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1. Introduction

Fractional differential equations (FDEs) extend the concept of classical integer-order differential
equations to non-integer orders, providing a powerful framework for modeling complex systems
exhibiting memory and hereditary properties. The origins of fractional calculus can be traced back
to the late of 17th century when Gottfried Wilhelm Leibniz and Guillaume de L’Hopital exchanged
letters discussing the possibility of derivatives of non-integer order. Over the centuries, the theory of
fractional calculus has been developed and formalized by mathematicians such as Joseph Liouville,
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Bernhard Riemann, Hermann Weyl, and Marcel Riesz, among others.

In the modern era, fractional calculus has found applications in various scientific and engineering
disciplines. Unlike classical differential equations, FDEs are capable of capturing the dynamics of
processes that exhibit anomalous diffusion, non-local behavior, and long-range temporal correlations.
This makes them particularly suitable for modeling phenomena in fields such as physics, control theory,
biology, finance, and engineering; see the monographs [1-6].

The mathematical foundation of FDEs involves several definitions of fractional derivatives and
integrals, each suited for different types of problems. The most commonly used definitions include
the Riemann-Liouville, Caputo, and Hadamard fractional derivatives. These derivatives are integral
operators that generalize the concept of differentiation to fractional orders, providing a flexible tool
for describing the evolution of systems over time. Within this framework, several types of fractional
derivatives have been developed, each tailored to capture different aspects of these systems. Among
these, the Hilfer-Hadamard fractional derivative is a new fractional derivative introduced in 2012
by M. D. Qasim [7]. It has emerged as a notable concept, blending the features of the Hilfer and
Hadamard fractional derivatives. The unique combination of Hilfer and Hadamard characteristics
makes it particularly versatile for a wide range of applications. As research in this area continues
to evolve, the Hilfer-Hadamard fractional derivative is expected to play an increasingly important role
in the mathematical modeling of complex systems.

The study of existence and uniqueness of solutions to FDEs is crucial, as it ensures that the
models are mathematically well-posed and their solutions are reliable for practical applications.
These properties are typically established using fixed point theorems, which are foundational tools
in functional analysis; see the monographs [8—10]. The stability analysis of FDEs is essential to
understand how solutions behave under small perturbations, which is crucial for the robustness of
models in real-world applications. Various concepts of stability have been developed, each suited to
different types of perturbations and scenarios. In the context of FDEs, concepts such as Lyapunov
stability, asymptotic stability, Mittag-Leffler stability, Ulam-Hyers stability, and Ulam-Hyers-Rassias
stability are commonly used, see [11-17] and references cited therein.

The research since 2017 has focused on exploring the theoretical properties of the Hilfer-Hadamard
fractional derivative and its applications to differential equations. The study of the existence and
uniqueness of solutions to differential equations involving this derivative has been a vibrant area of
investigation. Researchers have also examined the stability of such systems, employing various fixed
point theorems and stability concepts, including Ulam-Hyers stability, Ulam-Hyers-Rassias stability,
and their generalizations. For more detailed discussions, see [18-21].

Research on sequential fractional differential equations (FDEs) with boundary value problems has
made significant progress, primarily focusing on single sequential FDEs with various types of boundary
conditions regarding the existence and uniqueness of solutions. Notable examples can be found in the
monographs [22-26]. These studies utilize a range of mathematical techniques and contribute to a
broader understanding of the applications of fractional calculus in various fields, including physics,
engineering, and applied mathematics.

Among the various applications of FDEs, coupled systems involving sequential fractional
differential equations with boundary value problems have also garnered significant attention due to their
ability to describe complex interactions between multiple components or variables within a system.
Recent results on this topic are limited and include the following.
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In 2018, Zada et al. [27] studied the nonlinear sequential coupled system of Caputo fractional
differential equations with Riemann-Liouville fractional integral boundary conditions of the form

(¢DY + kDT Nx(t) = ft, x(@),y(@), tel[0,T], 2<q<3,
(CDP + kDP~Yy(t) = g(t, x(1), y(1)), t€[0,T], 2<p <3,

x(0) =0, x(T) = )" ail”y(y),
i=1

¥(0) =0, (T)= ) Bil"¥),
j=1

where <DV denotes the caputo fractional derivatives of order p and g, I denotes the Riemann-
Liouville fractional integral of order p; and y; > 0, 1,60, € (0,T), k € R, f, g : [0, T] X R? - R, and
a,BieR, i=1,2,...,n, j=1,2,...,mare real constants such that

+1 18197/ 2
F(p, +2) Z Iy + 2)
The authors in this paper demonstrated the existence of solutions by applying the Leray-Schauder
alternative criterion, while uniqueness is established using the Banach fixed point theorem. They also
presented the Ulam-Hyers stability of the mentioned system.
A few years later, in 2022, Zada and Yar [28] studied the existence, uniqueness, and Ulam-Hyers

stability of a sequential coupled system of Hadamard fractional differential equations with nonlocal
Hadamard fractional integral boundary conditions as follows:

(D + kDT Nu(r) = f(t,u()), (1)), k>0,1<qg<2,te(l,e),
(DP + kD”‘l)v(t) g(t,u(®), v(t)) k>0,1<p<2 te(l,e),

u(1) =0, Z A u(ny) = Zuﬂﬂfu(e) Pu&)),

Vl

v(1) =0, Zpiﬂ"v(e,-) = > K5I (e) = '),
i=1

=1

where DV denotes Hadamard fractional derivative of order pandgq, f,g : [l,e] x R> — R are
continuous functions, 7, 0;,&;,¢; € (1,€), A, pipjk; € R, i = 1,2,...,m, j = 1,2,...,n, and [V
is the Hadamard fractional integral of order ¢ > 0,¢ = a;,v:,8,,0;, i = 1,2,....m, j=1,2,...,n
The existence of solutions was derived from Leray-Schauder’s alternative, whereas the uniqueness was
established by the Banach fixed point theorem.

In the same year, Agarwal et al. [29] studied the existence and Ulam-Hyers stability results for a
fully coupled system of nonlinear sequential Hilfer fractional differential equations of the form

(gD — o gD P x(1) = fi(t, x(0), ¥(1), 1t €[a,b], a0,
(uD™P> — oy D7 YP)y(1) = fo(t, x(1), (1)), t € [a,b),
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subject to integro-multistrip-multipoint boundary conditions

@) =y®@) =0, k=0,1,2,. -2,

fxww—Z&afy®M+mey

j=1

i
\fmm:Z@Jnmm+me»
a i=2 mi-i =1

where yD%#i is the Hilfer fractional derivative operator of order @;, n — 1 < @; < n, n > 3, and
type Bi, 0 < B < 1,i=1,2,and f; : [a,b] X RXR — R (i = 1,2) are continuous functions,
a<m<m<--<n,<0 <0< -<p,<b Ai_,u;>0,i=23,...,p, j=12,...,q
with p,g € N, and 01,0, > 0. The authors applied the standard fixed point theorems due to Banach
and Krasnoselskii, as well as the Leray-Schauder nonlinear alternative, to establish the existence and
uniqueness of the solution. The paper also included a study of Ulam-Hyers stability for the given
problem.

Very recently, in 2024, Sompong et al. [30] changed a coupled system of sequential Hilfer
fractional differential equations from the aforementioned paper to a coupled system of sequential
Hilfer-Hadamard fractional differential equations

(u Dm,& vk g m l,ﬁl)u(t) — f([’ u(®),v(t), 1<a; <2, te]l,e],
(HDaz,Bz +ky p “2 1'82)‘;(;) =g(t,u(®),v(t), 1 <a, <2, te[l,e],

with four-point coupled boundary conditions

u(l)=0, ule)=Avl), 1 <b<e,
v(l) =0, vie)=uu(m), 1<n<e,

where HD(]’i”g " denotes the Hilfer-Hadamard fractional derivatives of order «; € (1, 2] and type 8; € [0, 1]
forie {1,2},k,k, e R, f,g:[1l,e] xR xR — R are given continuous functions, and A and yu are real
constants.

Motivated by the research going on in this direction, in the present paper we extend the results
of [30] to a coupled system of sequential Hilfer-Hadamard fractional differential equations

DY + kDY u) = £t u@) v@), 1€ (1,el, an
DY + koD () = gt u@), v(®), 1€l '
with multi-point Riemann-Liouville fractional integral boundary conditions
u(1) =0, u(e) = EEAI@WH)_ESInmt[(H‘Sf "(s)ds,
. (1.2)

vmzav@:zmﬂwm— jwmﬂwu@m

J=1

F( ])
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where HD(]’i”g " denotes the Hilfer-Hadamard fractional derivatives of order «; € (1, 2] and type 8; € [0, 1]
fori € {1,2},k;, ko € R,, and f,g : [1,e] x R X R — R are given continuous functions. I° and 17
are the Riemann-Liouville fractional integral of positive order 6; and ; € (1,e), and A;,u;,1 <i,j<n
are real constants. Note that the Hilfer-Hadamard fractional derivative is viewed as interpolating the
Hadamard fractional derivative and the Caputo-Hadamard fractional derivative. In this paper, we focus
on the special case of order a; € (1, 2] as most applications involve derivatives of no more than second-
order. Another important highlight of this research are the boundary conditions of the problem, which
are multi-point Riemann-Liouville fractional integral boundary conditions that make it applicable to a
broader class of mathematical models.

Fractional differential equations continue to be a vibrant area of research, with ongoing
developments enhancing our understanding and expanding their applicability. This paper contributes
to this growing body of knowledge by addressing key aspects of existence, uniqueness, and stability
in the context of fractional integral boundary conditions. The existence and uniqueness of solutions
are established using fixed point theorems such as Krasnoselskii’s and the Banach fixed point
theorem. Ulam-Hyers, Ulam-Hyers-Rassias, generalized Ulam-Hyers, and generalized Ulam-Hyers-
Rassias stability are also discussed for the system of Hilfer-Hadamard sequential fractional differential
equations (1.1) with conditions (1.2). Illustrative examples are provided.

The remaining structure of this paper is as follows: In Section 2, we recall some definitions,
notations, and theorems needed for our proofs. The main results regarding existence and uniqueness
are presented in Section 3. The stability results in the sense of Ulam-Hyers, generalized Ulam-Hyers,
Ulam-Hyers-Rassias, and generalized Ulam-Hyers-Rassias are discussed in Section 4. Examples
illustrating the main results are provided in Section 5.

2. Preliminaries

In this section, we present some fundamental definitions and theorems. Let L![a, b] be the Banach
space of an Lebesgue integrable function. We consider AC[a, b], the space of absolutely continuous
function on the interval [a,b], and ACj}[a,b] is the space of n-times J—differentiable absolutely
continuous functions on the interval [a, b], as follows

ACla,b] = {f fH=c+ f p(rydr, ceR, g€ Ll[a,b]},
AC}la,b] = { fila,b] > R: 8" Vf() e AC]a, b]},

where ¢ is the Euler operator t%.

Definition 2.1. (The Riemann-Liouville fractional integral [2]) The Riemann-Liouville integral of
order a > 0 of a function f : [a, ) — R is defined as

1% f (1) := TG )f(t—‘r)" Yf(rydr, t>a.

Definition 2.2. (Hadamard fractional integral [2]) The Hadamard fractional integral of order @ € R,
for a function f : [a, o) — R is defined as

3 ‘”f(T)
I f(H) = @ )f t>a,
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provided the integral exists, where log(.) = log,(.).

Definition 2.3. (Hadamard fractional derivative [2]) The Hadamard fractional derivative of order a >
0, applied to the function f : [a, ) — R, is defined as

D ft)=0"(ul;"f(1), n—1<a<n, n=l[a]+]1,

where 6" = (t%)” and [a] denotes the integer part of the real number a.

Definition 2.4. (Hilfer-Hadamard fractional derivative [20,31]) Letn — 1 < a <n, 0 < B < 1, and
f € L'[a, b). The Hilfer-Hadamard fractional derivative of order a and type 8 of f is defined as

D@ = (8" Hlf;i R0
= (gl yIl (@)
= (uI2"™ yDY, f)(0),

where HI‘(,;), v =a+nf—-apB, and HDLZ are the Hadamard fractional integral and derivative defined by
Definitions 2.2 and 2.3, respectively.

The Hilfer-Hadamard fractional derivative may be viewed as interpolating the Hadamard fractional
derivative and the Caputo-Hadamard fractional derivative. Indeed, for 8 = 0, this derivative reduces
to the Hadamard fractional derivative, and when § = 1, we recover the Caputo-Hadamard fractional
derivative.

We use some theorems of the Hadamard fractional integral and Hilfer-Hadamard fractional
derivative by Kilbas [2].

Theorem 2.5. [2] Leta >0, n=[a]l+ 1, and0 < a < b < co. If f € L'[a,b] and W)@ €
ACj%la,b], then

a

1 .
. N OVl @ e
(ks WL PO = 0= ) 25 (toe2) .

Theorem 2.6. [20] Leta > 0,0 < <1, y=a+n-af, n—-1<y <nn-=|[a]+1, and
0<a<b<oo If feL'a,bland (yl,.” f)(t) € AC}[a,b), then

a

I3, uDEE N0 = wll, uD O = f(O) = )

NG “(HIZJf»(a)(IOg r)v-f-l
= Ty =) '

From this theorem, we notice that if 8 = 0, the formula reduces to the formula in the Theorem 2.5.

We will use the following well-known fixed point theorems in Banach space to prove the existence
and uniqueness of solutions for the coupled system of the sequential Hilfer-Hadamard fractional
differential problem.

Theorem 2.7. (Krasnoselskii’s fixed point theorem [32]) Let Y be a bounded, closed, convex, and
nonempty subset of a Banach space X. Let 7| and F, be the operators satisfying the conditions: (i)
Fiyi + Foyo € Y whenever yi,y, € Y, (ii) F, is compact and continuous, (iii) ¥, is a contraction
mapping. Then, there exists y € Y such that y = F1y + Fy.

AIMS Mathematics Volume 9, Issue 9, 25849-25878.
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Theorem 2.8. (Banach fixed point theorem [33]) Let X be a Banach space, D C X, nonempty closed
subset, and F : D — D a strict contraction, i.e., there exists k € (0, 1) such that ||F x — Fy|| < kl||x — y|
forall x,y € D. Then, ¥ has a fixed point in D.

In summary, Krasnoselskii’s fixed point theorem is a generalization of the Banach fixed point
theorem that allows for the sum of two operators, while Banach’s theorem is a special case that deals
with a single contraction mapping on a complete norm space.

In this paper, we also focus on the stability of the solution to the problem in the class defined by
system (1.1) and conditions (1.2), ensuring it stays continuous despite changes to the equation while
maintaining the boundary condition structure. We explore and analyze four types of Ulam stability:
Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability, and generalized
Ulam-Hyers-Rassias stability for the fractional differential problem (1.1)—(1.2).

Lete,e >0, aj,a; € (1,2], B1,52 € [0,1], f,g : [1,e] x R xR — R be continuous functions,
and ¢, ¢, : [1,e] = R,. We consider the system of fractional differential problem (1.1)—(1.2) and the
systems of inequalities

(D" + ki gD Px(0) = ft, X0, yO)| < €, t€[l,el, o

[(aD? + koD P)y(t) — g2, x(0), Y(D)| < &, '

(uDP + kgD PHx(0) = £, x(0), YO < @1(0), 1€ [l e, 22

(uDT? + koD P)y(2) — (2, x(0), YD) < @a(0), ‘

(D + kgD PYx() — f(t, X0, (O < €91 (1), 1€ [L,el, 23)

(4D + ky DS Py (t) — (2, x(0), YD) < 25(1), ’
with multi-point Riemann-Liouville fractional integral boundary conditions
o A (7 -

MMQK@ZMWh;mﬂﬁﬂWM® .

;- )7~ x(s)ds,
F( J) f !
where 6;,17; € (1, e), and 4;, u; are real constant, for 1 <17, j < n.
In the following Ulam stability definitions, we denote ¥ = C'([1, e], R). For a vector v = (v{,v;) >
0, this means vy, v, > 0.

Definition 2.9. (Ulam-Hyers stable [11]) Problem (1.1)—(1.2) is Ulam-Hyers stable, if there exists a
constant vector ¢y, = (cy,c,) > 0 such that, for each € = (€, &) > 0 and for each solution (x,y) € YXY
of inequalities (2.1) with (2.4), there exists a solution (u,v) € Y X Y of problem (1.1)—(1.2) satisfying

mva)®:Zmer
j=1

”(-xay) - (I/l, V)” < cf,geTa re [1,6].

Definition 2.10. (Generalized Ulam-Hyers stable [11]) Problem (1.1)—(1.2) is generalized Ulam-Hyers
stable, if there exists a continuous vector function 65, : R, X R, — R, with 0;4,(0) = 0 such that, for
each solution (x,y) € Y X Y of inequalities (2.1) with (2.4), there exists a solution (u,v) € Y X Y of
problem (1.1)—(1.2) satisfying

(x, ) = (u, vl < Op4(€), te[l, el
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Definition 2.11. (Ulam-Hyers-Rassias stable [11]) Problem (1.1)—(1.2) is Ulam-Hyer-Rassias stable
with respect to ¢ = (@1, ¢2) if there exists a constant vector €rop = (Cpy,>Cop,) > 0 such that for
each € > 0 and for each solution (x,y) € Y X Y of inequalities (2.3) with (2.4), there exists a solution
(u,v) € Y X Y of problem (1.1)—(1.2) satisfying

106, 3) = V)| < ecreple®], 1€l el

Definition 2.12. (Generalized Ulam-Hyers-Rassias stable [11]) Problem (1.1)—(1.2) is generalized
Ulam-Hyer-Rassias stable with respect to ¢ = (¢1,¢2) if there exists a constant vector Crg, =
(Cy1>Cop) > 0 such that, for each solution (x,y) € Y X Y of inequalities (2.2) with (2.4), there
exists a solution (u,v) € Y X Y of problem (1.1)—(1.2) satisfying

106, 3) = (u, | < €re0le®]”, 1€l el

In a word, the primary differences among the stability concepts lie in the types of perturbations and
the generality of the stability conditions: Ulam-Hyers stability addresses basic stability under small
perturbations, while Ulam-Hyers-Rassias stability extends this by allowing more flexible perturbations.
Generalized Ulam-Hyers stability broadens the application of Ulam-Hyers stability to various FDEs,
and generalized Ulam-Hyers-Rassias stability combines this generalization with flexible perturbations
for a more comprehensive analysis. These concepts are crucial for studying stability in various
mathematical models, particularly in fractional differential equations.

Remark 2.13. It is clear that (i) Definition 2.9 — Definition 2.10; (ii) Definition 2.11 —
Definition 2.12; (iii) Definition 2.11 = Definition 2.9.

Remark 2.14. A function vector (x,y) € Y X Y is a solution of inequalities (2.1) if and only if there
exists a function vi,v, € C([1, e],R) such that |v,(?)| < €, ()| < &, t €[1,e], and

(D + ke pDY P x(0) = £t x(0), y(@0) + i (1), 1€ [1el,
(D + kD P)y(0) = g(t, x(1), y(0)) + va(d).

One can make similar observations to Remark 2.14 for inequalities (2.2) and (2.3).
3. Existence and uniqueness results

We start by proving a basic lemma concerning a linear variant of boundary value problem (1.1)-
(1.2), which be used to transform boundary value problem (1.1)—(1.2) into an equivalent integral system

of equations.

3.1. An auxiliary lemma

Lemma 3.1. Let hy,hy € C([1,¢e],R) and A =1 - AB # 0, where

A ! di=1 y2-1 K K o—1 yi-1
A= ; mﬁ (6; — )" (logs)* 'ds and B = ]Z:; o) j: ;- )7 (log s)"~'ds.
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Then, u,v € C([1,e],R) are solutions of the Hilfer-Hadamard sequential fractional differential
equations

{ (D + kgD () = (1), 1<a1 <2, 0<B <1, re[l,el, 3.0

(D + kouDT () = (1), 1<y <2, 0SBy <1, 1€l el,

supplemented with integral boundary conditions (1.2) if and only if

u(r) =%{[kl f] u(ss)ds - F(:h) j; hlis)(log E)m_lds
- Z % fl " - (ke f1 S v(rr)dr - = (LZ) f1 S hzir)(log ;)az_ldr)ds]
A [ [
- ; Fé;{j) fl R Uj_l(kl fl @dr - r((lxl) fl | hly)(log ;)m_ldr)ds]}

" u(s) 1 "hi(s) A
—klfl - ds+r(a])j: ) (log;) ds 3.2)

and

V(o) :%{[l@ fl e v(ss)ds - r((lz S fl e hZES) (102 E)az_lds
) ; rg; B fl - S)Uj_l(kl fl | u(rr)dr B r(iyl) fl | hlir)(log ;)m_ldr)ds]
+ B[k fl - o fl 105 ¢
- ZZ % fl "6 S)‘S"‘l(kz fl v(rr)dr - r(;) fl s hz}f’)(log ;)az_ldr)ds]}

" y(s) 1 " ho(s) r\*2!
—szl - ds+r(a2)f1 - (logg) ds, (3.3)

where y; = a; + 26; — a;; for i € {1,2}.

Proof. Taking the Hadamard fractional integral of order a; both sides of the first equation of (3.1), we
get

(I} DY + kI gD () = wl (o).

By Theorem 2.6, we have

Q2-j-D¢ 12—
u(t) _ Z (6 (H11+ M))(l)

T =) (log )" ™! + kI DY P u(t) = pIth(2). (34)
—

1
J=0

AIMS Mathematics Volume 9, Issue 9, 25849-25878.
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From Eq (3.4), by Definition 2.4 one has

@l w() (a1} u)(1)

_ - 1—1 1-1 _ g
u(r) T (log )™ b T - 1) (logt)” 2 +k1H11+(HI}/+ HD}1/+ u(t) = gl hi (1), (3.5)
where v,y € (1,2] for i € {1,2}. Then, by Theorem 2.5 we get
©rl} " u)(1) (a7 w)(1)
u(t) - —————(log )" ' — ———"(log )"
ron ¢ D
(a3 w)(1) _ .
+ k1H111+(I/t(t) - m(log 1)71 2) = Hlllh(t)- (36)

Equation (3.6) can be written as

(1 y1-2 !
u(t) = co(logt)” ! + Cl((log H2 4 klf %ds) _ klf @ds
1 N 1

S

1 "hi(s) fai-1
' s fl O (1og 1" as, (3.7)

where ¢( and ¢, are arbitrary constants. In a similar way, we obtain

(1 y2-2 !
0 = dlog 17"+ (og 07" + f %ds) 6 f LOP
1 N .S

1 " hy(s) a1
b fl (tog 1) as, (3.8)

S N

where dj and d, are arbitrary constants. Using the first boundary conditions of (1.2), u(1) = 0, and
v(1) = 0 together with Eqgs (3.7) and (3.8), yield ¢; = 0 and d; = 0, respectively. Equations (3.7)
and (3.8) become

t t -1
u(t) = collog )" -k, f US) gg v L f h 1(S)(log f) ds, (3.9)
S [(ay) Ji s s
and t ) o
W(b) = dy(log 1" — & f O f hZ(S)(log 5) ds. (3.10)
S Iay) J; s s

Next, the second boundary conditions of (1.2) together with Eqs (3.9) and (3.10) yield

e e a—1
Co — k] f u(S)dS + ! f hl(S)(log E) ds
I I'ay) J; s Ry

~ n /l,- 0; 51 - s V(}") 1 s hz(r) s ar—1
= ; m‘[g 6; — S) (dO(IOg S)7 - kz‘[ . dr + F(a’z) f; p (log ;) dr)ds

“v(s) 1 ¢ hz(s)( e)“z‘l
do — k d log - d
0" ﬁ S SF I'(ay) j: Ry 08 K g

N (T e SR G IR S UG
_;F(Uj)ﬁ (n;— ) (co(logs)y klﬁ . dr+r(a1)j: - (log r) dr)ds,
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respectively. Rearranging the above equations, we get the linear system of equations:

Co — d()A = J] and d() - C()B = Jz, (311)

a1 (T, ey
_klj; s ds_F(ozl)‘fl s (logg) ds
N A (M e, (YO L e sy
;nmf@s)@ﬁlwrmmﬁ,wm) ar s
LW 1 (T, ey
I =k fl s~ s fl X (log;) ds

3 P fsu(r) 1 fshl(r) fa’_l
Zr(o-j) ;= 5) (kl T dr Cla) J, r (log r) dr)ds.

Solving system (3.11), we obtain

where

Ji +AJ J, + BJ
Cy = 1 2 and do = 2 1 .
A
Substituting ¢ and d, back into Eqgs (3.9) and (3.10), respectively, we get the integral equations (3.2)
and (3.3). The converse follows by direct computation. This completes the proof. O

Let us introduce the Banach space X = C([1,e],R) endowed with the norm defined by ||| :=

II%?X] |u (¢)]. Thus, the product space X X X equipped with the norm ||(&, v)|| = ||u|| + ||[v|| is a Banach
te

space. In view of Lemma 3.1, we define an operator ¥ : X X X — X X X by

F (u, v)(0) = (F1(u, v)@), F2(u, v)(0)), (3.12)

where

F1(u, v)(0)

[ iy [ ]
e [ ) ]
S

us) ORI
‘khﬁ s naoj‘ (toe ) e

and
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Fa(u, v)(1)

L, [0y L [
Zﬁ <>( ff ”5”dr wf HEAO g ) s

" V(s) 1 " (s, u(s), v(s)) 1\t
—kzj: : ds+r(a2)f1 i (log;) ds.

We use the following notations in the proofs:

1)51 = 1) 1 2w 2@
; 1+ + |A =—, W= —.
Zl re+ 1 Zl flr(aj+1) =l Fee AL W= TR W=y

Note that A < w and B < @. The following hypotheses are required in the subsequent discussion :

(Hy) Let f,g : [1,e] x R X R — R be continuous functions. Assume that there exist continuous
nonnegative functions ¢ € C([1,¢e],R,) and y € C([1, e], R;) such that

lf (@, u(®), v)l < 9(@) and  |g(t, u(n), (D) < x(0),

foreacht € [1,e].

(H,) Assume that there exist positive constants L and L such that, for all # € [1,e] and u;,v; € R,
i=1,2,

|f(t, ur,up) — f(t,v1,v2)l < L(luy — vil + [uz — val),

lg(t, ur, up) — g(t,vi,vp)| < Lluy — vi| + |up — va).

(H3) Assume that ¢ : [1,e] — R, is an increasing continuous function and there exists 4, > 0 such
that

HI?+()0(Z.) < /Lp(p(t)’ re [1’6]-

3.2. Existence result via Krasnoselskii’s fixed point theorem

In this subsection, we establish an existence result using Krasnoselskii’s fixed point theorem.

Theorem 3.2. Assume that (H,) holds. Then, the problem defined by Eqs (1.1) and (1.2) has at least
one solution on the interval [1, e], provided that

[M:=k(M+ W)+ k(M + W) < 1. (3.15)
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Proof. By assumption (H), we can fix

(M 2) (M + W)

s 14l ( II)(IIF(a2+1)

1- (kl(M + Wz) + kz(M + W]))’

where |9 = sup |[9(f)| and ||y|| = sup |x(?)|, and we consider Bg = {(u,v) € X x X : ||(u,v)|| < R}. We

te[1,e] t€[1,e]

split the operator ¥ : X X X — X X X defined by (3.12) as

(F1,F2) = (Fi1, Fa1) + (Fr2, F2),

where 711, 21, F12, and F, are given by

+A[k2f1@d -3 ,)f (17— 5)77! fwd )d ]}—klflt@ds
7aw»mr5“iwqﬂbﬂ‘ﬂﬁd—n H]Lf(m o jﬁﬁﬂd)]
+B[k1f1 %S)ds— Y r(a)f 0 - )‘5 -1 fv(r) )ds]}—szIQd

_(logtyn! 1 S(s,u(s), v(s)) e\u1!
Frau, V(D) =—¢ {[_ r(al)f1 s (log E) ds

N T e N B R I
Z m f (9, - S)§ 1 F(a2) f - (lOg ;) d}")dS]
8(s, M(S) v(s)) e\
rngﬁ ( ‘) as
(N FEM U0 g
Zr( 7)) f () =) F(al)f ?) dr)ds]}

(s, M(S) v(s)) AN
F(al)f ( E) ds

and

a—1 e ay—1
7_-zz(u’v)(t):(lozgt)y {_1“(;2) f g(s,u(S),V(S))(logg) Js

A
j) f (1~ )77 F(al) f S, ), V(r))( ;)m_ldr)ds]

f(s, M(S) v(s)) e\~
+B r(al)f ( E) ds
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n ; % fl "6 - s)‘”“(F (;2) fl 8 ”(?’ v(r))(log ;)Qz_ldr)ds]}

1 " g(s, u(s), v(s)) A
+ F(az)‘fl g (log E) ds.

Step I: First, we show that (711, F21)(u, v) +(F12, F22)(x,y) € Bg, whenever (i, v), (x,y) € Bg. Let (u,v)
and (x,y) € Bg. Then, for any 7 € [1, e], we have

F11 @, v)(@) + Fr2(x, )@

1 ¢ |M(S)| |f(s, X(S) y($))l e\
SE{[k‘f s F(al)f ( E) ds
|/1| S |v(r)| lg(r, W(”) ()| s\t
r((s)f ©: =) Zf r r(az)f ( g?) dr)ds]
|V(S)| lg(s, X(S) y(s))| e\
+A sz r(az)f ( E) ds

” Fléljj) f —— f |u<r)| —— f |f(r, w(r), y(r))|( ;)1 dr) ds]}

Iu(s)l |/ (s, X(S) ()l L ia-1
+k1f mmf (log 2y ds

_|A|{[k1” ull+ r(clyllmJlr ) r|?5|)f @ = 5" l(kzllvlllog +|M(|$;—isl):z)ds]
w[k2||v||+%+ ' bl e [ =9t tog s + T )
T killufllog £ + %
<r{ il + s + afkalbl + )
N w[kzllvll N % " Cu(klllull " %)}} + ko llull + %

3 (1| Il
_(”””k‘ " (o, + 1))M * (”V”k2 " T + 1))W"

which, upon taking the norm for 7 € [1, e], yields

)
17310, ) + Fra 91 < (Jll + %)M (kb + 1 ”ﬂ S

By a similar method, it can be found that

141l

T(a; + 1))W2'

1210, v) + T 9 < (Rl + el ))M (Rl +

INay +1

Hence,
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1(F11, Fa)(w, v) + (Frz, Fo) (6 P < NF 1100, v) + Frooe Y+ [1F21(u, v) + Foo(x, pI

M +
< R(kl(M + W2) + kZ(M + Wl)) + ”ﬂ”( ( 2) “/Y”;( ) + 11)) B

Therefore, (F11, F21) (W, v) + (Fi2, F22)(X,y) € Bg.

Step II: Next, we show that the operator (77, %>) is a contraction. Let (u;,vy) and (up,v;) € X X X.
Then, for any ¢ € [1, e], we have

|F11 (2, v2)(8) = Fri(ug, vi)(@)l

1 " lua(s) — |4l 5 f‘v v2(r) = vi(1)|
S|A|{[k‘fl 5 F((S)f O=9"\k | ; dr)ds]
“ va(s) - el , <z o *ua(r) — uy ()|
+A[k2f1 f F( ,)f (mj—s) lj; EE— dr)ds]}
“k ft qu(S)—ul(S)ldS

©; - 1)@]
k - k —
—|A|{[‘””2 il + kallvz W”Z' 1T
— )U'j
+wffellvs = vill + Killa = ] Z ) ﬁ]} S r—

=kiM|luy — uy|| + ko Willv, — vl
<(luz = wrll + llv2 = vilDlki M + ka W],

which, upon taking the norm for ¢ € [1, e], yields

1F 11 (2, v2) = Fraur, vll < (luz — will + [lva = vilDlka M + ko Wi ]
Similarly, one has

1F21 (2, v2) — For(ur, vll < (luz — will + [lva = vilDlkaM + ks W2 ].
Hence,

I(F11, Fo)(uz, v2) = (Fiu, Fa)ur, voll =l1F11(uz, v2) = Fra(ur, vl + [1F21 (2, v2) — For(ur, vi)l

<IT (lluz — wyll + |[va = vil]).

In view of (3.15), the operator (%71, 1) is a contraction.

Step III: Finally, we will show that the operator (%1,, 2) is continuous and compact. First, we show
that the operator (%7,, F22) is continuous. Let {(u,,v,)} be a sequence such that (u,,v,) — (u,v) in
X x X for any t € [1, e]. Then, we have

Iﬁz(un, vn)(t) — Fr2(u, v)(0)
f Lf (s, un(s), va(s)) —

f(s,u(s), v(s))| ( e)al—lds

|A| F(a'l) s
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|l 5 g (r un(r), via(r)) — g(r, u(r), v(r)| 5“2“
- r(a)f =9 F(az) r ( r) dr)ds]

+A " 18(s, n(8), va(s)) — g(S u(s), v(S))l( E)az_lals
1ﬂ(&z) P ;

Iu, o (), va(r) = (), v (- 5\
,)f(’_) (e ). : (1oe) " aras|

|f(S u,(8), vu(s)) — f(S u(s), V(s))|( E)al—lds
1—‘(al) Ky .

Since f and g are continuous, we get that

17120, Vi) = Fro(u, Il = 0 as {(un, vi)} = (u, ). (3.16)
Similarly, we have

172200, Vi) = Foo(u, Il = 0 as {(un, vi)} = (u, ). (3.17)

It follows from (3.16) and (3.17) that the operator (1,, 22) is continuous.
Next, we will show that (¥,, ;) is compact by using Arzela-Ascoli theorem. First, (F1,, F2;) is
uniformly bounded since

M Wi
1F 12, V)I| < o + )II Il + i, + 1)ILYII
and
M W,
1F22(u, VI < Il + [[1].

[(ay +1) [(a; +1)

Finally, we will show that (%7,, ¥2,) is equicontinuous. We define

sup |f(t,u,v)| = f and sup lg(z,u, V)| = &

(t,u,v)e[1,e]XBrXBg (t,u,v)e[1,e]XxBrXBg

Letting 1,1, € [1, e] with #; < 1, one has

F12(u, V(12) = Fra(u, V)(t1)|

S[(log )" ~" — (log )" f Lf (s, u(s), v(s))l( E)al_lds
A F(ozl) -
W - 1 * lsCr, u(r) vl syt
F(d)f 6= 5" F(az) ( ;) d”)dS]

lg(s, M(S) v(s))| e\®!
T r(az)f ( gE) ds

s |ujj) f - f 0010 5V 4
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ﬁ [ " 1f(s,u(s), v(s))l(( tz)‘“l (logtl)‘“ 1) ”
o)

2 1fGs, M(S) V(S))I( 1
S

4]

1y g o .
SlAl{F(a’l 1 )[1 + ww] + T(a, + )[Zw]}[(log tz))’ (IOgt )y ]
—f ay ay
T+ 1)[(1°g B)" = (ogh) ] (3.18)

In the same way, we have

[F22(u, v)(12) — Foo(u, v)(11)]

1 g _ f ) o .
Sm{—[l + (,L)U)] + m[2w]}[(log t2)y (log tl)y

F(a2 + 1)
i Zg )[(log 1) — (log tl)%]. (3.19)

From (3.18) and (3.19), we get that
[F12(u, v)(12) = Fro(u, v)(#)l > 0 and  [Fo(u, v)(12) — Fo(u, v)(E)l = 0 as £ — 1.

Thus, (12, F22) is equicontinuous. By the Arzeld-Ascoli theorem, we get that (¥, 722) is compact on
Bg.

Hence, all the conditions of Krasnoselskii’s fixed point theorem are satisfied, and therefore the
boundary value problem defined by Eq (1.1) with conditions (1.2) has at least one solution on the
interval [1, e]. O

3.3. Existence and uniqueness result via the Banach fixed point theorem
Next, we prove an existence and uniqueness result based on the Banach fixed point theorem.

Theorem 3.3. Assume that (H,) holds. Then, the boundary value problem defined by Eqs (1.1)
and (1.2) has a unique solution on the interval 1, e], provided that
LM+ W,) LM+ W)

Ei=kM k(M 1. 2
1M+ W) + ko(M + W) + T+ D) + T+ D) < (3.20)

Proof. We will use the Banach fixed point theorem to prove that ¥, defined by (3.12), has a unique
fixed point. Let us define

N; := max |f(,0,0)] < oo and N, := max|g(,0,0)| < co.
re[Le] relle]
By hypothesis (H,), we get
|f @, u(®), vO)| < |f @, u(®), (1)) — f(2,0,0)[ + | f(2,0,0)] < L([ull + [IVI)) + N1 = Lll(u, v)I| + Ny

and

18(2, u(®), V()] < lg(t, u(®), v(1)) — (2, 0,0)] + Ig(t, 0, 0) < L(lluell + IVII) + N2 = Lli(u, vl + No.
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We choose
N](M + Wz) NQ(M + W])

T +1) | T+

LM+ W) LM+ W)

I'a; +1) I'ay +1)

Step I: First, we show that ¥ (Bg) C Bg, where B = {(u,v) € X X X : ||(u,v)|| < R}. Let (u,v) € Bg.
For t € [1, e], we have

|7-‘1(u ()|
)l (s, u(s) V)l eyt
|A| f r(cmf ( 3) ds

TS o2 [
+A sz |V(S)| F(az)f (s, u(s), V(S))I( gé)‘lz—‘ds
I R O el B CH AR |
+k1f )l , F(al)f |f (s, u(s), V(S))I( é)m_lds
i [ e, e
r'?;') [0 s [ EULEMD 2N 7 1y
+ Ak f as L(”””If(!;'l”% f (1og§)“2_ld_:

Sy o dr L(||M||+||V||)+N1 * s\ ldr
,)f(J ) k” ”f T(a)) fl(log?) T)ds]}

ds L N t\td
+k1”u”f_s+ (el + I + lf(log—) ds
1S I'(a;) 1 ) )

R >

1- [kl(M + Wz) + kz(M + W]) +

1 ([ LR + N, LR + N, 1)%
<L {rs BN (g ER NS 0
|A|{, T T+ DT T T, + Z' 'r(5 +1)
i IR+ N LR+ N 1)7i LR+ N
+Ak2R+#+(k1R il l)Z:l,l D ]} 1R+;
i T(a, + 1) a + 1) T(o;+ 1) T(a; + 1)
1(r LR + N, LR + N,
<—{kiR+ — + (kR+—)]
|A|{_1 T+ " T+ 1)
i IR+ N LR+ N LR+ N
+wk2R+#+a)(k1R+ Ml )]} k1R+;
| F(a/z + 1) F(CL’] ) F(ozl + 1)
1 ( LR+N1) ) IR+ N,
- [+ wd+ |A]] + (kR+ )[ ]
AV T T+ 1) AN T T(ay + 1)
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—kMR+MLR+N lWR+ W, LR+ N2
! T +1) 7' T, + 1)

Taking the norm for ¢ € [1, e] on the above inequality, we get

LR + N, £R+N2

R <kkMR+kWR+M——m—— + _
1771 (e, W) 1 2 W1 T(a + 1) IF(ag )

Similarly, we obtain

LR+N2 LR + N,

W < koMR + kyWoR + M —— T = 1)
IF2(u, VI < ko MR + ki WaR + p(a2+1)+ T(a, + 1)

Hence, from (3.20), one gets

I (e, VI =[1(F1 (u, v), Fo(u, VI = [1F1 (e, |+ [1F2 e, v
L(M + Wz) Z(M + Wl)

<Rlk/(M + W) + (M + W
<RI+ W) + oM+ WO+ £ Y T v

Nl(M-i- Wz) + Nz(M + Wl)
I'la; +1) I'lap, + 1)
Ni(M + W>) N No(M + W) <
I'(a; +1) I'(a, + 1)

=ER +

Therefore, F (Bg) C Bg.

Step II: We will show that the operator ¥ is a contraction. Let (u,, v,), (41, v;) € X X X. Then, by (H,),
for any ¢ € [1, e], we have

Iﬂ(uz, v2)(®) = F1(uy, v)(@)

f lua(s) — ul(S)I “1f (s, ua(s), va(s)) = f(s, ui(s), V1(S))|( f)“l_lds
IAI F(al) s
| 4] Sim1 IVz(r) —vi(r)]
m (Qi - 5) sz —————dr
*1g(ry ua(r), va(r)) — g(r, us (r), V1(r))|( f)‘”_l dr) ds]
F(afz) r r
+alky f [va(s) = vl , “ 18(s, uz(s), va(s)) — g(s, u1 (), Vl(s))l( g)‘”“ s
1 1"(az) s s
il (™ o1 f |u2(r) —uy(r)|
r(aj) , =) (kl 1 7
Cf(rua(r), va(r) = f(r,uy (), vi(r))] s\t
F(al) y ( _) dr)ds]}
— a;—1
+k‘f |uz(S) u1(S)| . (s ua(s), va(s)) — f(s,u(s), V1(S))|( gf) Js
| (041) s s
1 L(|Juy — uy|| + ||V2 vilD L(lluz = will + Iv2 = il
< A|{[k1||uz |+ D + (lallv = vl + S )
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; - )6’] [ L(lluz — wi]l + [lva = vill) (
X E i + w|k -l + + |k -
|4 | wlkallv2 = vil| T(a + 1) iz — uyl|

L(||M2 — || + [[v2 = V1||)) - (n; - 1)‘7"]} L(lluz = wr|| + [[v2 = vill)
g 7 k _
+ T+ D) ]Z::‘ |ﬂj|r(0_j D + kil — || + Tt 1)
L(|Juz = wi]| + [[v2 — V1||)) ( L(lluz — wy]l + [Iv2 — V1||))
=M\k —uy|| + + Wil kallv, — vill +
( oz — uyl| T(a + 1) il &2llva = vill T(a + 1)
ML W,
<|\kkM+ ———+ oW + —] + -
[ 1 T(a + 1) 2 W1 I( 1 (et = wrll + |lva = vill)

which, upon taking the norm for 7 € [1, e], yields

ML WL
I'la; +1) r(az

177 (2, v) — F g, )| < [klM oW, + )](||M2 wll +1va =), (3.21)

Similarly,

ML L WL
Ta, + 1)  T(a; + 1)

1T, v2) — Falaar, vl < [kzM W+ ](Huz il + e =), (3:22)

It follows from (3.21) and (3.22) that

17 (u2,v2) = F (ur, vll < Edlluz — will + |lv2 = vilD.

By (3.20), it shows that the operator ¥ is a contraction. Therefore, the boundary value problem defined
by Eq (1.1) with conditions (1.2) has a unique solution on the interval [1, e]. O

4. Ulam stability results

Lastly, we study the Ulam-Hyers and Ulam-Hyers-Rassias stability of the coupled system of Hilfer-
Hadamard fractional differential equations (1.1) with the integral boundary conditions (1.2).

Theorem 4.1. If assumption (H,) and conditions (3.20) are satisfied, then the boundary value problem
defined by Eqs (1.1) and (1.2) is Ulam-Hyers stable, and hence generalized Ulam-Hyers stable.

Proof. Let € = (€1,6) > 0 be given. Assume (x,y) is a solution of the inequality (2.1) with the
boundary conditions (2.4). Then by Remark 2.14, there exist functions v;,v, € C'([1, e],R) such that
i@)| < e, @] <&, te[l,e], and

(#DP' + ki DT Px(0) = £, x(0), y0) + i), te[l,el,
D™ + ko Daz 1ﬁ2)y(;) = g(t, x(1), y(1)) + va(1),

_ < A _
x(1) = 0, x(e) = Z ALY (8) = Z @ f 6 = 9" ¥(5)ds, @.1)
i=1

n

y(1) =0, y(e) = Zujliifx(np =
j=1
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where 6;,77; € (1,e). By Lemma 3.1, the solution of (4.1) can be written as

_(logty"! x(s) ¢ f(s,x(5),y(5)) + vi(s) e\n!
MO =—% {[klfl — 4= F(al) s ( E) ds

5i—1 y(”) g(r, x(r), y(r)) + va(r) g\a2-l
Sty [ [ g [0
y(s) g(s, x(8), ¥(8)) + va(s) (, e\
+A[k2f - ds F(ag)f , ( E) ds

C o x(r) [, x(r),y(r) + vi(7) s\ !
- jZ I( ,)f ;=) f r F(a]) — ( ?) dr)ds]}

x(s) " (s, x(5), Y(5)) + vi(s) 1!
_klfl o F(a/l) 5 ( e5) s

which can be rearranged as

Ty
_Zr((s)f 6 - 61 f y(rr)d _r(az)f S y(r))( ;)az_ldr)ds]
N A[k2 f y(SS) - f g(s, x(s), y(S))( E)"Z ! s
r( ]) f 7y — )7 fx(rr) — f J(r, x(r), y(r))( ;:)“1 dr) ds]}
+k1f1 X(SS)dS r(al)f S (s, x(s), y(S))( ftg)m_lds
b

N R G el e

. a-1
+A _r(:xz)fl VZES)(logE) ds

_ Z F(a,) /(77j - s)f’f—l( _ I“(:h) fls Vlir)(log ;)al_ldr)ds]}

a-1
N log E) ds.
s

_I_
F(Oll) 1

Using |vi| <€, i = 1,2, forany 7 € [1, e], we have

(log £)"~! “Ks) (s, x<s> Y[, ey
'x(t)_ A {[klfl 5 r(m)f ( E) ds

AIMS Mathematics
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iy [ f‘ﬂrﬂﬂyvb sy
L r((s)f i =) f r T T ( r) dr)ds]
)’(S) 8(s, X(S) y(s)) e\®!
- A[sz S F(az) f ( E) ds

n r(a]) f (n; — 5)7! f x(rr)dr o f 1 X0, y(r))( ;)al_ldr)ds]}

X XS 1)
+“L‘s mef CH M'

ElM + 62W1
r(al +1) T(ap+1)

By virtue of Theorem 3.3, we denote by (u,v) the unique solution of problem (1.1)—(1.2). Then we
have u(t) = F1(u, v)(t), where 7 is defined by (3.12). From the above inequality, it follows that

1x(2) — u(®)] = |x(2) = F1(u, v)(D)|

M 1 y1-1 ¢ -
.6 N eW, +(Ogt) {[k1 f |x(s) — u(s)| s
F(al +1) T(an+1) IN | s

f £ (s, x(s), y(5)) — f(s u(s), v(s))|( E)m—lds

F(al) S

ey [ B0,
Eznaxf(g s .f

*|g(r, x(r), y(r)) = g(r, u(r), v(r ))|( f)az_ldr)ds]
r

F(az) r
_ ar—1
N A k f ly(s) V(S)I “ I8(s, x(5), y(s)) — g(s, u(s), v(s))| ( f) Js
1 F(az) s s
2 @4 |An—uon
+ F(O'j) (nj - 5) ki f — dr
If (r, x(r), y(r)) = f(r,u(r), v(r))| s\
F(al) ” ( ?) dr)ds]}
r IX(S) - u(S)I "1 (s, x(5), y(5)) = f(s, X(5), y(5))| t "“ld
: F(a ) s ( ;) 5
1 1
It follows by assumption (H,) that
ElM 62W1 ML le
b=l <r e D T T ””(klM T +1) T+ 1))

ML WL ) 4.2)

+ly = vil{ koW, + + .
Iy V”(21 T + 1) T(a+1)

Similarly, we have

_(og ! < y(s) g(5, X(5),Y(8) + va(s) [, ey
YO =4 ﬂb]:__d"nw)f\ ( J ds

S N
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& - * x(r) P x(r), y(n) + vi(r) s\
_Zr( oy, TS ](k‘fl ,dr= F(al) , 1 ( ?) dr)ds]

X(S) “ f(s, x(5), y(s)) + vi(s) e\
" B[klfl S F(al) s ( E) ds

Y(r) g(r, x(r), y(r)) + v2(r) s\
_Zr(a)f (6~ 5! f r r(az)fl r 2 (log?) dr)ds]}

y(s) g5, x(8), (5)) + va(s) [, t\@7!
—k fl s+ s fl ; (log;) ds.

We get that
a W, eM ( W,L ML )
-V < + + ||lx — ull{ ks W, + +
= < D TR W S R e D
W,L ML
+|ly = vl koM + + ) 4.3
Iy v”( T+ ) T+ 1) (4.3)
Solving inequalities (4.2) and (4.3) simultaneously for |[x — u|| and |y — v||, we obtain
Gig+G B, + B
be—ull < 2522 and -y - vl < S22,
where
1 W,L ML ML w,L
G:—M(l—kM— - )+W(kW+ )
"7 Ty + DI T T+ 1) T+ 1) AT v D) T T + 1
1 W,L ML ML w,L
G:—W(l—kM— - )+M(k ; )
2T T+ D! T Ta + 1) T(a+ 1) M F i ) T+ 1)
1 ML w,L W,L ML
B]Z—Wz(l—klM— — ! )+M(k]W2+ 2 ),
T(a; + DL T, +1) T(ay+1) T, + D) T+ D)
1 g ML w,L W)L ML
By= —— M(l—klM— S—a )+ 1(k1W2+ 2 )
T(a, + DI T(a; +1) T(ar+ 1) T, +D) T+l
and
ML w,L W,L ML
D :(1 — kM - __M )(1 DM — 2 )
T, +1) T(ay+1) T(a; +1) T(a+ 1)
(k N W, L . ML )( N ML N W, L )
" T+ 1) T(ap+ 1) ""Ta + 1) T+ D)

In consequence, we get that
G1 + By G2 + B,

x—ul|l+1ly—v|| <L € +
Il I+ 1ly —vli o D

By virtue of condition (3.20), we note that <221 > 0 and 2 > 0. Letting ¢ = (cf,cq) =

(G'Z;B' G2+BZ) > 0, for each € = (¢1, &) > 0 we get that

(S8

T
1, y) = @l = llx —ull + Iy = vl < cre1 + & = cpe€ .

Hence problem (1.1)—(1.2) is Ulam-Hyers stable. Moreover, it is generalized Ulam-Hyers stable, as
v —ull < 6f,(€), with 0;,4(€) = cf,geT, 60r4(0) = 0. This completes the proof. O
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Theorem 4.2. Assume that (H,) and conditions (3.20) hold, and that there exists a function ¢ =
(¢1,02), where ¢; € C([1,el,R+) for i = 1,2, satisfying (H3). Then, the problem defined by
Egs (1.1) and (1.2) is Ulam-Hyers-Rassias stable, and hence generalized Ulam-Hyers-Rassias stable
with respect to .

Proof. Let € = (€,6) > 0 and (x,y) be a solution of the inequality (2.2) with the boundary
conditions (2.4). By integration of (2.2) and using (H3), for any ¢ € [1, e], one has

g -2 f
X(0) — collog ™! — ¢,((log 1772 + & f 008 0 g5) 44 f ) 4
1 1

§ s
f £(s, x(s), y(s))( %)(Hds

< el @i(t) < €dy,01(2),

" T()
@ul; 7 (1) L o) . .
for all ¢y = W, 1 = rl<y1—1) € R. By virtue of the proof of Lemma 3.1, we will choose ¢y

and c; such that x in the above inequality also satisfies boundary conditions (2.4) as follows that

Ji+AJ,
A b

c1=0 and ¢y =

where A and A are defined as in Lemma 3.1, and

I =k f x(ss) - f f(s, x(s), y(s))( E)l "

_Zr(é)f o= f P r(ag)f O tog 1) aris
_,Z::F:;» 1”[("’_”0‘#1(1“ fl x(rr) r(al)f e y(r))( Isf)m_ld’)ds'
Then we have the inequality

- 2 fi g [ 152 )
S e [ g [
. A[kz f y(ss) - f g(s. x(s), y(s))( E)l "

‘Zr(a,) f (n;— )7 f x(:)dr fo f S, 20, y(r))( ;)m_ldr)ds]}

x(s) L (7 f(s,x(s),y(s)) (,  t\"!
+/<1f1 - ds—r(al)ﬁ - (log;) dsl

< 6H1?+Q01(t) < 6/l<p1901(t)9 re [1,6].
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Now, by virtue of Theorem 3.3, we let (1, v) be the unique solution of problem (1.1)—(1.2). That is
defined as u(t) = F1(u,v)(t), where 7 is defined by (3.13). From the above inequality, the same
method as in the proof of Theorem 4.1, it follows that

1 vi—1 4 _
(0) = (D) =1(0) = Fr(u, (O < ey, on(6) + DB Oﬁz {|1 f ) = uo) : 4 g
1

f | £ (s, x(s5), ¥(5)) — f(s u(s), v(s))|( E)al—lds

S

F(afl)

L b=,
Zr(é-)f =) f

*lg(r, x(r), y(r) — g(r,u(r), v [, s\~
F(afz) - ( ;) a’r)ds]

+A f ly(s) —v(s)l ¢ 1g(s, x(s), y(s)) — g(s, u(s), V(s))|( E)az—lds
F(az) s

f (n;— )7 f IX(i’)—u(r)I
,)

L x(), 3() = £, u(), v<r>>|( S)al_ldr)ds]}

Iﬂ(afl) r
K f ) - us) XD = 0 XY 1 1
1 _ s,
1 s F(a'l) N s
which implies that
ML w,L
b=l el =l M+ s+ P
ML Wll_,
+ly = vl Ws + T T 1)).

Similarly, we get that

1y = Vil <edpa(r) + | ||(kw Lk ML )
-V € X—U
YT VI S€4n$2 T T+ 1) Tap+ 1)
W,L ML
+ly = vil{ koM + + )
I V”( T+ 1) Tlap+ 1)

Solving the above two equations simultaneously for ||x — u|| and ||y — v||, and then setting D the same
as in Theorem 4.1, the preceding inequalities can be written as

Eipi () + Expp®) Iy — ] < €(Q191(1) + Orr(1))
D Y = D )

[lx — ul| <

where

WL ML
Ta, +1) T(ay+ 1)

ML w,L )

E =2 (l—kM— :
=\t T, +1) T+

), E2 = /lwz(szl +
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ML w,L )
Ta, +1) T(a+ 1))

W)L N ML
I'a;+1) TI(ap+1)

Q1 = /lcpl(kIWZ + ), Q2 = /1902(1 - klM

In consequence, by condition (3.15), we get

[l = ull + 1y = VIl < €(crpP1(2) + Copy02(D)).

Letting ¢4y = (Crp)s Copn) = (%, %), for each € > 1, we have

105, 3) = (u, | < €crg ol

Hence problem (1.1)—(1.2) is Ulam-Hyers-Rassias stable with respect to ¢. Moreover, it is generalized
Ulam-Hyers-Rassias stable with respect to ¢ and if we take € = 1, then [|(x,y) — (u, V)I| < ¢, ,[@(D]".
This completes the proof. O

5. Examples

In this section, we give two examples to illustrate our main results.

Example 5.1. Consider the following Hilfer-Hadamard problem:

31 8 11 __arctan v(1)
(HD_ 14 %HDZ A)M(t) = } 20 tel,e],
3 3 1 o
(uD? + 3—1HD5’%)V(I) - %(sin u(t) + cos (1)), 5.1)

u(1) = 0, ule) = 31%(‘3—‘) + 131%(%), w(1) = 0, ve) = ll—ol%u(z) + 71314(;).

H 3 3 : 1 : 3 13 15 ' 8 I 1 =3 1 13
ere, @y = -, r, = =, = - = - = 5> = 5 = =~ = 37 =9, = 5
71 252 241 472 4?1’1 3 V2 871 700 T3 M 2
_ _ _ _ _ _ _ _ _5
51—5,(52—5, 91—5, Qz—g,/,ll—l—(),/.lz—7, 0'1—1,0'2—5, n1—2,andn2—§.F0reach

. . . . 7
t € [1, e], there exists continuous nonnegative functions 9(t) 3 and x(t) = €' such that

arctan v(t)
1+ u?(1)

and (H,) is satisfied. Using the given data, we find that M = 2.0421, W; = 0.0998, and W, = 1.6545.
Therefore, we have

|f(t, u(t), v(t))| = <) and |g(t,u(t),v(t))| = %t( sin u(f) + cos v(1))| < x (1),

II = k](M + W,) + kz(M + W) = 0.4916 < 1.

Thus, all the conditions of Theorem 3.2 are satisfied. Therefore, the boundary value problem (5.1) has
at least one solution on the interval |1, e].

Example 5.2. Consider the following Hilfer-Hadamard problem:

s1 4 11 |u(2)| 1
D#2 + — ;D42 1) = + —(1+1 t 1), te 1, B
(i = Ju(t) e | 38?( ognvl, 1€ (le]
sy pil = u 5.2
(0¥ + 267D ) G+ 0+ o) G+ (5:2)

u(1) =0, u(e) = gﬁv(z) + 61%(5), (1) = 0. v(e) = 51%(;) N 21_1”(%)
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5 3 1 13 4 1 5
H. ’ = =3 =3 = 1’ = 5 = 27 ky = =X ky = N A1 = a’ A = 6’
ere 50/1 7 3042 > Bi 23ﬁ2 Y1 81 Y2 191 55 72 76 . 1=5 A
51 = 5, 52 = 5, 01 = 2’ 92 = E’ M1 = 5, Mo = ﬁ’ o] = 7, Oy = 5, m = 5, al’ld ) = % ConSider
the functions
|u| 1 |ul sinv
(t,u,v) = + (1 +logtH)v| and g(t,u,v)= + .
/ V143 + 25+ [uf) 100 & & G+ +u)  S+1)?

We see that hypothesis (H,) holds, because, for any u;,v; € R fori = 1,2, one has

1
|f (2, ur,uz) — f(£,vi, )] < %(Wl —vil + |uz — v2l)

and

1
lg(t, uy, uz) — g(t,vi,v2)| < %(Wl — Vil + |uz — v2l),

1 - 1
with L = 0 and L = 36 Using the given data, we find that M = 2.7575, W; = 3.6622, and
W, = 0.8156. Therefore, we have

- L(M + W2) E(M + Wl)

E=ki(M+ W)+ k,(M+ W)+ + ~ 0.7040 < 1.

1( )+ kol DY T T T+

Thus, all the conditions of Theorem 3.3 are satisfied. Therefore, the problem defined by Eq (5.2)
has a unique solution on the interval [1,e]. Moreover, according to Theorem 4.1, boundary value
problem (5.2) is both Ulam-Hyers stable and generalized Ulam-Hyers stable. In addition, by virtue
of Theorem 4.2, if there exists a function ¢ = (¢1,¢2), where ¢; € C([1,e],R+) fori = 1,2,
satisfying (H3), then problem (5.2) is Ulam-Hyers-Rassias stable and generalized Ulam-Hyers-Rassias
stable on the interval [1, e] with respect to .

6. Conclusions

This paper presents existence and uniqueness results for a system of Hilfer-Hadamard sequential
fractional differential equations (1.1) with multi-point Riemann-Liouville fractional integral boundary
conditions (1.2). First by considering a linear variant of the given problem, we converted the nonlinear
problem into a fixed point problem. Once the fixed point operator was established, the existence
results were derived using Krasnoselskii’s fixed point theorem. The Banach fixed point theorem was
then applied to achieve the existence and uniqueness result.

Moreover, the sufficient conditions for the stability of the problem in the sense of Ulam-Hyers and
Ulam-Hyers-Rassias were determined. We found that if the problem has a unique solution according
to the assumptions of Theorem 3.3, it is also Ulam-Hyers stable and generalized Ulam-Hyers stable
on [1, e]. Furthermore, by adding one more condition for the function ¢ as (H3), we obtained Ulam-
Hyers-Rassias and generalized Ulam-Hyers-Rassias stability results with respect to the function ¢.
Additionally, we provide two examples that illustrate the obtained results.

In summary, we obtained existence, uniqueness, and stability results for the coupled system
of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral
boundary conditions, making it applicable to a broader class of mathematical models.
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