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1. Introduction

Filippov introduced a generalized Jacobi identity for n-ary skew-symmetric operation, which acts as
a replacement for the classical Jacobi identity in the context of Lie algebras [5]. He also proposed the
concept of n-Lie algebra, also known as Filippov n-algebra, with the corresponding generalized Jacobi
identity referred to as the Filippov identity. Nambu and Takhtajan extended the concept of Poisson
manifold to an n-ary generalization called Nambu-Poisson structure in order to study Hamiltonian
mechanics more comprehensively [15, 17]. It is worth noting that both the Nambu-Poisson structure
and the n-Lie algebra share the same generalized Jacobi identity. Grabowski and Marmo introduced
the concept of Filippov n-algebroids, an n-ary generalization of Lie algebroids, in order to determine
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the relationship between linear Nambu-Poisson structures and Filippov algebras [7]. Consequently, it
is reasonable to anticipate that many tools used to study Lie algebroids could be enhanced or upgraded
to the realm of Filippov algebroids. Therefore, we aim to address the absence of the concepts of
connections and curvatures of Filippov algebroids in the literature and provide a primitive analysis of
these topics from a geometric point of view.

Recall that a Lie algebroid is a (real) vector bundle A→ M together with a bundle map ρ : A→ T M,
called anchor, and a Lie bracket [· , · ] on the section space Γ(A) of A, satisfying that ρ : Γ(A)→ Γ(T M)
is a morphism of Lie algebras and the Leibniz rule

[X, f Y] = f [X,Y] + (ρ(X) f )Y, ∀X,Y ∈ Γ(A) and f ∈ C∞(M).

By an easy smooth analysis, the bracket [· , · ] can always be reformulated in the form

[X,Y] = ∇XY − ∇Y X, (1.1)

where ∇ : Γ(A) × Γ(A)→ Γ(A) satisfies the properties

∇ f XY = f∇XY and ∇X( f Y) = f∇XY + (ρ(X) f )Y.

One calls∇ a connection on the anchored bundle (A, ρ). (This is indeed a straightforward generalization
of connections on vector bundles.)

When the bracket [−,−] of a Lie algebroid A is expressed in the form (1.1), one says that the
connection ∇ is torsion free. See [9] for the existence of torsion free connections on Lie algebroids.
The curvature form R∇ ∈ Γ(∧2A∗ ⊗ End(A)) of such a connection ∇ is defined in the standard manner:

R∇(X,Y)(Z) = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z,

for all X,Y,Z ∈ Γ(A). Now, ρ being a morphism of Lie algebras is equivalent to the condition that R∇ is
a tensor in its third argument. Moreover, the Jacobi identity for [ , ] is transformed into the following
Lie-Bianchi identity

R∇(X,Y)(Z) + R∇(Y,Z)(X) + R∇(Z, X)(Y) = 0.

Therefore, Lie algebroids can be realized as anchored bundles equipped with special connections [16].
We wish to find an analogous characterization of the n-ary bracket of any Filippov algebroid. A
significant difference between Lie algebroids and Filippov n-algebroids (for n > 3) is that the bracket
and anchor of the latter are of more arguments (see Definition 2.2). So there is not an obvious way to
extend Eq (1.1). We come up with a solution in Section 3. Below is a quick summary:

• First, we define (multi-input) connections compatible with a given (multi-input) n-anchor (see
Definition 3.1). This is a quite straightforward extension of usual connections of Lie algebroids
(when n = 2).
• Second, we introduce the curvature form R∇ stemming from a connection ∇ (see Eq (3.2)). We

believe that this is a highly nontrivial invention of this note.
• Third, we prove in Theorem 3.3 that certain good connections, which we call Filippov

connections, fully determines Filippov algebroid structures. This includes two points: (1) The
n-ary bracket of any Filippov algebroid can be realized in a torsion free manner (see Eq (3.1)); (2)
The generalized Jacobi identity is transformed to a constraint, called the Bianchi-Filippov identity
(see Eq (3.3)) about the associated curvature R∇.

AIMS Mathematics Volume 9, Issue 5, 11007–11023.



11009

We then illustrate a simple method via covariant differential operators to construct Filippov
connections in Section 3.3.

As vector bundles are fiber bundles with linear fibers, particular cases of homogeneity structures,
linear geometrical structures on vector bundles are of particular interest (see also [6] on weighted
structures for various geometric objects on manifolds with general homogeneity structures). We finally
show that there exists a one-to-one correspondence between Filippov n-algebroid structures on a vector
bundle A of rank n > 3 and linear Nambu-Poisson structures on its dual bundle A∗ (see Theorem 4.3).
As an interesting application of our result, one is able to construct linear Nambu-Poisson structures
from Filippov connections (Corollary 4.4).

In short summary, torsion-free connections subject to the Bianchi-Filippov identity are important
geometric constraints for Filippov algebroids. It is well known that torsion free connections for Lie
algebroids play a crucial role in various mathematical constructions, for example, in the construction
of Poincaré-Birkhoff-Witt isomorphisms and Kapranov dg manifolds for Lie algebroid pairs [9].
Additionally, Bianchi identities are not only significant in Riemannian geometry, but also in Poisson
geometry [3]. We believe that our approach to Filippov algebroids will be beneficial in this context.

2. Preliminaries: Anchored bundles and Filippov algebroids

In this section, we recall the definition of Filippov algebroids from [7]. There is an alternative
characterization of Filippov algebroids in terms of certain 1-derivations [13]. It is important to note
that n > 2 is an integer, although the only interesting situation is when n > 3. Let us start with a notion
of n-anchored bundles.

Definition 2.1. An n-anchored vector bundle over a smooth manifold M is pair (A, ρ), where A is a
vector bundle over M and ρ : ∧n−1 A→ T M is a vector bundle morphism, called n-anchor of A.

Definition 2.2. A Filippov n-algebroid over a smooth manifold M is an n-anchored bundle (A, ρ) over
M together with an R-multilinear and skew-symmetric n-bracket on the section space Γ(A) of A:

[· , · · · , · ] : Γ(A)×· · · ×Γ(A)︸             ︷︷             ︸
n−copies

→ Γ(A),

satisfying the following compatibility conditions:

(1) The n-anchor ρ intertwines the n-bracket and the standard Lie bracket [· , · ]T M on Γ(T M):

[ρ(X1∧· · · ∧Xn−1), ρ(Y1∧· · · ∧Yn−1)]T M =

n−1∑
i=1

ρ(Y1∧· · · ∧[X1, · · · , Xn−1,Yi]∧· · · ∧Yn−1); (2.1)

(2) The n-bracket is a derivation with respect to C∞(M)-multiplications:

[X1, · · · , Xn−1, f Y] = f [X1, · · · , Xn−1,Y] + ρ(X1∧· · · ∧Xn−1)( f )Y; (2.2)

(3) The following equation holds, to be called the (generalized) Jacobi identity (or Filippov identity):

[X1, · · · , Xn−1, [Y1, · · · ,Yn]] =

n∑
i=1

[Y1, · · · ,Yi−1, [X1, · · · , Xn−1,Yi],Yi+1, · · · ,Yn], (2.3)
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for all Xi,Yi ∈ Γ(A) and f ∈ C∞(M).

Note that any Lie algebroid is a Filippov 2-algebroid. A Filippov n-algebra is a Filippov n-algebroid
over the one-point base manifold. In fact, analogous to the Lie algebroid case (i.e., n = 2 case), the
condition (1) in the above definition follows from the conditions (2) and (3).

The following examples (due to [7]) illustrate two Filippov n-algebroid structures on the trivial
tangent bundle TRm of Rm for m > n > 2.

Example 2.3. Consider the trivial n-anchored bundle (TRm, ρ = 0). For each Filippov n-algebra
structure on Rm with structure constants {c j

i1,··· ,in
} and each smooth function g ∈ C∞(Rm), we have a

Filippov n-algebroid (TRm, 0) whose bracket is defined by[
f1

∂

∂xi1
, · · · , fn

∂

∂xin

]
= g f1 · · · fn

m∑
j=1

c j
i1,··· ,in

∂

∂x j
.

Example 2.4. Equip TRm with the n-anchor map ρ defined by the tensor field

dx1∧· · · ∧dxn−1 ⊗
∂

∂x1
,

where x1, · · · , xn−1, xn, · · · , xm are coordinates of Rm. Then, the n-anchored bundle (TRm, ρ) together
with the trivial n-bracket on generators ∂

∂xi
produces a (nontrivial) Filippov n-algebroid over Rm.

We emphasize a crucial but often overlooked point in the literature: the presence of a Filippov
n-bracket on an n-anchored bundle (A, ρ) imposes a constraint on the rank of ρ for every integer n > 3.

Proposition 2.5. Let (A, [· , · · · , · ], ρ) be a Filippov n-algebroid for n > 3. Then the rank of the image
of ρ as a distribution on M can not exceed 1, i.e., rank(ρ(∧n−1A)) 6 1.

Proof. Suppose that the image of ρ at p ∈ M is not trivial. So we can find an open neighborhood U
of p and some Y1∧· · · ∧Yn−1 ∈ Γ(∧n−1A)|U such that ρ(Y1∧· · · ∧Yn−1) is nowhere vanishing on U. The
desired statement amounts to show that, if ρ(X1∧· · · ∧Xn−1) is also nowhere vanishing on U, then there
exists some c ∈ C∞(U) such that

ρ(X1 ∧ · · · ∧ Xn−1) = cρ(Y1 ∧ · · · ∧ Yn−1).

In fact, by the definition of Filippov n-algebroids, we obtain

[ρ( f X1 ∧ · · · ∧ Xn−1), ρ(Y1 ∧ · · · ∧ Yn−1)] by Eq (2.1)

=

n−1∑
i=1

ρ(Y1 ∧ · · · ∧ Yi−1 ∧ [ f X1, X2, · · · , Xn−1,Yi] ∧ Yi+1 ∧ · · · ∧ Yn−1) by Eq (2.2)

= f
n−1∑
i=1

ρ(Y1 ∧ · · · ∧ Yi−1 ∧ [X1, X2, · · · , Xn−1,Yi] ∧ Yi+1 ∧ · · · ∧ Yn−1)

+

n−1∑
i=1

(−1)n−1ρ(X2 ∧ · · · ∧ Xn−1 ∧ Yi)( f )ρ(Y1 ∧ · · · ∧ Yi−1 ∧ X1 ∧ Yi+1 ∧ · · · ∧ Yn−1) by Eq (2.1)

= f [ρ(X1 ∧ · · · ∧ Xn−1), ρ(Y1 ∧ · · · ∧ Yn−1)]
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+

n−1∑
i=1

(−1)n−1ρ(X2 ∧ · · · ∧ Xn−1 ∧ Yi)( f )ρ(Y1 ∧ · · · ∧ Yi−1 ∧ X1 ∧ Yi+1 ∧ · · · ∧ Yn−1).

Moreover, since ρ is a morphism of vector bundles, we have

[ρ( f X1∧· · · ∧Xn−1), ρ(Y1∧· · · ∧Yn−1)]
= [ fρ(X1∧· · · ∧Xn−1), ρ(Y1∧· · · ∧Yn−1)]
= f [ρ(X1∧· · · ∧Xn−1), ρ(Y1∧· · · ∧Yn−1)] − ρ(Y1∧· · · ∧Yn−1)( f )ρ(X1∧· · · ∧Xn−1).

Setting Y1 = X1 in the above two equations, we obtain

ρ(X1∧· · · ∧Xn−1)( f )ρ(X1 ∧ Y2∧· · · ∧Yn−1) = −ρ(X1 ∧ Y2∧· · · ∧Yn−1)( f )ρ(X1∧· · · ∧Xn−1). (2.4)

Using Eq (2.4), we have

ρ(X1∧· · · ∧Xn−1) = g1ρ(X1 ∧ Y2∧· · · ∧Yn−1) = −g1ρ(Y2 ∧ X1 ∧ · · · ∧ Yn−1)
= −g1g2ρ(Y2 ∧ Y1∧· · · ∧Yn−1) = g1g2ρ(Y1∧· · · ∧Yn−1),

for some g1, g2 ∈ C∞(U).

(1) If ρ(X1 ∧ Y2∧· · · ∧Yn−1) is nowhere vanishing on U, then the vector fields ρ(X1∧· · · ∧Xn−1) and
ρ(Y1∧· · · ∧Yn−1) must be C∞(U)-linearly dependent.

(2) If ρ(X1∧Y2∧· · · ∧Yn−1)|p = 0, then we let X̃1 = X1 +Y1 and consider ρ(X̃1∧Y2∧· · · ∧Yn−1), which is
nowhere vanishing on U. By arguments in (1) as above, ρ(X̃1∧X2∧· · · ∧Xn−1) and ρ(Y1∧· · · ∧Yn−1)
are C∞(U)-linearly dependent, and we obtain the desired statement as well.

3. The geometric constraints of Filippov algebroids

3.1. The main theorem

In this section, we characterize Filippov algebroids via connections on the underlying anchored
bundles.

Definition 3.1. A connection on an n-anchored bundle (A, ρ) is a bilinear map ∇ : Γ(∧n−1A)× Γ(A)→
Γ(A) satisfying two conditions:

∇ f X1∧···∧Xn−1 Xn = f∇X1∧···∧Xn−1 Xn,

and ∇X1∧···∧Xn−1( f Xn) = f∇X1∧···∧Xn−1 Xn + ρ(X1 ∧ · · · ∧ Xn−1)( f )Xn

for all X1, · · · , Xn ∈ Γ(A) and f ∈ C∞(M).

To see the existence of such a connection, one takes a T M-connection on A, say ∇T M, and then
define ∇ on the n-anchored bundle (A, ρ) as the pullback of ∇T M:

∇X1∧···∧Xn−1 Xn := ∇T M
ρ(X1∧···∧Xn−1)Xn.
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The key point of this note is that any connection ∇ on (A, ρ) induces a skew-symmetric n-bracket
on Γ(A) defined by

[X1, · · · , Xn]∇ :=
n∑

i=1

(−1)n+i∇X1∧···X̂i···∧Xn
Xi

=

n∑
i=1

(−1)(n−1)i∇Xi+1∧···∧Xn∧X1∧···∧Xi−1 Xi. (3.1)

For computational convenience, we denote the covariant derivative on Γ(A) along X1, · · · , Xn−1 ∈

Γ(A) by
X∇1···n−1 := [X1, · · · , Xn−1,−]∇ : Γ(A)→ Γ(A).

It extends to all sections in ∧•A by

X∇1···n−1(Y1∧· · · ∧Ym) :=
m∑

i=1

Y1∧· · · ∧Yi−1 ∧ X∇1···n−1(Yi) ∧ Yi+1∧· · · ∧Ym.

We then introduce the curvature form of ∇, an operation

R∇(− · · · −,−)(−) : Γ(A) × · · · × Γ(A)︸                ︷︷                ︸
(n−1)−copies

×Γ(∧n−1A) × Γ(A)→ Γ(A),

defined by

R∇(X1, · · · , Xn−1,Y1∧· · · ∧Yn−1)(Z)
:= [X∇1···n−1,∇Y1∧···∧Yn−1](Z) − ∇X∇1···n−1(Y1∧···∧Yn−1)Z

:= X∇1···n−1∇Y1∧···∧Yn−1Z − ∇Y1∧···∧Yn−1 X∇1···n−1Z − ∇X∇1···n−1(Y1∧···∧Yn−1)Z, (3.2)

for all X1, · · · , Xn−1,Y1, · · · ,Yn−1,Z ∈ Γ(A) and n > 3. When n = 3, it reads

R∇(X1, X2,Y1 ∧ Y2)(Z) = X∇12∇Y1∧Y2Z − ∇Y1∧Y2 X∇12Z − ∇X∇12(Y1∧Y2)Z

= [X1, X2,∇Y1∧Y2Z]∇ − ∇Y1∧Y2[X1, X2,Z]∇

−∇[X1,X2,Y1]∇∧Y2+Y1∧[X1,X2,Y2]∇Z.

When n = 4, the expression of R∇ consists of twenty terms. As n gets larger, more terms are involved.
It is easy to verify from the defining Eq (3.2) that the curvature R∇ is C∞(M)-linear with respect

to the argument Y1 ∧ · · · ∧ Yn−1. However, R∇ need not be tensorial in X1, · · · , Xn−1 although it is
skew-symmetric in these arguments.

Definition 3.2. A connection ∇ on an n-anchored bundle (A, ρ) is called a Filippov connection if the
following two conditions are true:

(1) The curvature R∇ is C∞(M)-linear with respect to its last argument, i.e., for all f ∈ C∞(M) and
all X1, · · · , Xn−1,Y1, · · · ,Yn ∈ Γ(A), we have

R∇(X1, · · · , Xn−1,Y1∧· · · ∧Yn−1)( f Yn) = f R∇(X1, · · · , Xn−1,Y1∧· · · ∧Yn−1)(Yn);
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(2) The following equality holds, to be called the Bianchi-Filippov identity:

0 =

n−1∑
i=0

(−1)(n−1)iR∇(X1, · · · , Xn−1,Yi+1∧· · · ∧Yn ∧ Y1∧· · · ∧Yi−1)Yi, (3.3)

where Y0 means Yn.

We are ready to state our main theorem, which characterizes Filippov algebroids fully by Filippov
connections.

Theorem 3.3. Let (A, ρ) be an n-anchored bundle. If ∇ is a Filippov connection on (A, ρ), then
(A, ρ, [· , · · · , · ]∇) is a Filippov n-algebroid, where [· , · · · , · ]∇ is the n-bracket given by Eq (3.1).
Moreover, any Filippov n-algebroid structure on (A, ρ) arises from a Filippov connection in this way.

3.2. Proof of Theorem 3.3

The proof of Theorem 3.3 is divided, and will follow immediately from the three lemmas below.

Lemma 3.4. Let ∇ be a connection on an n-anchored bundle (A, ρ). The curvature R∇ satisfies the first
condition of Definition 3.2 if and only if the anchor ρ intertwines the induced n-bracket [· , · · · , · ]∇ and
the Lie bracket [· , · ]T M on Γ(T M), i.e.,

[ρ(X1∧· · · ∧Xn−1), ρ(Y1∧· · · ∧Yn−1)]T M =

n−1∑
i=1

ρ(Y1∧· · · ∧[X1, · · · , Xn−1,Yi]∇∧· · · ∧Yn−1),

for all X1, · · · , Xn−1,Y1, · · · ,Yn−1 ∈ Γ(A).

Proof. By the definition of curvature, we have

R∇(X1, · · · , Xn−1,Y1 ∧ · · · ∧ Yn−1)( f Yn) by Eq (3.2)
= [X∇1···n−1,∇Y1∧···∧Yn−1]( f Yn) − ∇X∇1···n−1(Y1∧···∧Yn−1)( f Yn)

= X∇1···n−1∇Y1∧···∧Yn−1( f Yn) − ∇Y1∧···∧Yn−1 X∇1···n−1( f Yn) − ∇X∇1···n−1(Y1∧···∧Yn−1)( f Yn)

= f R∇(X1, · · · , Xn−1,Y1 ∧ · · · ∧ Yn−1)(Yn) + ρ(X1 ∧ · · · ∧ Xn−1)ρ(Y1 ∧ · · · ∧ Yn−1)( f )Yn

− ρ(Y1 ∧ · · · ∧ Yn−1)ρ(X1 ∧ · · · ∧ Xn−1)( f )Yn −

n−1∑
i=1

ρ(Y1 ∧ · · · ∧ X∇1···n−1(Yi) ∧ · · · ∧ Yn−1)( f )Yn.

Hence, the curvature R∇ is C∞(M)-linear with respect to its last argument if and only if

ρ(X1 ∧ · · · ∧ Xn−1)ρ(Y1 ∧ · · · ∧ Yn−1) − ρ(Y1 ∧ · · · ∧ Yn−1)ρ(X1 ∧ · · · ∧ Xn−1)

=

n−1∑
i=1

ρ(Y1 ∧ · · · ∧ X∇1···n−1(Yi) ∧ · · · ∧ Yn−1)

=

n−1∑
i=1

ρ(Y1 ∧ · · · ∧ [X1, · · · , Xn−1,Yi]∇ ∧ · · · ∧ Yn−1).

�
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Lemma 3.5. Let ∇ be a connection on an n-anchored bundle (A, ρ). The curvature R∇ satisfies the
second condition of Definition 3.2, i.e., the Bianchi-Filippov identity (3.3), if and only if the induced
n-bracket [· , · · · , · ]∇ satisfies the (generalized) Jacobi identity (2.3).

Proof. The statement follows directly from the following lines of computation:

n−1∑
i=0

(−1)(n−1)iR∇(X1, · · · , Xn−1,Yi+1 ∧ · · · ∧ Yn ∧ Y1 ∧ · · · ∧ Yi−1)Yi by Eq (3.2)

=

n−1∑
i=0

(−1)(n−1)i
(
[X∇1···n−1,∇Yi+1∧···∧Yn∧Y1∧···∧Yi−1](Yi) − ∇X∇1···n−1(Yi+1∧···∧Yn∧Y1∧···∧Yi−1)Yi

)
=

X1, · · · , Xn−1,

n−1∑
i=0

(−1)(n−1)i∇Yi+1∧···∧Yn∧Y1∧···∧Yi−1(Yi)

∇

−

n−1∑
i=0

(−1)(n−1)i

∇Yi+1∧···∧Yn∧Y1∧···∧Yi−1 X∇1···n−1(Yi) +
∑
j,i

∇Yi+1∧···∧X∇1···n−1(Y j)∧···∧Yi−1
Yi

 by Eq (3.1)

= [X1, · · · , Xn−1, [Y1, · · · ,Yn]∇]∇ −
n−1∑
i=0

(−1)(n−1)i∇Yi+1∧···∧Yn∧Y1∧···∧Yi−1[X1, · · · , Xn−1,Yi]∇

−

n−1∑
i=0

∑
j,i

(−1)(n−1)i∇Yi+1∧···∧[X1,··· ,Xn−1,Y j]∇∧···∧Yi−1Yi by Eq (3.1)

= [X1, · · · , Xn−1, [Y1, · · · ,Yn]∇]∇ −
n∑

i=1

[Y1, · , [X1, · · · , Xn−1,Yi]∇, · · · ,Yn]∇.

The next lemma shows that any Filippov algebroid can be realized by a Filippov connection.

Lemma 3.6. Let (A, [· , · · · , · ], ρ) be a Filippov n-algebroid. Then there exists a Filippov connection
∇ on the underlying n-anchored bundle (A, ρ) such that [· , · · · , · ] = [· , · · · , · ]∇ (the torsion-free
property).

Proof. Given a connection ∇◦ on (A, ρ), we are able to obtain an R-multilinear operation K(· , · · · , · )
on Γ(A) by

K(X1, · · · , Xn) := [X1, · · · , Xn] − [X1, · · · , Xn]∇
◦

.

Using axioms of Filippov algebroids, it is easy to see that K(· , · · · , · ) is indeed C∞(M)-multilinear.
Then we define a new connection ∇ on (A, ρ) by

∇X1∧···∧Xn−1 Xn :=
1
n

K(X1, · · · , Xn) + ∇◦X1∧···∧Xn−1
Xn.

It remains to check the desired equality:

[X1, · · · , Xn]∇ = ∇X1∧···∧Xn−1 Xn +

n−1∑
i=1

(−1)(n−1)i∇Xi+1∧···∧Xn∧X1∧···∧Xi−1 Xi
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= K(X1, · · · , Xn) + ∇◦X1∧···∧Xn−1
Xn +

n−1∑
i=1

(−1)(n−1)i∇◦Xi+1∧···∧Xn∧X1∧···∧Xi−1
Xi

= [X1, · · · , Xn].

The following examples illustrate three Filippov connections on the trivial tangent bundle TRm of
Rm for m > n > 2.

Example 3.7. Consider the trivial n-anchored vector bundle (TRm, ρ = 0). Suppose that the vector
space Rm is endowed with a Filippov n-algebra structure whose structure constants are {c j

i1···in
} with

respect to the standard basis of Rm. Given a smooth function g ∈ C∞(Rm) and a set of constants
{a j

i1···in−1;in
} satisfying the equality:

a j
i1···in−1;in

+

n−1∑
k=1

(−1)(n−1)ka j
ik+1···ini1···ik−1;ik

= c j
i1···in

, (3.4)

we are able to obtain a connection on (TRm, ρ = 0) generated by the only one nontrivial relation:

∇ ∂
∂xi1
∧···∧ ∂

∂xin−1

∂

∂xin
:= g

m∑
j=1

a j
i1···in−1;in

∂

∂x j
.

It follows from the recipe in Eqs (3.1) and (3.4) that[
∂

∂xi1
, · · · ,

∂

∂xin

]∇
= g

m∑
i=1

c j
i1···in

∂

∂x j
.

So, what we recover is the Filippov structure on TRm as in Example 2.3. Hence, ∇ is indeed a Filippov
connection.

Example 3.8. Consider the n-anchor map ρ on the tangent bundle TRm defined by the tensor field
dx1∧· · · ∧dxn−1 ⊗

∂
∂x1

, where x1, · · · , xn−1, xn, · · · , xm are coordinate functions of Rm. It is obvious that
the (nontrivial) connection on (TRm, ρ) generated by the trivial relation:

∇ ∂
∂xi1
∧···∧ ∂

∂xin−1

∂

∂xin
:= 0,

produces a nontrivial n-bracket which is compatible with ρ. Indeed, what we recover is the Filippov
structure on TRm as in Example 2.4, and the said connection ∇ is a Filippov connection.

Example 3.9. Continue to work with the anchored bundle (A, ρ) as in the previous example. We
consider a different connection with the only nontrivial generating relations:

∇Z
∂

∂xk
=


(−1)σ

∂

∂xk
, if Z =

∂

∂xσ1

∧ · · · ∧
∂

∂xσn−1

,

0, otherwise,
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where σ is a permutation {1, · · · , n − 1}, for all xk ∈ {x1, · · · , xm}. Then, the associated n-bracket is
given by [

∂

∂xσ1

, · · · ,
∂

∂xσn−1

,
∂

∂xk

]∇
=

(−1)σ
∂

∂xk
, if k > n − 1,

0, otherwise,

where σ is a permutation {1, · · · , n − 1}. By subtle analysis, one can find that the associated curvature
R∇ is just zero. Hence ∇ is truly a Filippov connection and the above bracket defines a Filippov
algebroid structure on (A, ρ).

3.3. Construction of Filippov connections

Let A → M be a vector bundle. Consider the bundle CDO(A) of covariant differential operators
(cf. [10]*III, [11], see also [8], where the notationD(A) is used instead of CDO(A)). An element D of
Γ(CDO(A)), called a covariant differential operator, is an R-linear operator Γ(A)→ Γ(A) together with
a vector field D̂ ∈ Γ(T M), called the symbol of D, satisfying

D( f X) = f D(X) + D̂( f ) · X, ∀X ∈ Γ(A), f ∈ C∞(M).

The operator D can be first extended by the Leibniz rule to an operator D : Γ(∧n−1A) → Γ(∧n−1A). By
taking dual we obtain an operator D : Γ(∧n−1A∗)→ Γ(∧n−1A∗) defined by

〈X1∧· · · ∧Xn−1|D(η̄)〉 = D̂〈X1∧· · · ∧Xn−1|η̄〉 −

n−1∑
i=1

〈X1∧· · · ∧D(Xi)∧· · · ∧Xn−1|η̄〉, (3.5)

for all X1, · · · , Xn−1 ∈ Γ(A) and η̄ ∈ Γ(∧n−1A∗).
Given a pair (D, ξ̄), where D ∈ Γ(CDO(A)) and ξ̄ ∈ Γ(∧n−1A∗), one is able to construct a map

ρ(D,ξ̄) : Γ(∧n−1A) → Γ(T M),
X1∧· · · ∧Xn−1 7→ 〈X1∧· · · ∧Xn−1|ξ̄〉D̂.

It is clear that ρ(D,ξ̄) makes A an n-anchored bundle, and the rank of the image of ρ(D,ξ̄) does not exceed 1.
Define a connection on the n-anchored bundle (A, ρ(D,ξ̄)) by

∇
(D,ξ̄)
X1∧···∧Xn−1

Xn := 〈X1 ∧ · · · ∧ Xn−1|ξ̄〉D(Xn). (3.6)

Proposition 3.10. If the pair (D, ξ̄) is subject to the relation

D(ξ̄) = gξ̄, for some g ∈ C∞(M), (3.7)

then ∇(D,ξ̄) defined as in (3.6) is a Filippov connection on the n-anchored bundle (A, ρ(D,ξ̄)).

Proof. We denote ∇(D,ξ̄) by ∇ for simplicity below. It suffices to check the associated curvature R∇ is
C∞(M)-linear with respect to the last argument and satisfies the Bianchi-Filippov identity (3.3). In fact,
we have

R∇(X1, · · · , Xn−1,Y1 ∧ · · · ∧ Yn−1)( f Yn) by Eq (3.2)

AIMS Mathematics Volume 9, Issue 5, 11007–11023.



11017

= X∇1···n−1∇Y1∧···∧Yn−1( f Yn) − ∇Y1∧···∧Yn−1 X∇1···n−1( f Yn) − ∇X∇1···n−1(Y1∧···∧Yn−1)( f Yn) by Eqs (3.1), (3.5), (3.6)

= f R∇(X1, · · · , Xn−1,Y1 ∧ · · · ∧ ∧Yn−1)(Yn) + (〈X1 ∧ · · · ∧ Xn−1|ξ̄〉

〈Y1 ∧ · · · ∧ Yn−1|D(ξ̄)〉 − 〈Y1 ∧ · · · ∧ Yn−1|ξ̄〉〈X1 ∧ · · · ∧ Xn−1|D(ξ̄)〉)D̂( f )Yn by Eq (3.7)
= f R∇(X1, · · · , Xn−1,Y1 ∧ · · · ∧ Yn−1)(Yn),

and
n−1∑
i=0

(−1)(n−1)iR∇(X1, · · · , Xn−1,Yi+1 ∧ · · · ∧ Yn ∧ Y1 ∧ · · · ∧ Yi−1)Yi by Eq (3.2)

=

n−1∑
i=0

(−1)(n−1)i[X∇1···n−1,∇Yi+1∧···∧Yn∧Y1∧···∧Yi−1](Yi)

−

n−1∑
i=0

(−1)(n−1)i∇X∇1···n−1(Yi+1∧···∧Yn∧Y1∧···∧Yi−1)Yi by Eqs (3.1) and (3.6)

=

n−1∑
i=0

(−1)(n−1)i〈Yi+1 ∧ · · · ∧ Yn ∧ Y1 ∧ · · · ∧ Yi−1|ξ̄〉X∇1···n−1(D(Yi))

−

n−1∑
i=0

(−1)(n−1)i〈Yi+1 ∧ · · · ∧ Yn ∧ Y1 ∧ · · · ∧ Yi−1|ξ̄〉D(X∇1···n−1(Yi))

+

n−1∑
i=0

(−1)(n−1)iX∇1···n−1(〈Yi+1 ∧ · · · ∧ Yn ∧ Y1 ∧ · · · ∧ Yi−1|ξ̄〉)D(Yi)

−

n−1∑
i=0

(−1)(n−1)i
∑
j,i

〈Yi+1 ∧ · · · ∧ X∇1···n−1(Y j) ∧ · · · ∧ Yi−1|ξ̄〉D(Yi) by Eqs (3.1), (3.5) and (3.6)

=

n−1∑
i=0

(−1)(n−1)i〈X1 ∧ · · · ∧ Xn−1|ξ̄〉〈Yi+1 ∧ · · · ∧ Yn ∧ Y1 ∧ · · · ∧ Yi−1|D(ξ̄)〉

−

n−1∑
i=0

(−1)(n−1)i〈Yi+1 ∧ · · · ∧ Yn ∧ Y1 ∧ · · · ∧ Yi−1|ξ̄〉〈X1 ∧ · · · ∧ Xn−1|D(ξ̄)〉 by Eq (3.7)

= 0.

Hence, ∇(D,ξ̄) defined as in (3.6) is indeed a Filippov connection.

As a consequence of Theorem 3.3, a pair (D, ξ̄) subject to condition (3.7) produces a Filippov n-
algebroid structure on A. Its n-bracket reads:

[X1, · · · , Xn]∇
(D,ξ̄)

= 〈X1∧· · · ∧Xn−1|ξ̄〉D(Xn) + (−1)n−1〈X2∧· · · ∧Xn|ξ̄〉D(X1) + · · ·

+〈Xn−1 ∧ Xn ∧ X1∧· · · ∧Xn−3|ξ̄〉D(Xn−2) + (−1)n−1〈Xn ∧ X1∧· · · ∧Xn−2|ξ̄〉D(Xn−1).

4. A construction of linear Nambu-Poisson structures

In this section, we unravel under certain conditions a relation between linear Nambu-Poisson
structures and Filippov connections.
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4.1. From Filippov algebroids to linear Nambu-Poisson structures

Definition 4.1. [14, 17] A Nambu-Poisson structure of order n on a smooth manifold P is an R-
multilinear and skew-symmetric n-bracket on the smooth function space C∞(P):

{· , · · · , · } : C∞(P)×· · · ×C∞(P)︸                  ︷︷                  ︸
n−copies

→ C∞(P),

satisfying the following two conditions:

(1) The n-bracket is a derivation with respect to C∞(P)-multiplications:

{ f1, · · · , fn−1, g1g2} = g1{ f1, · · · , fn−1, g2} + { f1, · · · , fn−1, g1}g2;

(2) The (generalized) Jacobi identity (also known as the fundamental identity):

{ f1, · · · , fn−1, {g1, · · · , gn}} =

n∑
i=1

{g1, · · · , { f1, · · · , fn−1, gi}, · · · , gn},

holds for all fi and g j ∈ C∞(P).

The pair (P, {· , · · · , · }) is called a Nambu-Poisson manifold.

Alternatively, one could express the said bracket via an n-vector field π on P such that

{ f1, · · · , fn} = π(d f1, · · · , d fn), ∀ f1, · · · , fn ∈ C∞(P). (4.1)

Given a smooth vector bundle p : A→ M, the section space Γ(A) are identified as the space C∞lin(A∗)
of fiberwise linear functions on A∗, the dual vector bundle of A; while elements in p∗(C∞(M)) are
called basic functions on A∗. To fix the notations, for any section X ∈ Γ(A), let φX ∈ C∞lin(A∗) be the
corresponding linear function on A∗.

Definition 4.2. [1] A Nambu-Poisson structure of order n on the vector bundle A∗ → M is said to be
linear, if it satisfies the following three conditions:

(1) The bracket of n linear functions is again a linear function;
(2) The bracket of (n − 1) linear functions and a basic function is a basic function;
(3) The bracket of n functions is zero if there are more than one basic functions among the arguments.

In fact, the second and the third condition in the above definition can be derived from the first
condition.

Note that any Poisson manifold is a Nambu-Poisson manifold of order 2. A well-known fact is the
following: A Lie algebroid A over M gives rise to a linear Poisson manifold A∗, and vice versa. It is
pointed out in [1]*Theorem 4.4 that a linear Nambu-Poisson structure of order n on A∗ corresponds
to a Filippov n-algebroid structure on A (see also [2]). However, the reverse process is generally not
valid for the cases of n > 3, mainly because the condition of a Nambu-Poisson structure is very strong
(cf. [12]). Nevertheless, in this paper, we will require that A be a rank n vector bundle and establish the
one-to-one correspondence between Filippov n-algebroid structures on A and linear Nambu-Poisson
structures on A∗. In specific, under the said condition, our main theorem below serves as a complement
to [1]*Theorem 4.4.
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Theorem 4.3. Let (A, ρ, [· , · · · , · ]) be a Filippov n-algebroid over a smooth manifold M, where A→ M
is a vector bundle of rank n > 3. Then there exists a unique linear Nambu-Poisson structure on the
dual bundle A∗ → M such that for all sections X1, · · · , Xn ∈ Γ(A),

{φX1 , · · · , φXn} = φ[X1,··· ,Xn]. (4.2)

Note that, if Eq (4.2) holds, then it is easy to deduce that the linear Nambu-Poisson structure on A∗

and the anchor map ρ are also related:

{φX1 , · · · , φXn−1 , p∗ f } = p∗(ρ(X1∧· · · ∧Xn−1)( f )), (4.3)

for all f ∈ C∞(M) and X1, · · · , Xn−1 ∈ Γ(A).
As a direct application of Theorems 3.3 and 4.3, one can construct linear Nambu-Poisson structures

out of Filippov connections:

Corollary 4.4. If ∇ is a Filippov connection on an n-anchored bundle (A, ρ), where A→ M is a vector
bundle of rank n > 3, then the dual bundle A∗ admits a unique linear Nambu-Poisson structure of order
n defined by

{φX1 , · · · , φXn} = φ[X1,··· ,Xn]∇ ,

for all X1, · · · , Xn ∈ Γ(A).

4.2. Proof of Theorem 4.3

The proof is divided into three steps.
Step 1. Since functions of type φX (for X ∈ Γ(A)) and p∗ f (for f ∈ C∞(M)) generate C∞(A∗), there

exists a unique R-multilinear n-bracket {· , · · · , · } on C∞(A∗) satisfying Eqs (4.2) and (4.3). We wish to
write the corresponding n-vector field π on A∗ explicitly.

To this end, we work locally and consider the trivialization A|U � U × Rn over an open subset
U ⊂ M with coordinates x1, · · · , xm; let {X1, · · · , Xn} be a local basis of Γ(A|U). Then

{y1 = φX1 , · · · , yn = φXn , p∗x1, · · · , p∗xm}

forms a chart on A∗|U . For convenience, p∗xi is denoted by xi.
Suppose further that the Filippov algebroid A|U is described by the structure functions ck and

f1···̂l···n ∈ C∞(U) such that

[X1, · · · , Xn] =

n∑
k=1

ckXk,

and ρ(X1 ∧ · · · X̂l · · · ∧ Xn) = f1···̂l···n
∂

∂x1 .

Here we have utilized Proposition 2.5. Then one is able to find the expression of the n-vector field π
on A∗|U :

π =

n∑
k=1

ckyk
∂

∂y1
∧ · · · ∧

∂

∂yn
+

n∑
l=1

f1···̂l···n
∂

∂y1
∧ · · · ∧

∂

∂ŷl
∧ · · · ∧

∂

∂yn
∧

∂

∂x1 , (4.4)

which corresponds to the n-bracket {· · · } on A∗|U .
Step 2. We need to set up a preparatory lemma.
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Lemma 4.5. There exists a local basis {X1, · · · , Xn} of Γ(A|U) such that the corresponding structure
functions ck and f1···̂l···n satisfy the following relations: for all i , j (in {1, · · · , n}),

f1···̂i···n

∂ f1···̂ j···n

∂x1 = f1···̂ j···n

∂ f1···̂i···n

∂x1 ; (4.5)

(−1)i f1···̂i···nc j = (−1) j f1···̂ j···nci. (4.6)

Proof. Consider the map ρ : ∧n−1 A|U → TU. By Proposition 2.5, for any point p ∈ U, we have
rank(ρ(∧n−1A)p) 6 1, and thus dim(ker(ρp)) > (n − 1). Note that the subset V ⊂ U where dim(ker(ρp))
is locally constant is open and dense. By a continuity argument if necessary, we may assume that
dim(ker(ρp)) is locally constant on U. Thus, we are able to find a local basis {Z1, · · · ,Zn} of Γ(∧n−1A|U)
such that ρ(Z2), · · · , ρ(Zn) are trivial.

Take an arbitrary Ω ∈ Γ(∧nA|U) which is nowhere vanishing on U. Consider

Ω] : A∗|U → ∧n−1A|U , Ω](α) := iαΩ,

which is an isomorphism of vector bundles. Then we obtain a basis {α1, · · · , αn} of Γ(A∗|U) by setting
αi := (Ω])−1(Zi). Let {X1, · · · , Xn} be the dual basis of Γ(A|U) corresponding to {α1, · · · , αn}. There
exists a nowhere vanishing smooth function g ∈ C∞(U) such that Ω = gX1 ∧ · · · ∧ Xn, and hence
Zi = iαiΩ = gX1 ∧ · · · X̂i ∧ · · · ∧ Xn.

Since we have ρ(Zi) = 0 (∀i ∈ {2, · · · , n}), we also have

ρ(X1 ∧ · · · X̂i ∧ · · · ∧ Xn) = 0, ∀i ∈ {2, · · · , n}. (4.7)

Using the axiom of a Filippov algebroid, we have a relation

f1···̂i···n

∂ f1···̂ j···n

∂x1

∂

∂x1 − f1···̂ j···n

∂ f1···̂i···n

∂x1

∂

∂x1

= [ f1···̂i···n
∂

∂x1 , f1···̂ j···n
∂

∂x1 ]T M

= [ρ(X1 ∧ · · · ∧ X̂i ∧ · · · ∧ Xn), ρ(X1 ∧ · · · ∧ X̂ j ∧ · · · ∧ Xn)]T M by Eq. (2.1)

=

n∑
k=1,k< j

ρ(X1 ∧ · · · ∧ [X1, · · · , X̂i, · · · , Xn, Xk] ∧ · · · ∧ X̂ j ∧ · · · Xn)

+

n∑
k=1,k> j

ρ(X1 ∧ · · · ∧ X̂ j ∧ · · · ∧ [X1, · · · , X̂i, · · · , Xn, Xk] ∧ · · · Xn)

= (−1)(n−i)ci f1···̂ j···n
∂

∂x1 − (−1)(n− j)c j f1···̂i···n
∂

∂x1 .

According to the previous fact (4.7), all the lines above must be trivial, and thus the desired two
equalities (4.5) and (4.6) are proved.

Step 3. We wish to show that the n-bracket {· , · · · , · } given in Step 1, or the n-vector field π locally
given in Eq (4.4), is a linear Nambu-Poisson structure on A∗.

We need the following proposition due to Dufour and Zung [4].
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Proposition 4.6. [4] Let Ω be a volume form on an l-dimensional manifold P, and π an n-vector filed
on P, where l > n > 3. Consider the (l − n)-form ω := ιπΩ on P. Then π defines a Nambu-Poisson
structure (via Eq (4.1)) if and only if ω satisfies the following two conditions:

(ιKω) ∧ ω = 0, (4.8)
(ιKω) ∧ dω = 0, (4.9)

for any (l − n − 1)-vector field K on P.

Consider the volume form Ω = dy1 ∧ · · · dyn ∧ dx1 ∧ · · · ∧ dxm on A∗|U , where U, yi, and x j are
as earlier, and we suppose that such a coordinate system stems from {X1, · · · , Xn} fulfills Lemma 4.5.
According to Proposition 4.6, we need to examine the m-form defined by:

ω := ιπΩ =

n∑
k=1

ckykdx1 ∧ · · · ∧ dxm +

n∑
j=1

(−1)n− j+1 f1···̂ j···ndy j ∧ dx2 ∧ · · · ∧ dxm.

We can easily check that ω satisfies Eq (4.8) and hence it remains to check Eq (4.9). One first finds
that

dω =

n∑
k=1

ykdck ∧ dx1 ∧ · · · ∧ dxm +

n∑
k=1

ckdyk ∧ dx1 ∧ · · · ∧ dxm

+

n∑
j=1

(−1)n− j+1d f1···̂ j···n ∧ dy j ∧ dx2 ∧ · · · ∧ dxm

=

n∑
k=1

ckdyk ∧ dx1 ∧ · · · ∧ dxm +

n∑
j=1

(−1)n− j+1
∂ f1···̂ j···n

∂x1 dx1 ∧ dy j ∧ dx2 ∧ · · · ∧ dxm.

Consider the following special type of (m − 1)-vector field on A∗|U : K = ∂
∂x2 ∧ · · · ∧

∂
∂xm . Then one

computes:

(ιKω) ∧ dω = (−1)m−1

 n∑
k=1

ckykdx1 +

n∑
j=1

(−1)n− j+1 f1···̂ j···ndy j

 ∧ dω

=

n∑
j=1

(−1)m+n− j f1···̂ j···ndy j ∧

n∑
i=1

cidyi ∧ dx1 ∧ · · · ∧ dxm

+

n∑
j=1

(−1)m+n− j f1···̂ j···ndy j ∧

n∑
i=1

(−1)n−i+1∂ f1···̂i···n

∂x1 dx1 ∧ dyi ∧ dx2 ∧ · · · ∧ dxm

= (−1)m
n∑

j=1

n∑
i=1,i, j

((−1)(n−i)ci f1···̂ j···n − (−1)(n− j)c j f1···̂i···n)dy j ∧ dyi

+

n∑
j=1

n∑
i=1,i, j

(−1)m+i+ j( f1···̂ j···n

∂ f1···̂i···n

∂x1 − f1···̂i···n

∂ f1···̂ j···n

∂x1 )dy j ∧ dyi by Eqs. (4.5) and (4.6)

= 0.

This justifies Eq (4.9) for this particular K. For other types of K, it is easy to verify Eq (4.9) as well.
This completes the proof of Theorem 4.3.
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5. Conclusions

In order to understand the geometry of Filippov n-algebroids, we introduced a kind of multi-
input connections on n-anchored vector bundles. Filippov n-brackets could be reconstructed from
such connections. Moreover, all compatibility conditions in the definition of Filippov n-algebroids
correspond to some natural conditions on connections. These connections are called Filippov
connections. We also provided with concrete constructions on Filippov connections, which led to
many examples of Filippov n-algebroids. As an application, we obtain a one-to-one correspondence
between Filippov n-algebroid structures on a vector bundle A of rank n and linear Nambu-Poisson
structures on its dual bundle A∗.
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