Filippov $ n $-algebroids are introduced by Grabowski and Marmo as a natural generalization of Lie algebroids. On this note, we characterized Filippov $ n $-algebroid structures by considering certain multi-input connections, which we called Filippov connections, on the underlying vector bundle. Through this approach, we could express the $ n $-ary bracket of any Filippov $ n $-algebroid using a torsion-free type formula. Additionally, we transformed the generalized Jacobi identity of the Filippov $ n $-algebroid into the Bianchi-Filippov identity. Furthermore, in the case of rank $ n $ vector bundles, we provided a characterization of linear Nambu-Poisson structures using Filippov connections.
Citation: Yanhui Bi, Zhixiong Chen, Zhuo Chen, Maosong Xiang. The geometric constraints on Filippov algebroids[J]. AIMS Mathematics, 2024, 9(5): 11007-11023. doi: 10.3934/math.2024539
Filippov $ n $-algebroids are introduced by Grabowski and Marmo as a natural generalization of Lie algebroids. On this note, we characterized Filippov $ n $-algebroid structures by considering certain multi-input connections, which we called Filippov connections, on the underlying vector bundle. Through this approach, we could express the $ n $-ary bracket of any Filippov $ n $-algebroid using a torsion-free type formula. Additionally, we transformed the generalized Jacobi identity of the Filippov $ n $-algebroid into the Bianchi-Filippov identity. Furthermore, in the case of rank $ n $ vector bundles, we provided a characterization of linear Nambu-Poisson structures using Filippov connections.
[1] | S. Basu, S. Basu, A. Das, G. Mukherjee, Nambu structures and associated bialgebroids, Proc. Math. Sci., 129 (2019), 12. http://dx.doi.org/10.1007/s12044-018-0455-7 doi: 10.1007/s12044-018-0455-7 |
[2] | Y. Bi, J. Li, Higher Dirac structures and Nambu-Poisson geometry, Adv. Math., (Chinese), 52 (2023), 867–882. |
[3] | R. Blumenhagen, A. Deser, E. Plauschinn, F. Rennecke, Bianchi identities for non-geometric fluxes from quasi-Poisson structures to Courant algebroids, Fortschr. Phys., 60 (2012), 1217–1228. https://dx.doi.org/10.1002/prop.201200099 doi: 10.1002/prop.201200099 |
[4] | J. P. Dufour, N. T. Zung, Linearization of Nambu structures, Compos. Math., 117 (1999), 83–105. http://dx.doi.org/10.1023/A:1001014910775 doi: 10.1023/A:1001014910775 |
[5] | V. T. Filippov, $n$-Lie algebras, Sib. Math. J., 26 (1985), 879–891. https://doi.org/10.1007/BF00969110 doi: 10.1007/BF00969110 |
[6] | K. Grabowska, J. Grabowski, Z. Ravanpak, VB-structures and generalizations, Ann. Global Anal. Geom., 62 (2022), 235–284. http://dx.doi.org/10.1007/s10455-022-09847-z doi: 10.1007/s10455-022-09847-z |
[7] | J. Grabowski, G. Marmo, On Filippov algebroids and multiplicative Nambu-Poisson structures, Differ. Geom. Appl., 12 (2000), 35–50. http://dx.doi.org/10.1016/S0926-2245(99)00042-X doi: 10.1016/S0926-2245(99)00042-X |
[8] | Y. Kosmann-Schwarzbach, K. Mackenzie, Differential operators and actions of Lie algebroids, arXiv: math/0209337, 2002. https://doi.org/10.48550/arXiv.math/0209337 |
[9] | C. Laurent-Gengoux, M. Stiénon, P. Xu, Poincaré-Birkhoff-Witt isomorphisms and Kapranov dg-manifolds, Adv. Math., 387 (2021), 107792. http://dx.doi.org/10.1016/j.aim.2021.107792 doi: 10.1016/j.aim.2021.107792 |
[10] | K. Mackenzie, Lie groupoids and Lie algebroids in differential geometry, Cambridge University Press, 2010. http://dx.doi.org/10.1017/CBO9780511661839 |
[11] | K. C. H. Mackenzie, Lie algebroids and Lie pseudoalgebras, Bull. London Math. Soc., 27 (1995), 97–147. http://dx.doi.org/10.1112/blms/27.2.97 doi: 10.1112/blms/27.2.97 |
[12] | G. Marmo, G. Vilasi, A. M. Vinogradov, The local structure of n-Poisson and n-Jacobi manifolds, J. Geom. Phys., 25 (1998), 141–182. http://dx.doi.org/10.1016/S0393-0440(97)00057-0 doi: 10.1016/S0393-0440(97)00057-0 |
[13] | S. K. Mishra, G. Mukherjee, A. Naolekar, Cohomology and deformations of Filippov algebroids, Proc. Math. Sci., 132 (2022), 2. http://dx.doi.org/10.1007/s12044-021-00645-4 doi: 10.1007/s12044-021-00645-4 |
[14] | N. Nakanishi, On Nambu-Poisson manifolds, Rev. Math. Phys., 10 (1998), 499–510. http://dx.doi.org/10.1142/S0129055X98000161 doi: 10.1142/S0129055X98000161 |
[15] | Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D, 7 (1973), 2405–2412. http://dx.doi.org/10.1103/PhysRevD.7.2405 doi: 10.1103/PhysRevD.7.2405 |
[16] | P. Popescu, M. Popescu, Anchored vector bundles and Lie algebroids, In: Lie algebroids and related topics in differential geometry, 2000. http://dx.doi.org/10.4064/bc54-0-5 |
[17] | L. Takhtajan, On foundation of the generalized Nambu mechanics, Commun. Math. Phys., 160 (1994), 295–315. |