jin proposed 

state and output feedback-control methods for TS-fuzzy singular FOs. In [30], an adaptive TS-fuzzy 

variable structure control method was suggested for chaotic FOs, handling challenges like saturated 

input and control variations. Using the fuzzy Lyapunov function approach, stability analysis and 
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stabilization for FO TS-fuzzy systems were investigated in [31]. In contrast to the conventional 

nonlinear Lyapunov functions, fuzzy Lyapunov functions contain the product of three-term functions 

when compared to the typical Lyapunov functions. Through the use of a TS-fuzzy model technique, 

the researchers of [32] examined the positivity and stability of fractional-order delayed systems. 

In [33], the development of an adaptive SMC observer for a distinct type of TS-fuzzy descriptor FOs 

was discussed. An investigation was conducted into an observer-based controller for polynomials 

fuzzy FOs that makes use of the Lyapunov approach [34]. In [35], two fuzzy switching sliding surfaces 

were introduced using an event-triggered method for TS-fuzzy systems. Unlike traditional approaches, 

it leveraged fuzzy membership functions and their derivatives to develop a fuzzy integral switching 

function. In [36], adaptive sliding mode control with a radial basis function (RBF) neural network was 

used for uncertain fractional-order nonlinear systems. The RBF network handles nonlinearities and 

disturbances, while a proportional-integral control term reduces chattering. In [37], Fan and Wang 

tackled asynchronous event–triggered fuzzy sliding mode control for fractional-order fuzzy systems. 

They used asynchronous premise variables, creating a different term involving both continuous and 

triggering states. In [38], Zhang and Huang proposed an integral sliding mode control scheme for 

uncertain nonlinear singular fractional-order systems with actuator faults, modeled using the interval 

type-2 Takagi-Sugeno approach. In [39], authors addressed fractional-order adaptive neuro-fuzzy 

sliding mode control for fuzzy singularly perturbed systems with uncertainties and disturbances. They 

introduced a new sliding mode surface and used an ε-dependent Lyapunov function to ensure robust 

stability and 𝐻∞  performance. Giap [40] introduced a secure communication system for text 

messages based on FO chaotic systems, incorporating a TS-fuzzy disturbance observer and SMC 

method. In [41], the stabilization of delayed FO chaotic TS-fuzzy systems, addressing input saturations 

and system uncertainties, was investigated. Yan et al. [42] explored the SMC method utilizing 

reinforcement learning for a TS-fuzzy delayed FO multiagent system. In [43], an adaptive sliding mode 

control based on the radial basis function (RBF) neural network for TS-fuzzy fractional order systems 

was designed. The RBF neural network was used to approximate nonlinearities and external 

disturbances. Wan and Zeng [44] explored the stability and stabilization of TS-fuzzy second-FO linear 

networks using a non-reduced order methodology. 

Typically, the cited research works exhibit one or more of the following limitations: 

1) The use of the Caputo FO derivative in existing research has been criticized, as some scholars 

argue that it inadequately accounts for pseudo-state space developments. The incapacity of a FOS to 

take into account the physical behavior of systems is the source of this constraint. A FOS requires the 

inclusion of its complete history in order to determine its prospective, even when time is equal to 

zero [45]. 

2) Existing research often relies heavily on either linear or nonlinear components in the 

suggested control techniques, limiting the comprehensiveness of the approaches. 

3) In many instances, the utilization of SMC control methods is accompanied by the occurrence 

of chattering phenomena that are not acceptable. 

4) The majority of these works simplify system definitions by neglecting uncertainties, external 

distributions, and input saturations, which are essential aspects of real-world systems. 

Hence, the identified limitations prompt us to integrate the non-integer version of the Lyapunov 

stability theory with linear matrix inequality and TS-fuzzy theorem. This integration aims to develop 

a resilient SMC technique for TS-fuzzy systems that is free from chattering, dynamic-free, and can 

effectively handle uncertainties and input saturation. Furthermore, this approach relies on a reliable 
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definition of the FO derivative. 

1.3. Contribution and motivation 

In light of the preceding discussions, it becomes imperative to devise and propose an anti-

chattering TS-fuzzy SMC mechanism tailored for intricate FO chaotic modified hybrid optical system 

(MHOS) amidst the challenges posed by system uncertainty, external disturbances, and input 

saturation. Notably, the exploration of a no-chatter TS-fuzzy SMC method for stabilizing FO chaotic 

MHOS has not been extensively addressed to date, emphasizing the primary objective of this research. 

Furthermore, the consideration of input saturation is pivotal in constructing practical controllers, as it 

imposes an upper limit on control energy, curbing energy wastage in the control system. Additionally, 

the employment of a novel definition for the non-integer derivative provides assurance regarding the 

reliability of the outcomes. 

As a result, this study proposes that developing a no-chatter TS-fuzzy sliding mode control (SMC) 

mechanism is an effective solution for addressing the stabilization challenges present in fractional -

order (FO) chaotic modified hybrid optical systems (MHOS). These challenges often arise due to 

system uncertainties, external disturbances, and issues related to input saturation. The approach begins 

by introducing a user-friendly and straightforward sliding surface design, grounded in the concept of 

FO integration. Following this, the study employs a non-integer version of Lyapunov stability theory 

to create a dynamic-free TS-fuzzy SMC method, ensuring that sliding occurs effectively without 

introducing unwanted chattering. 

The proposed TS-fuzzy SMC approach is carefully designed to avoid relying on both linear and 

nonlinear factors associated with the dynamic elements of FO chaotic MHOS, aiming for a more stable 

and reliable control mechanism. To showcase the practicality and effectiveness of this dynamic-free 

TS-fuzzy SMC technique, the study includes two demonstration scenarios. These examples illustrate 

how the proposed method can be applied in real-world situations, highlighting its potential benefits 

and efficacy in improving system stability and performance. 

In summary, this study presents key motivations and contributions, encapsulating the following 

significant points: 

• The study pioneers the creation of a no-chatter TS-fuzzy SMC approach. The primary 

objective is to stabilize a vast array of intricate and disordered FO chaotic MHOS. This is achieved 

through the incorporation of a novel description of non-integer calculus, leveraging the efficiency of a 

continuous function. 

• The proposed TS-fuzzy SMC technique demonstrates resilience, effectively mitigating the 

effects of uncertainty and input saturation in the FO chaotic MHOS. 

• To achieve trustworthy conclusions about the overall and asymptotical robustness of the 

coordinating closed-loop FO MHOS, the study utilizes LMI and the fractional-order version of the 

LST. 

• In real-world applications, the proposed TS-fuzzy SMC technique demonstrates superior 

performance compared to alternative methods, emphasizing its efficacy in practical problem-solving. 
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1.4. The overview of the paper's organization 

The paper's organization unfolds as follows. Section 2 delves into foundational concepts related 

to FO calculus and systems. Section 3 articulates the problem description, specifically focusing on the 

synchronization of FO chaotic MHOS. The development of a dynamic-free TS-fuzzy SMC technique 

to address the stabilization challenge is detailed in Section 4. Moving forward, Section 5 provides 

applied examples that serve to illustrate the practical efficacy and efficiency of the proposed TS-fuzzy 

SMC method. Finally, Section 6 comprehensively covers the obtained results and their implications 

and outlines future plans. 

2. Basic principles 

Definition 1. The gamma function, expressed by Γ(𝑣) , is a complex-valued function defined for 

complex numbers 𝑣  with real part greater than zero, or equivalently, for 𝑣  in the complex plane 

excluding negative real numbers and zero. The gamma function is defined by the following integral: 

Γ(𝑣) = ∫
∞

𝑡0
𝑡𝑣−1𝑒−𝑡𝑑𝑡. (2.1) 

Here, 𝑣 is a complex number, 𝑡0 shows the initial condition of time, and the integral is taken over 

the positive real numbers. 

Definition 2. [46] The Riemann-Liouville definition of the 𝑘 -order FO integral for a 

continuous/smooth function 𝑄(𝑡) is presented as follows: 

𝐼0,𝑡 𝑄(𝑡) = 𝐷0,𝑡
−𝑘𝑄(𝑡) =

1

𝛤(𝑘)
∫
𝑡

𝑡0
𝑄(𝑠)(𝑡 − 𝑠)𝑘−1𝑑𝑠. (2.2) 

Definition 3. [47] Consider a function Q(t) introduced on the interval [0,∞) in the real numbers 

space (ℝ). In this context, we define the conformable fractional derivative of order f as follows: 

𝐷𝑘Q(𝑡) = lim
𝑝→0

Q(𝑡 + 𝑝𝑒(𝑘−1)𝑡) − Q(𝑡)

𝑝
 (2.3) 

where 𝑡 > 0, and 𝑘 ∈ (0,1). 

Feature 1. [47] For any point with 𝑡 > 0, if 0 < 𝑘 ≤ 1, and both n and m are differentiable functions, 

then the 𝑘th derivative of their product, 𝑛(𝑡).𝑚(𝑡), can be expressed as: 

𝐷𝑘(𝑛(𝑡) ∙ 𝑚(𝑡)) = 𝑛(𝑡)𝐷𝑘(𝑚(𝑡)) +𝑚(𝑡)𝐷𝑘(𝑛(𝑡)). (2.4) 

Feature 2. [47] For any constant value function 𝑟 in the real numbers (𝑟 ∈ 𝑅), the 𝑘th derivative 

with respect to any variable is equal to 0, i.e., 𝐷𝑘𝑟 = 0. 

Definition 4. [48] If 𝐻 is an 𝑛 × 𝑛 matrix and 𝐼 is the identity matrix, the matrix sign function is 

defined as follows: 
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𝑠𝑔𝑛(𝑚)(𝐻) = [(𝐼𝑛×𝑛 +𝐻)
𝑚 − (𝐼𝑛×𝑛 −𝐻)

𝑚][(𝐼𝑛×𝑛 + 𝐻)
𝑚 + (𝐼𝑛×𝑛 − 𝐻)

𝑚]−1 (2.5) 

in which 𝑚 shows the order of the approximation and 𝑠𝑔𝑛(𝑚)(𝐻) ∈ [−1,1]. 

Moreover, in the case of a sliding surface such as 𝜎(𝑡) ∈ 𝑅3 

𝑠𝑔𝑛(3)(𝜎(𝑡)) = [(𝐼 + 𝜎(𝑡))
3 − (𝐼 − 𝜎(𝑡))3][(𝐼 + 𝜎(𝑡))3 + (𝐼 − 𝜎(𝑡))3]−1. (2.6) 

Lemma 1. [49] For regular matrices 𝐿 and 𝑅 and a symmetric matrix 𝑊 of allowable dimensions, 

the following condition holds: 

𝑊 +𝑄𝐿𝑅 + 𝑅𝑇𝐿𝑇𝑄𝑇 < 0, (2.7) 

if and only if for any ε > 0 

𝑊 + [𝜀−1𝑅𝑇 𝜀𝑄] + [
𝐼 0
0 𝐼

] + [
𝜀−1𝑅
𝜀 𝑄𝑇

] < 0, (2.8) 

wherein 𝐿 fulfills L𝑇𝐿 ≤ 𝐼. 

Lemma 2. [50] For any three matrices 𝐴, 𝐵, and 𝐶 with suitable dimensions, provided that 𝐶 is a 

positive-definite matrix, the following results hold: 

𝐴𝑇𝐵 + 𝐴𝐵𝑇 ≤ 𝐴𝑇𝐶−1𝐴+ 𝐵𝑇𝐶−1𝐵. (2.9) 

Theorem 1. [51] Let 𝑘 be a value within the range (0,1), and let us assume that the Lipschitz condition 

is met for the fractional order (FO) system described as 𝐷𝑘𝛾(𝑡)  = 𝑔(𝛾, 𝑡), where there exists an 

equilibrium point at 𝛾 = 0. Additionally, we consider the existence of a Lyapunov function 𝑉(𝑡, 𝛾(𝑡)) 

and class-K functions 𝑙1, 𝑙2 and 𝑙3, subject to the following inequalities holding: 

𝑙1(‖𝛾‖) ≤ 𝑉(𝑡, ℎ) ≤ 𝑙2(‖𝛾‖), (2.10) 

𝐷𝛽𝑉(𝑡,𝑦) ≤ −𝑙3(‖𝛾‖), (2.11) 

where 𝛽 ∈ (0,1) . Subsequently, the equilibrium point of the system 𝐷𝛽𝛾(𝑡) = 𝑔(𝛾, 𝑡)  will attain 

asymptotical stability. 

3. Problem description and TS-fuzzy analysis 

This section expresses the problem statement's characterization. Following that, the systems' TS-

fuzzy formulation will be addressed. 

3.1. Problem description 

Recently, a novel 3D FO MHOS was developed in [52], with the system equations presented as 

follows: 
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{

𝐷𝑘𝑦1(𝑡) = 𝑦2(𝑡),                                                              

𝐷𝑘𝑦2(𝑡) = 𝑦3(𝑡),                                                              

𝐷𝑘𝑦3(𝑡) = −𝛼𝑦3(𝑡) − 𝑦2(𝑡) + 𝛽𝑦1(𝑡)(1 − 𝑦1
2(𝑡)),

 (3.1) 

here, 𝑦1 , 𝑦2 , and 𝑦3  represent the states of the FO chaotic MHOS, and 𝑘 is a non-integer order of 

derivative. A circuit diagram of the FO chaotic MHOS (3.1) is presented in Figure 1 [53]. In [54], it 

has been shown that when 𝛼 = 0.35, 𝛽 = 0.6, and 𝑘 is in the range (0.7, 1.03), the FO system (3.1) 

displays unpredictable chaotic dynamics. 

 

Figure 1. Circuit schematic of FO chaotic MHOS (3.1). Subject to 𝑅 :resistor, 𝑅𝑚 : 

variable-resistor, 𝑦1
2 : squared module, 𝐿𝑘 : FO-inductor, 𝑐𝑘 : FO-capacitors, 𝑐𝑚

𝑘 : FO-

variable-capacitors, and 𝑈0: bias. 

Figure 2 illustrates the unpredictable chaotic performance of the FO system (3.1) with initial 

values 𝑦1(0) = 2, 𝑦2(0) = 1, and 𝑦3(0) = 2. and 𝑘 = 0.98. 

Now, consider the following result of 3-dimensional uncertain chaotic FO nonlinear system (3.1): 

𝐷𝑘𝑌(𝑡) = (𝐺 + ∆𝐺)(𝑌, 𝑡) + 𝜓(𝑢(𝑡)), (3.2) 

where 𝑘 ∈ (0,1), and 𝑌(𝑡) = [𝑦1(𝑡), 𝑦2(𝑡), 𝑦3(𝑡)]
𝑇 is in 𝑅3×1 denotes the vectors representing the 

system’s states, whereas 𝐺 denotes the matrices of constants. Furthermore, ∆𝐺 specifies the external 

disturbance and uncertainty elements. 

Furthermore, 𝜓(𝑢(𝑡)) is the controller's vector, and the actuator-saturation is indicated by: 

𝜓(𝑢(𝑡)) = 𝑢(𝑡) + Δ𝑢, (3.3) 

where 
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Δ𝑢 = {

𝑢− − 𝑢(𝑡)                         𝑖𝑓  𝑢− > 𝑢(𝑡)

(𝜃 − 1) 𝑢(𝑡)           𝑖𝑓  𝑢+ < 𝑢(𝑡) < 𝑢−

𝑢+ − 𝑢(𝑡)                         𝑖𝑓  𝑢(𝑡) ≥ 𝑢+

, 𝑖 = 1, … , 𝑛 (3.4) 

for this case, the intervals of the actuator-saturation function are denoted by 𝑢+, 𝑢+ ∈ 𝑅
+, and 𝑢−, 

𝑢− ∈ 𝑅
−-, respectively, while the slope of the actuator-saturation equation is denoted by 𝜃 ∈ 𝑅+. 

 

Figure 2. Investigating chaotic dynamics in the FO chaotic MHOS (3.1) with 𝜅 = 0.98. (a) 

Graphically representing the trajectories of states in the FO chaotic MHOS (3.1). (b) 

Performing a 3D simulation to demonstrate the interconnected behavior of the 𝑦1 , 𝑦2 , and 

𝑦3  states. (c) 2D behavior of 𝑦1and 𝑦2  states. 

3.2. Generalization of TS-fuzzy model for FO chaotic MHOS 

This part presents the modeling of the stabilization issue for the TS-fuzzy uncertain FO chaotic 

MHOS (3.1). With saturation inputs, the nonlinear FO chaotic MHOS (3.1) may be modeled as plant 

pattern j: IF 𝜁1 be 𝜉𝑗1, 𝜁2 be 𝜉𝑗2,… and 𝜁𝑙  be 𝜉𝑗𝑙, THEN 

𝐷𝑘𝑌(𝑡) = (𝐺𝑗 + ∆𝐺𝑗)(𝑌, 𝑡) + 𝜓(𝑢(𝑡)), (3.5) 

here, 𝜁1 , 𝜁2,… , 𝜁𝑙  represent known premise variables, 𝜉𝑗𝑙  for 𝑗 = 1, 2,3, 𝑙 = 1, 2, 3 denote fuzzy sets, 

and n represents the plant rules. 𝐺𝑗  is the matrix of known constants, ∆𝐺𝑗 is the matrix of unknown 

uncertainties of external disturbance, and 𝜓(𝑢(𝑡)) represents input saturation. The ultimate outcome 
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of the fuzzy FOS is expressed as follows: 

𝐷𝑘𝑌(𝑡) =
∑ 𝛽𝑗(𝜁(𝑡))
3
𝑗=1 {(G𝑗 + ∆G𝑗)(𝑌, 𝑡) − 𝜓(𝑢(𝑡))}

∑ 𝛽𝑗(𝜁(𝑡))
3
𝑗=1

 (3.6) 

⇒ 𝐷𝑘𝑌(𝑡) = ∑ 𝛼𝑗(𝜁(𝑡))
𝑛
𝑗=1 {(G𝑗 + ∆G𝑗)(𝑌, 𝑡) − 𝜓(𝑢(𝑡))}, (3.7) 

where 

𝜁(𝑡) = [𝜁1, 𝜁2, … , 𝜁𝑙]
𝑇, 𝛽𝑗(𝜁(𝑡)) = ∏ 𝜉𝑗𝑖(𝜁𝑖(𝑡))

3
𝑖=1  and 𝛼𝑗(𝜁(𝑡)) =

𝛽𝑗(𝜁(𝑡))

∑ 𝛽𝑗(𝜁(𝑡))
3
𝑗=1

, 

and 𝜌𝑗𝑖(𝜗𝑖(𝑡)) shows the 𝑗th fuzzy set of membership of 𝜁𝑖(𝑡) in 𝜉𝑗𝑖 . Also, it is considered that 

𝛽𝑗(𝜁(𝑡)) ≥ 0 , therefore, ∑ 𝛽𝑗(𝜁(𝑡))
3
𝑗=1 ≥ 0 ; additionally, for 𝑗 = 1, 2,3 , 𝛼𝑗(𝜁(𝑡)) ≥ 0,  and 

∑ 𝛼𝑗(𝜁(𝑡))
3
𝑗=1 = 1, for all 𝑡 ≥ 0. 

Remark 1. In relations (3.7), 𝑌(𝑡) is a vector of state trajectories as 𝑌(𝑡) = [𝑦1(𝑡), 𝑦2(𝑡), 𝑦3(𝑡)]
𝑇, 

where all of these components are dependent to the parameter 𝑡.  Also, the term (𝐺𝑗 + ∆𝐺𝑗)(𝑌, 𝑡) is 

a function containing the FO MHOS function 𝐺𝑗(𝑌, 𝑡) and the external disturbance and uncertainty 

elements ∆𝐺𝑗(𝑌, 𝑡), where both of these functions are dependent to the state trajectories 𝑌(𝑡) and the 

parameter 𝑡. 

Remark 2. In TS-fuzzy modeling, several key assumptions are made to effectively describe and 

manage nonlinear system dynamics. First, the system is represented using a set of fuzzy IF-THEN 

rules, each corresponding to a local linear model within a specific fuzzy region. The fuzzy membership 

functions, which define the degree of belonging to each fuzzy set, are assumed to be well-defined and 

normalized to ensure proper weighting of the local models. The model assumes that the nonlinear 

system dynamics can be sufficiently approximated by these linear local models and that uncertainties 

can be managed within this framework. The stability of the linear models and convergence of the 

system states to desired trajectories are crucial, relying on a proper design of fuzzy rules and 

membership functions. Additionally, the fuzzy system and its membership functions are assumed to be 

continuous, ensuring smooth transitions and avoiding abrupt control actions. These assumptions enable 

the TS-fuzzy model to apply linear control techniques within a fuzzy logic framework, facilitating 

effective control of nonlinear systems. Moreover, in TS-fuzzy modeling and control, several critical 

constraints and perturbation sources must be considered to ensure effective system performance. The 

rule base must comprehensively cover the entire input space to avoid inaccuracies in regions not 

addressed by the fuzzy rules. Each fuzzy rule relies on local linear models, assuming that these models 

can accurately approximate the nonlinear system dynamics within their fuzzy regions; thus, the 

linearization must be precise. Fuzzy membership functions should be well-defined, normalized, and 

continuous to ensure proper weighting and smooth transitions, preventing implementation issues. The 

stability of each local linear model is essential for the overall system stability. Perturbations such as 

modeling errors from linear approximations, external disturbances, parameter variations, and 

limitations in actuators and sensors can impact control effectiveness. Additionally, quantization and 

computational constraints in digital implementations can lead to deviations from the ideal model. 

Addressing these constraints and perturbations is crucial for maintaining robustness and accuracy in 

TS-fuzzy control applications. However, TS-fuzzy SMC can address various constraints and 

perturbations by leveraging the strengths of both fuzzy logic and sliding mode control techniques. To 

overcome constraints, TS-fuzzy SMC improves rule base completeness by integrating fuzzy logic to 
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generate and refine rules that cover the entire input space, while using adaptive algorithms to 

continuously update local linear models for better accuracy. It optimizes membership functions to 

ensure proper weighting and smooth transitions between fuzzy rules, thereby enhancing the system's 

response to changes in inputs. For handling perturbations, TS-fuzzy SMC incorporates the robustness 

of sliding mode control, which inherently deals with system uncertainties and external disturbances 

through high-gain control actions that drive the system state onto a predefined sliding surface. This 

approach also adapts to parameter variations using adaptive sliding mode techniques and addresses 

actuator and sensor limitations by employing robust design principles. Furthermore, TS-fuzzy SMC 

mitigates quantization and computational constraints by optimizing control algorithms and using 

filtering techniques to ensure effective digital implementation. Together, these strategies ensure that 

TS-fuzzy SMC maintains robust performance and accurate control even in the presence of various 

challenges. 

4. Principal outcome 

Within this section, the explanation of the sliding surface will take place depending on the TS-

fuzzy technique as well as the LMI strategy. Following that, the design of the control technique will 

be undertaken, and the presentation of analytical results will follow. 

Let 𝑊 be a full rank matrix and let 𝑊𝑖 be a submatrix with a rank of 𝑟, and given the presence 

of an orthogonal transformation matrix E in a certain configuration, 

𝐸𝑊 = [
0(3−𝑟)×𝑟

𝑊̅
], (4.1) 

in which 𝐸 = 𝑐𝑜𝑙{Ψ1
𝑇Ψ2

𝑇}, Ψ1 ∈ 𝑅
3×𝑟 and Ψ2 ∈ 𝑅

3×(3−𝑟) show unitary matrices, 𝑟 < 3, and Ψ =
[Ψ1Ψ2]. Also, 𝑊̅ ∈ 𝑅𝑟×𝑟  is a nonsingular matrix; also, suppose that 𝑊̅ has been divided into the 

singular valued subsets: 𝑊̅ = Ψ [
ρ𝑟×𝑟

0(3−𝑟)×𝑟
]𝐻𝑇 such that ρ𝑟×𝑟 is a positive diagonal matrix. 

By defining 𝛿(𝑡) = 𝐸𝑌(𝑡) = [
𝛿1(𝑡)

𝛿2(𝑡)
], the following equations can be deduced from Eq (3.7). 

𝐷𝑘𝛿1(𝑡) =∑𝛼𝑗(𝜁(𝑡))

3

𝑗=1

{(𝐺̅11𝑗 + ∆𝐺̅11𝑗)𝛿1(𝑡) − (𝐺̅12𝑗 + ∆𝐺̅12𝑗)𝛿2(𝑡)}, (4.2) 

𝐷𝑘𝛿2(𝑡) = ∑𝛼𝑗(𝜁(𝑡))

3

𝑗=1

{(𝐺̅21𝑗 + ∆𝐺̅21𝑗)𝛿1(𝑡) − (𝐺̅22𝑗 + ∆𝐺̅22𝑗)𝛿2(𝑡) + 𝑊̅𝐷𝑗𝜓(𝑢(𝑡))}, (4.3) 

where 𝛿1(𝑡) ∈ 𝑅
3−𝑟, 𝛿2(𝑡) ∈ 𝑅

𝑟 , 

G̅11𝑗 = Ψ2
𝑇G𝑗Ψ2, G̅12𝑗 = Ψ2

𝑇G𝑗Ψ1, 

G̅21𝑗 = Ψ1
𝑇G𝑗Ψ2, G̅22𝑗 = Ψ1

𝑇G𝑗Ψ1, 

∆G̅11𝑗 = Ψ2
𝑇𝑀𝑗𝑁𝑗(𝑡)𝑂𝑗Ψ2, ∆G̅12𝑗 = Ψ2

𝑇𝑀𝑗𝑁𝑗(𝑡)𝑂𝑗Ψ1, 

∆G̅21𝑗 = Ψ1
𝑇𝑀𝑗𝑁𝑗(𝑡)𝑂𝑗Ψ2, and ∆G̅22𝑗 = Ψ1

𝑇𝑀𝑗𝑁𝑗(𝑡)𝑂𝑗Ψ1. 
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According to (4.2) and (4.3), a sliding surface will be defined as follows: 

𝜎(𝑡) = Ξ𝛿1(𝑡) + 𝛿2(𝑡). (4.4) 

It is known that the condition 𝜎(𝑡) = 0 is true when the sliding motion happens, therefore, 

𝜎(𝑡) = 0 → 𝛿2(𝑡) = −Ξ𝛿1(𝑡). (4.5) 

Hence, from (4.5) and (4.2) we obtain 

𝐷𝑘𝛿1(𝑡) = ∑𝛼𝑗(𝜁(𝑡))

3

𝑗=1

{[(G̅11𝑗 + ∆G̅11𝑗)+ (G̅12𝑗 + ∆G̅12𝑗)Ξ]𝛿1(𝑡)}. (4.6) 

Theorem 2. The asymptotic stability of the sliding-mode dynamic motion, as defined in Eq (4.6), is 

guaranteed by the sliding surface (4.4) if, for any constant 𝛽 > 0, there are positive definite symmetric 

matrices 𝐹̅ and 𝑃 that satisfy the specified LMI: 

[

𝔖 (𝐹̅Ψ2
𝑇 − 𝑃𝑇Ψ1

𝑇)𝑂𝑗
𝑇 Ψ2

𝑇𝑀𝑗

∗ −𝛽̅−1𝐼 0

∗ ∗ −𝛽̅−1𝐼

] < 0, 𝑗 = 1, 2, 3. 

(4.7) 

Such that, 𝛽̅𝑗 = 𝛽𝑗
2, 𝑃 = Ξ𝐹̅, 

𝔖 = (𝐺̅11𝑗𝐹̅ − 𝐺̅12𝑗𝑃)+ (𝐹𝐺̅11𝑗
𝑇 − 𝑃𝑇𝐺̅12𝑗

𝑇 ) = (𝐺̅11𝑗𝐹̅ − 𝐺̅12𝑗𝑃) + (𝐺̅11𝑗𝐹̅ − 𝐺̅12𝑗𝑃)
𝑇 . (4.8) 

Also, the symbol * indicates the symmetric terms of the symmetric matrix. 

Proof. Using Theorem 1, the following V(t) is a proposed Lyapunov function: 

V(t) = 𝛿1
𝑇(𝑡)𝐹𝛿1(𝑡),      𝐹 > 0. (4.9) 

Utilizing (2.4) in Feature 1 and (4.8), one gets 

𝐷𝑘V(t) = 𝛿1
𝑇(𝑡)𝐹𝐷𝑘𝛿1(𝑡) + (𝐷

𝑘𝛿1(𝑡))
𝑇

𝐹𝛿1(𝑡). (4.10) 

Now, based on (4.6) 

𝛿1
𝑇(𝑡)𝐹𝐷𝑘𝛿1(𝑡) = 𝛿1

𝑇(𝑡)𝐹 [∑𝛼𝑗(𝜁(𝑡))

3

𝑗=1

{[(𝐺̅11𝑗 + ∆G̅11𝑗)− (G̅12𝑗 + ∆G̅12𝑗)Ξ]𝛿1(𝑡)}]. (4.11) 

Thus, 

𝐷𝑘V(t) = 𝛿1
𝑇(𝑡)𝐹

[
 
 
 

[∑𝛼𝑗(𝜁(𝑡))

3

𝑗=1

{[(G̅11𝑗 + ∆G̅11𝑗)− (G̅12𝑗 + ∆G̅12𝑗)Ξ]𝛿1(𝑡)}]

+ [∑𝛼𝑗(𝜁(𝑡))

3

𝑗=1

{[(G̅11𝑗 + ∆G̅11𝑗)− (G̅12𝑗 + ∆G̅12𝑗)Ξ]𝛿1(𝑡)}]

𝑇

]
 
 
 

𝐹𝛿1(𝑡) < 0. 

(4.12) 
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Therefore, 

𝐷𝑘V(t) = 𝛿1
𝑇(𝑡)𝜆𝛿1(𝑡) < 0, (4.13) 

such that 

𝜆 = 𝐹(G̅11𝑗 − G̅12𝑗Ξ)+ (G̅11𝑗 − G̅12𝑗Ξ)
𝑇
𝐹 + 𝐹(ΔG̅11𝑗 − ΔG̅12𝑗Ξ)

+ (ΔG̅11𝑗 − ΔG̅12𝑗Ξ)
𝑇
𝐹. 

(4.14) 

To show 𝐷𝑘V(t) < 0, for each nonzero 𝛿1(𝑡), the condition 𝜆 < 0 should be satisfied. Therefore, 

by multiplying both sides of 𝜆 by 𝐹−1, and denoting 𝐹̅ = 𝐹−1𝐹𝐹−1, one can derive, 

𝜆 = (G̅11𝑗 − G̅12𝑗𝔖)𝐹̅ + 𝐹̅(G̅11𝑗 − G̅12𝑗Ξ)
𝑇
+ (ΔG̅11𝑗 − ΔG̅12𝑗Ξ)𝐹̅

+ 𝐹̅(ΔG̅11𝑗 − ΔG̅12𝑗Ξ)
𝑇
 

(4.15) 

= (G̅11𝑗 − G̅12𝑗Ξ)𝐹̅ + 𝐹̅(G̅11𝑗 − G̅12𝑗Ξ)
𝑇
+ (Ψ2

𝑇𝑀𝑗𝑁𝑗(𝑡)𝑂𝑗Ψ2−Ψ2
𝑇𝑀𝑗𝑁𝑗(𝑡)𝑂𝑗Ψ1Ξ)𝐹̅

+ 𝐹̅(Ψ2
𝑇𝑀𝑗𝑁𝑗(𝑡)𝑂𝑗Ψ2−Ψ2

𝑇𝑀𝑗𝑁𝑗(𝑡)𝑂𝑗Ψ1Ξ)
𝑇
 

(4.16) 

= (G̅11𝑗 − G̅12𝑗Ξ)𝐹̅ + 𝐹̅(G̅11𝑗 − G̅12𝑗Ξ)
𝑇
+ Ψ2

𝑇𝑀𝑗𝑁𝑗(𝑡) [(𝐹̅Ψ2
𝑇 − 𝑃𝑇Ψ1

𝑇)𝑂𝑗
𝑇
]
𝑇

+ [Ψ2
𝑇𝑀𝑗𝑁𝑗(𝑡) [(𝐹̅Ψ2

𝑇 − 𝑃𝑇Ψ1
𝑇)𝑂𝑗

𝑇
]
𝑇
]
𝑇

< 0. 
(4.17) 

Drawing from Lemma 1, the satisfaction of the LMI (4.17) for all 𝑁𝑗(𝑡) subject to 𝑁𝑗
𝑇(𝑡)𝑁𝑗(𝑡) ≤ 𝐼, 

is established if and only if there exists a positive constant 𝜇𝑗
−1: 

(G̅11𝑗 − G̅12𝑗Ξ)𝐹̅ + 𝐹̅(G̅11𝑗 − G̅12𝑗Ξ)
𝑇
 

+[𝜇𝑗
−1(𝐹̅Ψ2

𝑇 − 𝑃Ψ1
𝑇)𝑂𝑗

𝑇
𝜇𝑗(Ψ2

𝑇𝑀𝑗)][
𝐼 0
0 𝐼

] + [
𝜇𝑗𝑂𝑗(Ψ2𝐹 −Ψ1𝑃)

𝜇𝑗(𝑀𝑗
𝑇Ψ2)

] < 0. 
(4.18) 

Here, if 𝜎 = (G̅11𝑗 − G̅12𝑗Ξ)𝐹̅ + 𝐹̅(G̅11𝑗 − G̅12𝑗Ξ)
𝑇
, 𝐸 = Ψ2

𝑇𝑀𝑗 and [(𝐹̅Ψ2
𝑇 − 𝑃𝑇Ψ1

𝑇)𝑂𝑗
𝑇
]
𝑇
. 

Subsequently, the condition outlined in Lemma 1 is met. Upon applying the Schur-complement 

to (4.18), the derived result is (4.7). Then, the proof is completed. 

After establishing the sliding surface to ensure suitable responses in sliding dynamic systems, the 

next step in the SMC design process entails developing a control mechanism that enables a smooth 

transition to the specified sliding dynamic (4.4). At this point, the following conditions are articulated: 

𝐷𝑘𝜎(𝑡) < 𝑎𝜎(𝑡) − 𝑙𝑠𝑔𝑛(𝑚)(𝜎(𝑡)),          when 𝜎(t) > 0, (4.19) 

𝐷𝑘𝜎(𝑡) > −𝑎𝜎(𝑡) − 𝑙𝑠𝑔𝑛(𝑚)(𝜎(𝑡)),         when 𝜎(t) < 0. (4.20) 

Now, let us unveil the TS-fuzzy SMC rule as follows: 

𝑢(𝑡) = −(𝔷̅(𝛿(𝑡)) + Λ̅(𝜎(𝑡)) + Υ̅(𝜎(𝑡))), (4.21) 

such that 
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𝔷̅(𝛿(𝑡)) = ∑𝛼𝑗(𝜁(𝑡))

3

𝑗=1

[𝑊̅−1 (Ξ (G̅11𝑗𝛿1(𝑡)+ G̅12𝑗𝛿2(𝑡))+ G̅21𝑗𝛿1(𝑡) + G̅22𝑗𝛿2(𝑡))], (4.22) 

Λ̅(𝜎(𝑡)) = ∑𝛼𝑗(𝜁(𝑡))

3

𝑗=1

[𝑊̅−1C𝑚𝑖𝑛
−1 (2‖𝛯Ψ2

𝑇𝑀𝑗‖
2
+ 2‖𝑂𝑗Ψ2𝛿1(𝑡)‖

2
+ 2‖𝑂𝑗Ψ1𝛿2(𝑡)‖

2

+ 2‖Ψ1
𝑇𝑀𝑗‖

2
)] 𝑠𝑔𝑛𝑚(𝜎(𝑡)), 

(4.23) 

Υ̅(𝜎(𝑡)) = ∑ 𝛼𝑗(𝜁(𝑡))
3
𝑗=1 [𝑊̅−1C𝑚𝑖𝑛

−1 (𝐷𝜎(𝑡) + 𝓆 𝑠𝑔𝑛𝑚(𝜎(𝑡)))]. (4.24) 

Let 𝐷 > 0  and 𝓆 > 0 , and 𝐶𝑚𝑖𝑛  and 𝐶𝑚𝑎𝑥  represent the smallest and largest number of 

eigenvalues of 𝐷𝑖, respectively. Furthermore, let 

𝜒𝑖 = {
𝐶𝑚𝑖𝑛
−1 ,      𝑖𝑓 𝜎G𝜎 ≥ 0

𝐶𝑚𝑎𝑥
−1       𝑖𝑓 𝜎G𝜎 < 0

. 

Remark 3. The use of a sliding surface (4.4) in control systems enhances stability and robustness by 

guiding the system's state (3.7) toward a desired trajectory. Once the system (3.7) reaches the sliding 

surface (4.4), it ensures that the system converges quickly to the desired state, even in the presence of 

disturbances or uncertainties. Additionally, the well-designed sliding surface (4.4) can minimize 

chattering, resulting in smoother control actions and improved overall system performance. 

Theorem 3. In the context of the TS-fuzzy chaotic optical systems (3.7), assuming the feasibility of 

LMIs (4.7) and the existence of the sliding surface (4.4) determined by 𝛯 through (4.7), it can be 

concluded that the closed-loop TS-fuzzy FOS, which is governed by the control law (4.21), will exhibit 

asymptotic stability for all of its FOS states. 

Proof. Drawing on 𝜎𝑇(𝑡)𝐷𝑘𝜎(𝑡), and the sliding surface (4.4), the ensuing results can be derived: 

𝐷𝑘𝜎(t) = ∑𝛼𝑗(𝜁(𝑡))

3

𝑗=1

[Q1 + Q2 − 𝛼𝑖(𝜁(𝑡))(Q3+ Q4 + Q5)] 
(4.25) 

=∑𝛼𝑗(𝜁(𝑡))

3

𝑗=1

𝛼𝑖(𝜁(𝑡))[Q1 + Q2 − Q3− Q4− Q5], 
(4.26) 

such that, 

Q1 = [Ξ(G̅11𝑗𝛿1(𝑡) + G̅12𝑗𝛿2(𝑡))+ G̅21𝑗𝛿1(𝑡) + G̅22𝑗𝛿2(𝑡)], (4.27) 

Q2 = 𝛯 (Ψ2
𝑇𝑀𝑗𝑁𝑗(𝑡)𝑂𝑗Ψ2𝛿1(𝑡) + Ψ2

𝑇𝑀𝑗𝑁𝑗(𝑡)𝑂𝑗Ψ1𝛿2(𝑡))

+ (Ψ1
𝑇𝑀𝑗𝑁𝑗(𝑡)𝑂𝑗Ψ2𝛿1(𝑡) + Ψ1

𝑇𝑀𝑗𝑁𝑗(𝑡)𝑂𝑗Ψ1𝛿2(𝑡)), 
(4.28) 

Q3 = 𝐷𝑗𝜒𝑖 [𝛯 (G̅11𝑗𝛿1(𝑡) + G̅12𝑗𝛿2(𝑡)) + G̅21𝑗𝛿1(𝑡) + G̅22𝑗𝛿2(𝑡)]=𝐷𝑗𝜒𝑗Q1, (4.29) 
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Q4 = 𝐷𝑗𝐶𝑚𝑖𝑛
−1 [2 (‖𝛯Ψ2

𝑇𝑀𝑗‖
2
+ ‖𝑂𝑗Ψ2𝛿1(𝑡)‖

2
+ ‖𝑂𝑗Ψ1𝛿2(𝑡)‖

2

+ ‖Ψ1
𝑇𝑀𝑗‖

2
)] 𝑠𝑔𝑛𝑚(𝜎(𝑡)) = Q̃4𝑠𝑔𝑛𝑚(𝜎(𝑡)), 

(4.30) 

Q5 = 𝐷𝑗𝐶𝑚𝑎𝑥
−1 [𝐷𝜎(𝑡) + 𝓆𝑠𝑔𝑛𝑚(𝜎(𝑡))], (4.31) 

in which 𝐷 > 0 and 𝓆 > 0. 

Additionally, the following conditions can be considered: 

{
𝜎G𝜎 ≥ 0 → 𝜒𝑖 = 𝐶𝑚𝑖𝑛

−1

𝜎G𝜎 < 0 → 𝜒𝑖 = 𝐶𝑚𝑎𝑥
−1 , (4.32) 

we have 

Q1 − Q3 = Q1 −𝐷𝑗𝜒𝑖𝜑1 ≤ 0,   if 𝜎(𝑡) > 0. (4.33) 

Q1 − Q3 = Q1 −𝐷𝑗𝜒𝑖𝜑1 ≥ 0,   if 𝜎(𝑡) < 0. (4.34) 

By leveraging Lemmas 1 and 2, it becomes evident that Q2 ≤ Q̃4, and consequently, one acquires: 

𝐷𝑘𝜎(t) ≤ Q5,   when 𝜎(𝑡) > 0, (4.35) 

𝐷𝑘𝜎(t) ≥ Q5,   when 𝜎(𝑡) < 0. (4.36) 

Hence, upon the implementation of the control law (4.21), the FO chaotic MHOS (3.1) is expected to 

converge toward the sliding surface (4.4). 

Given the preceding results (4.35), (4.36), and Theorem 2, it can be established that the FO chaotic 

MHOS (3.1) is asymptotically stable. Consequently, considering 𝛿(𝑡) = 𝐸𝑌(𝑡), if 𝛿(𝑡) → 0, then 

𝑌(𝑡) will asymptotically converge to zero. 

Remark 4. The Lyapunov function is crucial for ensuring stability in the proof of Theorems 2 and 3. 

The Lyapunov function is selected to be positive definite and is tailored to account for the fractional-

order nature of the system. It typically includes terms that reflect both the system’s fractional dynamics 

and the fuzzy control strategy. The derivative of this function is analyzed to ensure it is negative 

definite or negative semi-definite, which demonstrates that the system will converge to a stable 

equilibrium over time. This approach helps in proving that the TS-fuzzy sliding mode control 

effectively stabilizes the system. It also guides the design of the control laws by ensuring that the 

control parameters are set to make the Lyapunov function decrease, thereby stabilizing the system. 

Additionally, the function addresses the unique fractional-order dynamics, ensuring robust 

performance under various conditions. 

Remark 5. The proposed TS-fuzzy sliding mode control strategy with input nonlinearities offers 

several advantages: 

• Greater robustness: It effectively deals with input nonlinearities, ensuring that the system 

remains stable and performs well even when faced with these challenges. 

• Improved stability: By combining sliding mode control with Takagi-Sugeno fuzzy logic, the 

controller enhances the overall stability of the system, making it more resilient to disturbances and 

variations. 
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• Better nonlinearity management: The fuzzy logic component helps in addressing and 

compensating for nonlinear behaviors in the input, leading to more precise and reliable control. 

• Less chattering: The strategy is designed to reduce chattering, which helps in smoothing out 

control actions and improving the system's performance and durability. 

In essence, this controller provides a more stable, robust, and adaptable solution for handling 

complex and nonlinear inputs, leading to more reliable system operation. 

5. Simulation results 

In this context, we have explored two illustrative scenarios to show the efficacy of the suggested 

chattering-free TS-fuzzy SMC scheme. Additionally, in order to highlight the enhanced performance 

of the TS-fuzzy SMC method, the controller is activated after a 15-s delay. The numerical simulations 

were conducted using MATLAB software, incorporating a specialized adaptation of the Adams-

Bashforth-Moulton pattern as detailed in [55,56]. 

5.1. Problem description 

Setting 𝑘 = 0.95 induces chaotic behavior in the FO chaotic MHOS (3.1). To exert control over 

this system, specific parameter adjustments have been made. Furthermore, the system's initial values 

are defined as 𝑦1(0) = −1.5, 𝑦2(0) = 1.5, and 𝑦3(0) = −1. 

If 𝑦1(𝑡) belongs to (−𝑑, 𝑑) with 𝑑 = 8, the subsequent relations are employed to ascertain the 

membership functions within the fuzzy model aimed at stabilizing the FO chaotic MHOS (3.1): 

ℷ1(𝑦1(𝑡)) =
1

2
(1+

𝑦1(𝑡)

8
), (5.1) 

ℷ2(𝑦1(𝑡)) = 1− ℷ1(𝑦1(𝑡)) =
1

2
(1−

𝑦1(𝑡)

8
). (5.2) 

Subsequently, the following TS-fuzzy relations will be established: 

• Plant rule 1: If 𝑦1(𝑡) is ℷ1(𝑦1(𝑡)), then 𝐷𝑘𝑌(𝑡) = (𝐺1 + ∆𝐺1)(𝑌, 𝑡) + 𝜓(𝑢(𝑡)); 

• Plant rule 2: If 𝑦1(𝑡) is ℷ2(𝑦1(𝑡)), then 𝐷𝑘𝑌(𝑡) = (𝐺2 + ∆𝐺2)(𝑌, 𝑡) + 𝜓(𝑢(𝑡)), 

where 𝑌(𝑡) = [𝑦1(𝑡), 𝑦2(𝑡), 𝑦3(𝑡)]
𝑇, 𝑢(𝑡) is the single input controller, and 

𝜓(𝑢(𝑡)) = {

1                                          𝑖𝑓 𝑢(𝑡) > 1

0.98𝑢(𝑡)         𝑖𝑓 − 1 ≤ 𝑢(𝑡) ≤ 1

−1                                     𝑖𝑓 𝑢(𝑡) < −1

. (5.3) 

Furthermore, 𝐺1 , and 𝐺2 serve to clarify the undisclosed parameters and characteristics inherent in 

the system. Moreover, for 𝑖 = 1, and 2, the terms ∆G𝑖 = 𝑀𝑖𝑁𝑖(𝑡)𝑂𝑖 denote the uncertainties of the 

systems, introduced as outlined below: 

G1 = [

0 1 0
0 0 1

𝛽(1 − 𝑑2) −1 −𝛼
] , G2 = [

0 1 0
0 0 1

𝛽(𝑑2− 1) −1 −𝛼
] ,M1 = [

0.14 0 0.15
−0.15 0.1 0
0.15 0 0.05

], 
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M2 = [
0.15 0 0.05
−0.05 0 0.15
0.1 0.05 −0.1

] , 𝑁1 = 𝑁2 = [
−0.08 0 0
0 −0.17 0
0 0 0.2

] , 𝑂1 = 𝑂2 = [
−1 0 0
0 1.2 0
0 0 1

]. 

To illustrate the feasibility of the proposed TS-fuzzy SMC method and verify the accuracy of the 

stabilization condition, the system parameters are deliberately chosen as 

𝑊̅1 = 𝑊̅2 = [
1.2
1.3
−1.5

], 𝐷1 = 𝐷2 = 𝐷3 = 2.1, 𝐷4 = 𝐷5 = 3.1, 𝐷 = 2, 𝑙 = 3.3, and 𝐸 = [
1 0 0
0 0.8 0
0 0 0.7

]. 

Also, for LMI (4.7), 𝐹̅ = 4.5 and Ξ = 7.8. In addition, it should be mentioned that the control input 

commences operation at t=15 s. 

Figure 3 is included to visually portray the controlled dynamics of the TS-fuzzy FO chaotic 

MHOS (3.1). The evident stabilization of the FO chaotic MHOS (3.1) is discernible from the graphical 

representations within the article. Additionally, Figure 4 offers insight into the saturated single input 

control signal (4.21), while Figure 5 provides a visualization of the sliding surface (4.4). Notably, 

Figure 4 attests to the absence of chattering occurrences in the controller impulses. 

Moreover, as illustrated in Figure 4, the saturation condition modulates the single input control 

signal (4.21) as it approaches saturation limits, resulting in distinctive leap occurrences. This implies 

the facile application of transitioning and leaping states, especially when leveraging switches and 

predefined saturation conditions. Examining Figure 5, one can discern the sliding surface (4.4) 

converging toward its origin. This signifies the efficacy of the proposed TS-fuzzy SMC in governing 

the TS-fuzzy FO chaotic MHOS (3.1). 

Furthermore, as showcased in Figure 4, the saturation condition limits the single input control 

signal as it nears saturation limits, leading to discernible leap occurrences. Consequently, the 

application of transitioning and leaping states becomes seamless, particularly with the integration of 

switches and predefined saturation conditions. Figure 5 reinforces the observation that the sliding 

surface (4.4) converges toward its origin, underscoring the successful stabilization achieved by the 

proposed TS-fuzzy SMC for the TS-fuzzy FO chaotic MHOS (3.1). 

 

Figure 3. The temporal progression of the controlled FO chaotic MHOS (3.1) for 𝜅=0.95. 
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Figure 4. The temporal progression of the control input (4.21) to stabilize the FO chaotic 

MHOS (3.1) for 𝜅=0.95. 

 

Figure 5. The temporal progression of the sliding surface (4.4) applied for the FO chaotic 

MHOS (3.1) for 𝜅=0.95. 

5.2. Scenario 2 

Now, setting 𝑘 = 0.98 initiates chaotic behavior in the FO MHOS (3.1). To govern this system, 

precise parameter adjustments have been implemented. Moreover, the initial values for the system are 

specified as 𝑦1(0) = −1.5, 𝑦2(0) = 1.5, and 𝑦3(0) = −1. 

In the event that 𝑦1(𝑡) belongs to (−𝑑, 𝑑) with 𝑑 = 10, the subsequent relations are employed 

to figure out the membership functions within the fuzzy model, with the objective of stabilizing the 

FO chaotic MHOS (3.1): 

ℷ1(𝑦1(𝑡)) =
1

2
(1+

𝑦1(𝑡)

10
), (5.4) 
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ℷ2(𝑦1(𝑡)) = 1− ℷ1(𝑦1(𝑡)) =
1

2
(1−

𝑦1(𝑡)

10
). (5.5) 

Following this, the fuzzy relations will be established in the following manner: 

• Plant rule 1: If 𝑦1(𝑡) is ℷ1(𝑦1(𝑡)), then 𝐷𝑘𝑌(𝑡) = (𝐺1 + ∆𝐺1)(𝑌, 𝑡) + 𝜓(𝑢(𝑡)); 

• Plant rule 2: If 𝑦1(𝑡) is ℷ2(𝑦1(𝑡)), then 𝐷𝑘𝑌(𝑡) = (𝐺2 + ∆𝐺2)(𝑌, 𝑡) + 𝜓(𝑢(𝑡)), 

where 

𝜓(𝑢(𝑡)) = {

1.5                                          𝑖𝑓 𝑢(𝑡) > 1.5

𝑢(𝑡)                       𝑖𝑓 − 1.5 ≤ 𝑢(𝑡) ≤ 1.5
−1.5                                     𝑖𝑓 𝑢(𝑡) < −1.5

. (5.6) 

Moreover, 𝐺1, and 𝐺2 serve to elucidate the undisclosed parameters and characteristics inherent in 

the system. Additionally, for 𝑖 = 1, and 2, the terms ∆G𝑖 = 𝑀𝑖𝑁𝑖(𝑡)𝑂𝑖  denote the uncertainties of 

the systems, introduced as detailed below. 

G1 = [
0 1 0
0 0 1

𝛽(1 − 𝑑2) −1 −𝛼
],    G2 = [

0 1 0
0 0 1

𝛽(𝑑2 − 1) −1 −𝛼
], 

M1 = [
0.1 0 0.2
−0.07 0.15 0
0 0.2 0.15

] ,   M2 = [
−0.15 0 0.05
0.1 0 0.2
0.1 −0.05 0.1

], 

𝑁1 = 𝑁2 = [
−0.12 0 0
0 0.1 0
0 0 −0.15

] ,    𝑂1 = 𝑂2 = [
1.1 0 0
0 −1.1 0
0 0 1

]. 

To showcase the feasibility and the accuracy of the designed control condition and assess the 

effectiveness of the suggested TS-fuzzy SMC strategy, the system parameters are intentionally selected as 

𝑊̅1 = 𝑊̅2 = [
1.5 
−1.8
1.7

], 𝐷1 = 𝐷2 = 𝐷3 = 3.2, 𝐷4 = 𝐷5 = 2.7, 

𝐷 = 3, 𝑙 = 2.3, and 𝐸 = [
1.2 0 0
0 1 0
0 0 0.9

]. 

Moreover, for LMI (4.7), 𝐹̅ = 3.5 and Ξ = 4.6. 

Figure 6 is incorporated to visually depict the controlled dynamic trajectories of the TS-fuzzy FO 

chaotic MHOS (3.1) for 𝑘 = 0.98 . The evident stabilization of the FO chaotic MHOS (3.1) is 

perceivable from the graphical representations within the article. Additionally, Figure 7 provides 

insight into the saturated single input control signal (4.21), while Figure 8 visualizes the sliding 

surface (4.4). Notably, Figure 7 affirms the absence of chattering occurrences in the TS-fuzzy SMC 

controller impulses. 

Furthermore, as demonstrated in Figure 7, the saturation condition modulates the single input 

control signal (4.21), for 𝑘 = 0.98, as it approaches saturation limits, resulting in distinctive leap 

occurrences. This implies the facile application of transitioning and leaping states, especially when 
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utilizing switches and predefined saturation conditions. Examining Figure 8, one can observe the 

sliding surface (4.4) converging toward its origin. This signifies the effectiveness of the proposed TS-

fuzzy SMC in governing the TS-fuzzy FO chaotic MHOS (3.1). 

Moreover, as illustrated in Figure 7, the saturation condition limits the single input control signal 

as it nears saturation limits, leading to discernible leap occurrences. Consequently, the application of 

transitioning and leaping states becomes seamless, particularly with the integration of switches and 

predefined saturation conditions. Figure 8 reinforces the observation that the sliding surface (4.4) 

converges toward its origin, underscoring the successful stabilization. 

 

Figure 6. The temporal progression of the controlled FO chaotic MHOS (3.1) for 𝜅=0.98. 

 

Figure 7. The temporal progression of the saturated TS-fuzzy SMC input (4.21) to chaos 

suppression of the FO chaotic MHOS (3.1) for 𝜅=0.98. 
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Figure 8. The temporal progression of the sliding surface (4.4) applied for the FO chaotic 

MHOS (3.1) for κ=0.98. 

Remark 6. The controller parameters were fine-tuned through a trial-and-error process, where we 

made adjustments and closely monitored the system’s behavior to find the best settings. This hands-

on approach helped us achieve the stability, performance, and robustness needed for the TS-fuzzy SMC 

system. In future work, we aim to use deep learning methods to automate this tuning process. We 

believe this could greatly improve the efficiency and precision of the tuning, resulting in even better 

system performance and reliability. 

Remark 7. Chattering is a phenomenon where a system undergoes rapid, small oscillations or 

fluctuations, often caused by high-frequency switching or control actions, leading to instability or noise. 

Here, at the beginning of the controller's operation, both the sliding surface and controllers must 

expend energy to counteract the system's undesirable behavior and stabilize it. Once the system is 

stabilized, this energy expenditure gradually converges to zero. Therefore, the abrupt changes in energy 

observed in Figures 3, 4, 7, and 8 represent the initial efforts to control the system. 

Now, we employ an adaptive fuzzy control (AFC) approach to stabilize the FO chaotic MHOS (3.1) 

for 𝜅 = 0.98, aiming to establish a comparison with the designed TS-fuzzy SMC method (4.21) and 

other existing methods. A recent publication [57] introduced an adaptive fuzzy controller specifically 

designed for stabilizing fractional-order systems. The description of this controller is as follows: 

𝑢𝑖(𝑡) =

{
 
 

 
 −(4 + 𝜉𝑖̅

𝑇
(𝑡)𝜛̂𝑖(𝑦𝑖(𝑡)))𝑠𝑔𝑛(𝑦𝑖(𝑡)) − 6, 𝑦𝑖(𝑡) > 0

0,                                                                                    𝑦𝑖(𝑡) = 0

−(4 − 𝜉𝑖̅
𝑇
(𝑡)𝜛̂𝑖(𝑦𝑖(𝑡)))𝑠𝑔𝑛(𝑦𝑖(𝑡)) + 6, 𝑦𝑖(𝑡) < 0

 

𝐷0.98𝜉𝑖̅(𝑡) = 8|𝑦𝑖(𝑡)|𝜛̂𝑖(𝑦𝑖(𝑡)), 𝑖 = 1, 2, 3. 

(5.7) 

A compared depiction of the trajectories of controlled states for the FO chaotic MHOS is 

presented in Figure 9. These trajectories are governed by Eqs (3.1) and (3.2). To control this system, 

both the AFC technique (5.7) and the proposed TS-fuzzy SMC method (4.21) are employed. While 

both approaches effectively return the states to their initial positions, it is evident that the recommended 
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TS-fuzzy SMC method demonstrates a superior level of convergence compared to the AFC technique (5.7). 

It is abundantly clear that the TS-fuzzy SMC (4.21) surpasses the AFC approach (5.7) in terms of both 

convergency and robustness. Moreover, one can see the undesired chattering phenomenon in the results 

of the AFC approach (5.7). Table 1 provides a comprehensive analysis, highlighting key aspects and 

detailed comparisons. 

 

Figure 9. Comparison of controlled 𝑦1 , 𝑦2 , and 𝑦3  in FO chaotic MHOS (3.1), using 

both the recommended single-input TS-fuzzy SMC (4.21) and the AFC method (5.7), 

outlined in [57], for 𝜅=0.98.  
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Table 1. Comparison between the results of the TSFSMC (4.21) and AFC (5.7). 

Comparison 

items 

Results of this paper Results in [57] 

Control 

technique 

TS-fuzzy SMC Adaptive fuzzy control (AFC) 

Tuning 

parameters 

Overall, n+4 parameters should be tuned. Overall, 3n+2 parameters should be tuned. 

System 

details 

The TS-fuzzy SMC does not require dynamic terms 

of the system; it only needs the system states to 

function effectively. 

The ASMC needs to access some part of the 

dynamic terms of the systems. 

Chattering 

phenomena 

The method is entirely free from chattering, and no 

undesirable noise is observed in its performance. 

Chattering and undesirable noises are 

observed in the performance of the 

controller. 

Overview Advantages of the proposed TS-fuzzy SMC: 

(1) Provides superior performance under varying 

conditions and uncertainties. 

(2) The controller is single input and easier to 

design and may be more convenient for practical 

use. 

(3) Eliminates undesirable chattering. 

(4) Achieves improved precision in reaching and 

maintaining the desired state. 

The advantages of the AFC: 

(1) It offers a range of parameters that can 

be tuned, though this may pose a challenge. 

(2) Performs well when the system states are 

known. 

(3) It does not eliminate chattering. 

(4) Suitable for a wide variety of systems. 

Remark 8. The proposed TS-fuzzy SMC controller provides several advantages over existing 

algorithms: 

I. Enhanced robustness: Effectively handles system uncertainties and external disturbances, 

ensuring stable performance. 

II. Reduced chattering: Incorporates fuzzy logic to smooth control actions and minimize 

chattering, improving system longevity. 

III. Better handling of nonlinearities: Adapts to complex nonlinear behaviors with fuzzy logic, 

enhancing control effectiveness. 

IV. Flexible control design: Offers an intuitive design process with easily adjustable fuzzy rules, 

making it versatile for various applications. 

V. Improved system performance: Achieves faster response times, better stability, and improved 

tracking accuracy compared to traditional control methods. 

Remark 9. In a fractional-order hybrid optical system, maintaining robust control is crucial due to the 

system's inherent complexities, including nonlinearity, external disturbances, and uncertainties in the 

model. The TS-fuzzy SMC is designed to handle these challenges by combining the strengths of fuzzy 

logic and sliding mode control. However, a more detailed discussion is needed to highlight how this 

controller manages to maintain stability and performance under varying conditions. We plan to explore 

how the controller's robustness is tested against parameter variations, unexpected disturbances, and the 

fractional-order dynamics that often complicate the control process. This will help clarify the extent to 

which the TS-fuzzy SMC can reliably ensure system stability and performance in real-world scenarios. 
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Furthermore, in FO hybrid optical systems, convergence speed refers to how quickly the system’s state 

reaches and maintains its desired position after a disturbance or control action. The unique 

characteristics of fractional-order systems, such as their non-integer order dynamics, often lead to 

slower responses compared to integer-order systems. The following factors have a direct impact on the 

convergence speed of TS-Fuzzy SMC: 

• Fuzzy logic component: The fuzzy logic controller provides a more flexible and adaptive 

approach by approximating the system’s nonlinear behavior. This adaptability can lead to smoother 

control actions and, consequently, faster convergence to the desired state by reducing abrupt changes 

that might slow down the system’s response. 

• Sliding mode control: Sliding mode control aims to drive the system's state to a predefined 

sliding surface where the system behavior is robust and predictable. The effectiveness of this approach 

in reaching and maintaining the sliding mode can significantly impact convergence speed. Properly 

designed sliding surfaces and carefully tuned gains are crucial to ensuring that the system converges 

quickly and reliably. 

• Parameter tuning: The convergence speed is sensitive to the controller parameters, including 

the gains used in the TS-fuzzy SMC. Higher gains generally lead to faster convergence but may 

introduce issues like chattering or instability. Hence, fine-tuning these parameters is essential for 

achieving an optimal balance between fast convergence and system stability. 

• System dynamics: The fractional-order nature of the system introduces additional complexity, 

which can affect convergence speed. Understanding the specific dynamics of the hybrid optical system 

allows for better tuning of the controller parameters, improving convergence performance. 

In future work, we plan to delve deeper into analyzing and optimizing the convergence speed by 

conducting comprehensive simulations and applying advanced optimization techniques. This will help 

us better understand how the TS-fuzzy SMC performs and ensure it meets the desired performance 

standards for fractional-order hybrid optical systems. 

6. Discussion and conclusions 

The present work introduces a dynamic-free TS-fuzzy sliding mode control (SMC) technique that 

effectively addresses input saturation challenges and stabilizes a fractional-order chaotic modified 

hybrid optical system. By incorporating a novel definition of fractional calculus, fractional iteration of 

Lyapunov stability theory, and linear matrix inequality concepts, the proposed method successfully 

suppresses undesirable behaviors in fractional-order chaotic systems and avoids chattering phenomena. 

Beyond summarizing these findings, this study has significant broader implications. The proposed 

control scheme demonstrates potential applications in various fields requiring robust control under 

uncertainties, external disturbances, and input saturation, such as advanced manufacturing, aerospace 

systems, and robotics. Its capability to manage complex and unpredictable dynamics is particularly 

valuable for industries where maintaining stability is crucial. 

For future work, several key directions are suggested. Analyzing the convergence speed of the 

proposed control method could provide insights into its efficiency and responsiveness under different 

conditions. Additionally, exploring parameter tuning using deep learning techniques could enhance 

the adaptability and performance of the control scheme, allowing for more precise adjustments and 

optimization. Investigating these areas, along with practical implementation studies and applications 
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to other chaotic and nonlinear systems, will help validate the theoretical results and extend the 

method’s applicability, ultimately advancing the field of nonlinear control. 
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